版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Computer-aidDiagnosisonMajorDepressiveDisorderBasedon
EMGfromtheSplenius
CapitisMuscle
以頭夾肌肉肌電圖分析實現(xiàn)重鬱癥之電腦輔助診斷(Part2)
2010AnnualSymposiumonBiomedicalEngineeringandTechnology沈祖望Tsu-WangShen1劉芳芷Hsin-FangLi1陳紹祖WilliamShao-TsuChen21慈濟大學(xué)醫(yī)學(xué)資訊學(xué)系DepartmentofMedicalInformatics,TzuChiUniversity2花蓮慈濟醫(yī)院身心醫(yī)學(xué)科DepartmentofPsychiatry,BuddhistTzu-ChiGeneralHospitalPresenter:Tzu-YuHuangAdvisor:Dr.Yen-TingChenDate:12.29.20101Anartificialneuralnetwork(ANN)ArtificialintelligenceMathematicalmodelLearningsystemComputer-aiddiagnosisMethodsandMaterialsAnartificialneuralnetwork(ANN):類神經(jīng)網(wǎng)路2MethodsandMaterialsBackpropagationneuralnetwork(BPNN)SupervisedneuralnetworkBackpropagationneuralnetwork(BPNN):倒傳遞類神經(jīng)網(wǎng)路f1234kLf123451234abcdekLInputlayerHidden
layerOutputlayer3MethodsandMaterialsBackpropagationneuralnetwork(BPNN)Input-to-hiddenWeight
Activationfunction:
sigmoidBlue
a=2Red
a=1Green
a=0.5kLf+x4MethodsandMaterialsBackpropagationneuralnetwork(BPNN)Hidden-to-outputWeightActivationfunction:pure-linearYjhHYhjhYjHWnetq+?=f+x5MethodsandMaterialsBackpropagationneuralnetwork(BPNN)AdjustweightsOutputlayerEFHidden
layer1234abcdekLInputlayer6MethodsandMaterialsBackpropagationneuralnetwork(BPNN)Adjustweights
7MethodsandMaterialsSupportvectormachine(SVM)ClassificationStatisticsHyperplaneoptimalseparatinghyperplane(OSH)supporthyperplane
MarginOSH:最佳分割超平面Supporthyperplane:支持超平面8ResultsT.O.V.AMDD
HigheromissionratesHighermeanresponsetimesMorevariabilityEMGfeaturesMDDLowerEAandRMSvaluesHigherMFandMPFvalues9ResultsT.O.V.ACompareEMGComparisonbygroupsduringrest
GroupsMeanSDPEA(uv)MDD22.2034.840.001Control56.5953.51RMS(uv)MDD0.120.160.000Control0.280.25MDF(PSD)MDD80.407.310.000Control73.117.77MPF(PSD)MDD84.984.190.000Control80.514.14*p<0.0510ResultsT.O.V.ACompareEMGComparisonbygroupduringTOVAGroupsMeanSDPEA(uv)MDD28.4638.270.013Control65.0188.40RMS(uv)MDD0.140.180.010Control0.320.40MDF(PSD)MDD80.836.590.000Control72.796.45MPF(PSD)MDD85.223.970.000Control80.433.31*p<0.0511ResultsAccuracyAccuracyRestTOVATrainTestTrainTestBPNN92.06%76.67%87.67%76.67%SVM100%83.33%98.33%83.56%12ConclusionandDiscussionMDDbecomesmoredistinguishablewhenrestingHealthcontrolshavewiderrangeofEAandMFMDDpatientshavethelowercapabilityonphysiologicalregulationHopefully,thesystemcanbeusedtodetectandtocontroltheMDDdisorderinthefuture.13References[1]J.M.DonohueandH.A.Pincus,Reducingthesocietalburdenofdepression:areviewofeconomiccosts,qualityofcareandeffectsoftreatment,Pharmacoeconomics25(2007)7.[2]P.Sobocki,B.Jonsson,J.Angst,C.Rehnberg.CostofdepressioninEurope.JMentHealthPolicyEcon9(2006)87.[3]AmericanPsychiatricAssociation,Diagnosticandstatisticalmanualofmentaldisorders(AmericanPsychiatricAssociation,Washington,DC,2000).[4]R.C.Kessler,P.Berglund,O.Demler,R.Jin,D.Koretz,K.R.Merikangas,A.J.Rush,E.E.Walters,P.S.Wang;NationalComorbiditySurveyReplication,Theepidemiologyofmajordepressivedisorder:resultsfromtheNationalComorbiditySurveyReplication(NCS-R),JAMA289(2003)3095-105.[5]G.E.Simon,M.VonKorff,Recognitionandmanagementofdepressioninprimarycare,ArchFamMed4(1995)99-105.[6]W.KatonandP.Ciechanowski,Impactofmajordepressiononchronicmedicalillness.JPsychosom
Res53(2002)859-63.[7]E.J.Perez-Stable,J.Miranda,R.F.Munoz,Y.W.Ying,Depressioninmedicaloutpatients.Underrecognitionandmisdiagnosis,ArchInternMed.150(1990)1083-8.[8]R.M.Carney,B.A.Hong,S.Kulkarni,A.Kapila,AcomparisonofEMGandSCLinnormalanddepressedsubjects.ThePavlovianjournalofbiologicalscience,16:4(1981)212-216.[9]A.Erfanian,etal.,EvokedEMGinelectricallystimulatedmuscleandmechanismsoffatigue,inEngineeringinMedicineandBiologySociety(1994)341-342.[10]E.ParkandS.G.Meek,Fatiguecompensationoftheelectromyographicsignalforprostheticcontrolandforceestimation,BiomedicalEngineering,IEEETransactionson40(1993)1019-1023.[11]Z.K.Moussavi,etal.,TheeffectoftreatmentformyofascialtriggerpointsontheEMGfatigueparametersofshouldermuscles,EngineeringinMedicineandBiologySocietyProceedingsofthe19thAnnualInternationalConferenceoftheIEEE3(1997)1082-1085.[12]S.Haykin,NeuralNetworksandLearningMachines(3rded.):PrenticeHall(2008).[13]J.F.Greden,N.Genero,H.L.Price,Agitation-increasedelectromyogramactivityinthecorrugatormuscleregion:apossibleexplanationofthe"Omegasign"?,AmJPsychiatry142(1985)348-51.[14]S.H.Woodward,M.J.Friedman,D.L.Bliwise,Sleepanddepressionincombat-relatedPTSDinpatients,BiologicalPsychiatry39(1996)182-92.[15]L.O'Brien-Simpson,P.Di
Parsia,J.G.Simmons,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度城市綠化工程承包消殺協(xié)議書合同范本4篇
- 2025年度美甲店知識產(chǎn)權(quán)保護合同4篇
- 2025年度存量房屋買賣中介合同(綠色家居生活倡導(dǎo)升級版)4篇
- 2025版小吃店餐飲服務(wù)與設(shè)施改造合同3篇
- 2025商品樓租賃合同范本
- 二零二五年度中醫(yī)養(yǎng)生茶飲師徒關(guān)系合同規(guī)范4篇
- 2025年度叉車司機職業(yè)技能鑒定與提升合同4篇
- 2025版外債借款合同變更及解除條款3篇
- 2025年度城市地下綜合管廊工程承包合同范本4篇
- 二零二五年度水電站自動化控制系統(tǒng)承包合同范本4篇
- 教師招聘(教育理論基礎(chǔ))考試題庫(含答案)
- 2024年秋季學(xué)期學(xué)校辦公室工作總結(jié)
- 鋪大棚膜合同模板
- 長亭送別完整版本
- 智能養(yǎng)老院視頻監(jiān)控技術(shù)方案
- 你比我猜題庫課件
- 無人駕駛航空器安全操作理論復(fù)習(xí)測試附答案
- 建筑工地春節(jié)留守人員安全技術(shù)交底
- 默納克-NICE1000技術(shù)交流-V1.0
- 蝴蝶蘭的簡介
- 老年人心理健康量表(含評分)
評論
0/150
提交評論