![(九年級上北師大數(shù)學(xué)課件) 圓內(nèi)接正多邊形_第1頁](http://file4.renrendoc.com/view/982c002b777b06b723ea7f636ee26329/982c002b777b06b723ea7f636ee263291.gif)
![(九年級上北師大數(shù)學(xué)課件) 圓內(nèi)接正多邊形_第2頁](http://file4.renrendoc.com/view/982c002b777b06b723ea7f636ee26329/982c002b777b06b723ea7f636ee263292.gif)
![(九年級上北師大數(shù)學(xué)課件) 圓內(nèi)接正多邊形_第3頁](http://file4.renrendoc.com/view/982c002b777b06b723ea7f636ee26329/982c002b777b06b723ea7f636ee263293.gif)
![(九年級上北師大數(shù)學(xué)課件) 圓內(nèi)接正多邊形_第4頁](http://file4.renrendoc.com/view/982c002b777b06b723ea7f636ee26329/982c002b777b06b723ea7f636ee263294.gif)
![(九年級上北師大數(shù)學(xué)課件) 圓內(nèi)接正多邊形_第5頁](http://file4.renrendoc.com/view/982c002b777b06b723ea7f636ee26329/982c002b777b06b723ea7f636ee263295.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
8圓內(nèi)接正多邊形(1)(第1課時)問題1,什么樣的圖形是正多邊形?各邊相等,各角也相等的多邊形是正多邊形.活動1問題2,日常生活中,我們經(jīng)常能看到正多邊形的物體,利用正多邊形,我們也可以得到許多美麗的圖案,你還能舉出一些這樣的例子嗎?你知道正多邊形與圓的關(guān)系嗎?
正多邊形和圓的關(guān)系非常密切,只要把一個圓分成相等的一些弧,就可以作出這個圓的內(nèi)接正多邊形,這個圓就是這個正多邊形的外接圓.活動2
如圖,把⊙O分成相等的5段弧,依次連接各分點得到正五邊形ABCDE.∴AB=BC=CD=DE=EA,∴∠A=∠B.∵·ABCDEO同理∠B=
∠C=
∠D=
∠E.又五邊形ABCDE的頂點都在⊙O上,∴五邊形ABCDE是⊙O的內(nèi)接正五邊形,⊙O是五邊形ABCDE的外接圓.我們以圓內(nèi)接正五邊形為例證明.弧BCE=弧CDA,正多邊形每一邊所對的圓心角叫做正多邊形的中心角.O·中心角半徑R邊心距r我們把一個正多邊形的圓心叫做這個正多邊形的中心.外接圓的半徑叫做正多邊形的半徑.中心到正多邊形的距離叫做正多邊形的邊心距.例有一個亭子,它的地基是半徑為4m的正六邊形,求地基的周長和面積(精確到0.1m2).解:如圖,由于ABCDEF是正六邊形,所以它的中心角等于,△OBC是等邊三角形,從而正六邊形的邊長等于它的半徑.因此,亭子地基的周長l=4×6=24(m).在Rt△OPC中,OC=4,PC=利用勾股定理,可得邊心距亭子地基的面積OABCDEFRPr活動3練習(xí)1.矩形是正多邊形嗎?菱形呢?正方形呢?為什么?矩形不一定是正多邊形.因為四條邊不一定都相等;菱形不一定是正多邊形.因為四個角不一定都相等;正方形是正多邊形.因為四條邊都相等,四個角都相等.活動42.各邊相等的圓內(nèi)接多邊形是正多邊形嗎?各角都相等的圓內(nèi)接多邊形呢?如果是,說明為什么;如果不是,舉出反例.各邊相等的圓內(nèi)接多邊形是正多邊形.多邊形A1A2A3A4…An是⊙O的內(nèi)接多邊形,且A1A2=A2A3=A3A4=…=An-1An,∴多邊形A1A2A3A4…An是正多邊形.A2A7An·A1A3A4A5A(chǔ)6O∴弧A1A2=弧A2A3=弧A3A4=…=弧An-1An=弧AnA1,∴弧A2A3An=弧A3A4A1=弧A4A5A2=…=弧A1A2An-1,3.分別求出半徑為R的圓內(nèi)接正三角形,正方形的邊長,邊心距和面積.解:作等邊△ABC的邊BC上的高AD,垂足為D.連接OB,則OB=R.在Rt△OBD中,∠OBD=30°,邊心距=OD=在Rt△ABD中,∠BAD=30°,·ABCDO由勾股定理,求得AB=解:連接OB,OC,過點O作OE⊥BC垂足為E.則∠OEB=90°,∠OBE=∠BOE=45°.Rt△OBE為等腰直角三角形.則有·ABCDOE8圓內(nèi)接正多邊形(2)(第2課時)實際生活中,經(jīng)常會遇到畫平面正多邊形的問題,比如畫一個六角螺帽的平面圖,畫一個五角形等,這些問題都與等分圓周有關(guān),要制造如圖中零件,也需要等分圓周.例如,我們可以這樣來畫一個邊長為2cm的正六邊形.第一種方法,如圖,以2cm為半徑作一個⊙O,用量角器畫一個等于 的圓心角,它對著一段弧,然后在圓上依次截取與這條弧相等的弧,就得到圓的6個等分點,順次連接各分點,即可得出正六邊形.·60°O90018060120活動1利用這種方法可以畫出任意的正n邊形.第二種方法,如圖,以2cm為半徑作一個⊙O,由于正六邊形的半徑等于邊長,所以在圓上依次截取等于2cm的弦,就可以將圓六等分,順次連接各分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公馬購買合同范本
- 企事業(yè)合同范例
- 倉庫外包合同范本
- 井下勞務(wù)合同范例
- 旋挖鉆孔灌注樁專項施工分包合同范本
- 個人現(xiàn)金借款抵押合同范本
- 養(yǎng)殖修建施工合同范例
- 別墅回購合同范本
- 2025年度借電合同臨時用電設(shè)施安全管理服務(wù)協(xié)議
- 2025年度建筑模板工程加固與維護承包協(xié)議
- 2024-2030年中國大宗商品行業(yè)市場深度調(diào)研及發(fā)展趨勢與投資前景研究報告
- 強化提升1解三角形中的三線問題(解析)
- 異地就醫(yī)備案的個人承諾書
- 2024-2030年中國ODM服務(wù)器行業(yè)市場發(fā)展分析及前景趨勢與投資研究報告
- 六年級下健康教案設(shè)計
- 室內(nèi)裝飾拆除專項施工方案
- 醫(yī)院院外會診申請單、醫(yī)師外出會診審核表、醫(yī)師外出會診回執(zhí)
- 鋼筋工程精細化管理指南(中建內(nèi)部)
- 2024年山西省高考考前適應(yīng)性測試 (一模)英語試卷(含答案詳解)
- 教科版六年級下冊科學(xué)第三單元《宇宙》教材分析及全部教案(定稿;共7課時)
- 2024年中國鐵路投資集團有限公司招聘筆試參考題庫含答案解析
評論
0/150
提交評論