




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年安徽省蚌埠市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.在空間直角坐標(biāo)系中,方程x2-4(y-1)2=0表示()。A.兩個(gè)平面B.雙曲柱面C.橢圓柱面D.圓柱面
2.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。
A.充要條件B.充分條件C.必要條件D.無關(guān)條件
3.A.1/2f(2x)+CB.f(2x)+CC.2f(2x)+CD.1/2f(x)+C
4.
A.
B.
C.
D.
5.A.A.>0B.<0C.=0D.不存在
6.方程2x2-y2=1表示的二次曲面是().A.A.球面B.柱面C.旋轉(zhuǎn)拋物面D.圓錐面
7.級(jí)數(shù)()。A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)
8.
9.
A.必定收斂B.必定發(fā)散C.收斂性與α有關(guān)D.上述三個(gè)結(jié)論都不正確
10.
11.
12.微分方程y''-2y=ex的特解形式應(yīng)設(shè)為()。A.y*=Aex
B.y*=Axex
C.y*=2ex
D.y*=ex
13.
14.
15.
16.設(shè)f(x)為連續(xù)函數(shù),則()'等于().A.A.f(t)B.f(t)-f(a)C.f(x)D.f(x)-f(a)17.微分方程y'+y=0的通解為()。A.y=ex
B.y=e-x
C.y=Cex
D.y=Ce-x
18.
19.設(shè)y=cos4x,則dy=()。A.
B.
C.
D.
20.下列命題正確的是().A.A.
B.
C.
D.
二、填空題(20題)21.冪級(jí)數(shù)的收斂半徑為________。
22.設(shè)y=f(x)在點(diǎn)x=0處可導(dǎo),且x=0為f(x)的極值點(diǎn),則f(0)=__________
23.二階常系數(shù)齊次線性方程y"=0的通解為__________。
24.
25.
26.∫e-3xdx=__________。
27.
28.
29.
30.
31.
32.
33.
34.設(shè)f(x+1)=3x2+2x+1,則f(x)=_________.
35.
36.
37.
38.
39.設(shè)f(x)=ax3-6ax2+b在區(qū)間[-1,2]的最大值為2,最小值為-29,又知a>0,則a,b的取值為______.
40.
三、計(jì)算題(20題)41.
42.
43.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則44.
45.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.46.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
47.
48.
49.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.50.將f(x)=e-2X展開為x的冪級(jí)數(shù).51.求微分方程的通解.52.
53.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
54.55.求曲線在點(diǎn)(1,3)處的切線方程.
56.求微分方程y"-4y'+4y=e-2x的通解.
57.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.58.證明:59.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).60.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.四、解答題(10題)61.
62.
63.
64.
65.(本題滿分8分)
66.將f(x)=ln(1+x2)展開為x的冪級(jí)數(shù).67.設(shè)y=y(x)由方程X2+2y3+2xy+3y-x=1確定,求y'.
68.
69.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
70.
五、高等數(shù)學(xué)(0題)71.某工廠每月生產(chǎn)某種商品的個(gè)數(shù)x與需要的總費(fèi)用函數(shù)關(guān)系為10+2x+
(單位:萬元)。若將這些商品以每個(gè)9萬元售出,問每月生產(chǎn)多少個(gè)產(chǎn)品時(shí)利潤(rùn)最大?最大利潤(rùn)是多少?
六、解答題(0題)72.設(shè)
參考答案
1.A
2.B∵可導(dǎo)一定連續(xù),連續(xù)一定可積;反之不一定?!嗫蓪?dǎo)是可積的充分條件
3.A本題考查了導(dǎo)數(shù)的原函數(shù)的知識(shí)點(diǎn)。
4.B本題考查的知識(shí)點(diǎn)為交換二次積分次序。由所給二次積分可知積分區(qū)域D可以表示為1≤y≤2,y≤x≤2,交換積分次序后,D可以表示為1≤x≤2,1≤y≤x,故應(yīng)選B。
5.C被積函數(shù)sin5x為奇函數(shù),積分區(qū)間[-1,1]為對(duì)稱區(qū)間。由定積分的對(duì)稱性質(zhì)知選C。
6.B本題考查的知識(shí)點(diǎn)為識(shí)別二次曲面方程.
由于二次曲面的方程中缺少一個(gè)變量,因此它為柱面方程,應(yīng)選B.
7.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂。
由于的p級(jí)數(shù),可知為收斂級(jí)數(shù)。
可知收斂,所給級(jí)數(shù)絕對(duì)收斂,故應(yīng)選A。
8.B解析:
9.D本題考查的知識(shí)點(diǎn)為正項(xiàng)級(jí)數(shù)的比較判別法.
10.A
11.C
12.A由方程知,其特征方程為,r2-2=0,有兩個(gè)特征根r=±.又自由項(xiàng)f(x)=ex,λ=1不是特征根,故特解y*可設(shè)為Aex.
13.A解析:
14.D
15.C
16.C本題考查的知識(shí)點(diǎn)為可變上限積分的求導(dǎo)性質(zhì).
這是一個(gè)基本性質(zhì):若f(x)為連續(xù)函數(shù),則必定可導(dǎo),且
本題常見的錯(cuò)誤是選D,這是由于考生將積分的性質(zhì)與牛頓-萊布尼茨公式混在了一起而引起的錯(cuò)誤.
17.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量
兩端分別積分
或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。
18.B解析:
19.B
20.D本題考查的知識(shí)點(diǎn)為收斂級(jí)數(shù)的性質(zhì)和絕對(duì)收斂的概念.
由絕對(duì)收斂級(jí)數(shù)的性質(zhì)“絕對(duì)收斂的級(jí)數(shù)必定收斂”可知應(yīng)選D.
21.因?yàn)榧?jí)數(shù)為,所以用比值判別法有當(dāng)<1時(shí)收斂,即x2<2。收斂區(qū)間為,故收斂半徑R=。
22.
23.y=C1+C2x。
24.
25.
26.-(1/3)e-3x+C
27.2
28.2xy(x+y)+3
29.(-33)(-3,3)解析:
30.231.1.
本題考查的知識(shí)點(diǎn)為函數(shù)在一點(diǎn)處導(dǎo)數(shù)的定義.
由于f(1)=2,可知
32.22解析:
33.
34.
35.
解析:
36.本題考查了交換積分次序的知識(shí)點(diǎn)。
37.(1/3)ln3x+C
38.
39.
f'(x)=3ax2-12ax,f'(x)=0,則x=0或x=4,而x=4不在[-1,2]中,故舍去.f''(x)=6ax-12a,f''(0)=-12a,因?yàn)閍>0,所以,f''(0)<0,所以x=0是極值點(diǎn).又因f(-1)=-a-6a+b=b-7a,f(0)=b,f(2)=8a-24a+b=b-16a,因?yàn)閍>0,故當(dāng)x=0時(shí),f(x)最大,即b=2;當(dāng)x=2時(shí),f(x)最小.所以b-16a=-29,即16a=2+29=31,故a=.
40.00解析:
41.
42.43.由等價(jià)無窮小量的定義可知
44.
則
45.
46.
47.
48.
49.
50.
51.52.由一階線性微分方程通解公式有
53.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
54.
55.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
56.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
57.由二重積分物理意義知
58.
59.
列表:
說明
60.函數(shù)的定義域?yàn)?/p>
注意
61.
62.
63.
64.
65.本題考查的知識(shí)點(diǎn)為不定積分運(yùn)算.
只需將被積函數(shù)進(jìn)行恒等變形,使之成為標(biāo)準(zhǔn)積分公式形式的函數(shù)或利用變量替換求積分的函數(shù).66.由于
因此
本題考查的知識(shí)點(diǎn)為將函數(shù)展開為冪級(jí)數(shù).
綱中指出“會(huì)運(yùn)用ex,sinx,cosx,ln(1+x),的麥克勞林展開式,將一些簡(jiǎn)單的初等函數(shù)展開為x或(x-x0)的冪級(jí)數(shù).”這表明本題應(yīng)該將ln(1+x2)變形認(rèn)作ln(1+x)的形式,利用間接法展開為x的冪級(jí)數(shù).
本題中考生出現(xiàn)的常見錯(cuò)誤是對(duì)ln(1+x2)關(guān)于x的冪級(jí)數(shù)不注明該級(jí)數(shù)的收斂區(qū)間,這是要扣分的.67.解法1將所給方程兩端關(guān)于x求導(dǎo),可得2x+6y2·y'+2(y+xy')+3y'-1=0,整理可得
解法2令F(x,y)=x2+2y3+2xy+3y-x-1,則本題考查的知識(shí)點(diǎn)為隱函數(shù)求導(dǎo)法.
y=y(x)由方程F(x,Y)=0確定,求y'通常有兩種方法:
一是將F(x,y)=0兩端關(guān)于x求導(dǎo),認(rèn)定y為中間變量,得到含有y'的方程,從中解出y'.
二是利用隱函數(shù)求導(dǎo)公式其中F'x,F(xiàn)'y分別為F(x,y)=0中F(x,y)對(duì)第一個(gè)位置變?cè)钠珜?dǎo)數(shù)與對(duì)第二個(gè)位置變?cè)钠珜?dǎo)數(shù).
對(duì)于一些特殊情形,可以從F(x,y)=0中較易地解出y=y
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025租房合同協(xié)議樣本參考
- 2025租賃合同撤銷協(xié)議書
- 2025股票交易委托合同范本模板
- 2025微博平臺(tái)委托開發(fā)合同
- 2025中學(xué)新風(fēng)系統(tǒng)安裝施工合同書
- 2025租房合同簡(jiǎn)化版
- 2025租房合同簡(jiǎn)化版樣本
- 2025標(biāo)準(zhǔn)化的煤炭購銷合同范本
- 2025年知識(shí)產(chǎn)權(quán)合同糾紛的解決方法
- 《養(yǎng)殖用藥及安全》課件
- 定額〔2025〕1號(hào)文-關(guān)于發(fā)布2018版電力建設(shè)工程概預(yù)算定額2024年度價(jià)格水平調(diào)整的通知
- 【MOOC】機(jī)械原理-西北工業(yè)大學(xué) 中國大學(xué)慕課MOOC答案
- 關(guān)于新能源汽車的論文10000字
- 停車場(chǎng)建設(shè)工程監(jiān)理規(guī)劃
- 中型水力發(fā)電廠電氣部分初步設(shè)計(jì)
- 2023山西焦煤集團(tuán)有限責(zé)任公司井下操作工招聘2000人筆試模擬試題及答案解析
- 分紅險(xiǎn)、萬能險(xiǎn)銷售資質(zhì)考試真題模擬匯編(共763題)
- 魚臺(tái)工程運(yùn)河杯匯報(bào)材料
- GB/T 16895.25-2022低壓電氣裝置第7-711部分:特殊裝置或場(chǎng)所的要求展覽、展示及展區(qū)
- 《運(yùn)營(yíng)管理》案例庫
- 煤礦安全監(jiān)控系統(tǒng)設(shè)備管理報(bào)廢制度
評(píng)論
0/150
提交評(píng)論