計量經(jīng)濟(jì)學(xué)1-4課件_第1頁
計量經(jīng)濟(jì)學(xué)1-4課件_第2頁
計量經(jīng)濟(jì)學(xué)1-4課件_第3頁
計量經(jīng)濟(jì)學(xué)1-4課件_第4頁
計量經(jīng)濟(jì)學(xué)1-4課件_第5頁
已閱讀5頁,還剩104頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

計量經(jīng)濟(jì)學(xué)

EconometricsTel:E_mail:課程介紹計量經(jīng)濟(jì)學(xué)是在經(jīng)濟(jì)理論的指導(dǎo)下通過數(shù)學(xué)和統(tǒng)計方法對經(jīng)濟(jì)關(guān)系進(jìn)行分析以尋求經(jīng)濟(jì)現(xiàn)象所具有的數(shù)量規(guī)律的一門經(jīng)濟(jì)學(xué)學(xué)科。以建立、檢驗(yàn)和運(yùn)用計量經(jīng)濟(jì)模型為核心,在介紹基本原理基礎(chǔ)上,重點(diǎn)分析回歸分析在實(shí)際應(yīng)用中會遇到的三大問題(多重共線形、異方差、自相關(guān))的檢驗(yàn)與解決方法,最后介紹對不同類型數(shù)據(jù)的各種回歸分析模型。掌握建模思路、經(jīng)濟(jì)模型的參數(shù)估計和檢驗(yàn);初步掌握計量經(jīng)濟(jì)學(xué)軟件包Excel和Eviews軟件的操作和基本技術(shù);在此基礎(chǔ)上,能夠獨(dú)立完成一個小型計量經(jīng)濟(jì)模型的全過程。課程說明考核方式使用教材與參考文獻(xiàn)《計量經(jīng)濟(jì)學(xué)基礎(chǔ)》(第4版),古扎拉蒂,費(fèi)劍平、孫春霞等譯,中國人民大學(xué)出版社2005年版。《計量經(jīng)濟(jì)學(xué)導(dǎo)論:現(xiàn)代觀點(diǎn)》,J.M.伍德里奇,費(fèi)劍平、林相森譯,中國人民大學(xué)出版社?!队嬃拷?jīng)濟(jì)學(xué)入門》,黃少敏,北京大學(xué)出版社?!队嬃拷?jīng)濟(jì)模型與經(jīng)濟(jì)預(yù)測》(第4版),RobertS.Pindyck&DanielL.Rubinfeld,錢小軍等譯,機(jī)械工業(yè)出版社?!稊?shù)據(jù)分析與Eviews應(yīng)用》,易丹輝,中國統(tǒng)計出版社2002年版。1數(shù)據(jù)的描述統(tǒng)計熟悉軟件的描述統(tǒng)計功能和圖形繪制功能:輸入樣本數(shù)據(jù);計算樣本均值、方差、標(biāo)準(zhǔn)偏差、相關(guān)系數(shù)等統(tǒng)計量;繪制樣本數(shù)據(jù)散點(diǎn)圖等圖形。22經(jīng)典線性回歸模型分析與檢驗(yàn)對實(shí)際的經(jīng)濟(jì)問題建立線性回歸模型:收集或模擬樣本數(shù)據(jù),建立模型(函數(shù)形式、變量選擇);模型的參數(shù)檢驗(yàn);模型檢驗(yàn);根據(jù)檢驗(yàn)結(jié)果修正模型;理解輸出結(jié)果的含義。63多重共線性問題診斷與解決模擬線性回歸模型中解釋變量之間存在多重共線性的樣本數(shù)據(jù);通過殘差圖示、相關(guān)系數(shù)法和方差膨脹因子法診斷多重共線性問題;利用逐步回歸分析方法解決多重共線性問題。44異方差問題檢驗(yàn)與消除模擬線性回歸模型中隨機(jī)誤差項(xiàng)為異方差的樣本數(shù)據(jù);進(jìn)行Park檢驗(yàn)和Goldfeld-Quandt檢驗(yàn);利用WLS方法消除異方差問題。25自相關(guān)問題檢驗(yàn)與消除模擬線性回歸模型中隨機(jī)誤差項(xiàng)為序列自相關(guān)的樣本數(shù)據(jù);進(jìn)行一階自相關(guān)系數(shù)和D-W檢驗(yàn);利用廣義差分法消除自相關(guān)問題。26不同類型數(shù)據(jù)的回歸分析1、設(shè)置虛擬變量以消減橫截面數(shù)據(jù)存在的異方差問題,檢驗(yàn)虛擬變量的顯著性。2、分析時間序列數(shù)據(jù)的滯后變量模型和“廣義差分法”模型。2教育家B.F.Skinner“如果我們將學(xué)過的東西忘得一干二凈時,最后剩下來的東西就是教育的本質(zhì)了。”所謂“剩下來的東西”,其實(shí)就是自學(xué)的能力,也就是舉一反三或無師自通的能力。第一章緒論2學(xué)時第一章緒論提綱第一節(jié)計量經(jīng)濟(jì)學(xué)簡介一、計量經(jīng)濟(jì)學(xué)產(chǎn)生二、什么是計量經(jīng)濟(jì)學(xué)三、計量經(jīng)濟(jì)學(xué)的地位四、如何學(xué)習(xí)計量經(jīng)濟(jì)學(xué)第二節(jié)實(shí)證經(jīng)濟(jì)分析的步驟第一節(jié)計量經(jīng)濟(jì)學(xué)簡介一、計量經(jīng)濟(jì)學(xué)產(chǎn)生1、經(jīng)濟(jì)學(xué)的科學(xué)化經(jīng)濟(jì)學(xué)是科學(xué)嗎?科學(xué)方法2、經(jīng)濟(jì)學(xué)的應(yīng)用例,在經(jīng)濟(jì)衰退中,有人說:1)需要削減工資,因?yàn)槟菍⒃黾悠髽I(yè)的利潤,并因而刺激生產(chǎn);2)需要增加工資,因?yàn)槟菍⒋碳はM(fèi)者的需求,因而刺激生產(chǎn);3)需要削減利息率,因?yàn)槟菍⒋碳ら_設(shè)新企業(yè);4)需要提高利息率,因?yàn)槟菍⒃黾鱼y行存款,并因而給予銀行增加貸款的能力。“增工資”與“減工資”、“削減利息率”與“提高利息率”相互矛盾,如何選擇?分開看,四種措施都有其道理,但是決策者卻無所適從。因?yàn)檫@些措施都是純理論概念,既沒有定量化,也沒有比較各種措施的相對力度。宏觀分析階段1926,弗瑞希、丁伯根創(chuàng)立計量經(jīng)濟(jì)學(xué)1930,國際計量經(jīng)濟(jì)學(xué)會成立1933,

Econometrica

雜志創(chuàng)刊微觀分析階段創(chuàng)立階段1930年代,側(cè)重于個別商品供給與需求的計量,基本上屬于個量分析或微觀分析1940年代以來,范圍擴(kuò)大到整個經(jīng)濟(jì)體系,其特征是處理總量數(shù)據(jù)。很多至今還在英、美等西方國家運(yùn)行的模型正是那個時期開發(fā)的。RagnarFrischNorwayJanTinbergentheetherlands二、什么是計量經(jīng)濟(jì)學(xué)

計量經(jīng)濟(jì)學(xué)經(jīng)濟(jì)學(xué)數(shù)學(xué)統(tǒng)計學(xué)在經(jīng)濟(jì)理論的指導(dǎo)下通過用數(shù)學(xué)和統(tǒng)計方法對經(jīng)濟(jì)關(guān)系進(jìn)行分析以尋求經(jīng)濟(jì)現(xiàn)象所具有的數(shù)量規(guī)律的一門經(jīng)濟(jì)學(xué)學(xué)科(離開經(jīng)濟(jì)學(xué),模型將是一堆無用的數(shù)學(xué)符號),以建立、檢驗(yàn)和運(yùn)用計量經(jīng)濟(jì)模型為核心(隨機(jī)方程)。與其他學(xué)科的區(qū)別運(yùn)用抽象的方法,借助數(shù)學(xué)函數(shù)和幾何圖形得出經(jīng)濟(jì)學(xué)概念與理論,先經(jīng)濟(jì)行為公理化,然后演繹推理,雖有方程式,但沒有賦予具體數(shù)值;經(jīng)濟(jì)關(guān)系絕對準(zhǔn)確確定,不可能用統(tǒng)計資料驗(yàn)證。以統(tǒng)計資料作為記述現(xiàn)實(shí)經(jīng)濟(jì)變動過程的手段;不驗(yàn)證經(jīng)濟(jì)理論、預(yù)測、政策評價(國外稱廣義計量經(jīng)濟(jì)學(xué))=計量經(jīng)濟(jì)學(xué)+優(yōu)化理論+投入產(chǎn)出+技術(shù)經(jīng)濟(jì)學(xué)等一切涉及經(jīng)濟(jì)的數(shù)量分析方面的各個學(xué)科的綜合。經(jīng)濟(jì)統(tǒng)計學(xué)中國的數(shù)量經(jīng)濟(jì)學(xué)數(shù)理經(jīng)濟(jì)學(xué)計量經(jīng)濟(jì)學(xué)的藝術(shù)成分計量經(jīng)濟(jì)學(xué)雖然以科學(xué)原理為基礎(chǔ),但仍保留了一定的藝術(shù)成分,主要體現(xiàn)在試圖找出一組合適的假設(shè),這些假設(shè)既嚴(yán)格又現(xiàn)實(shí),使得我們能夠使用可獲得的數(shù)據(jù)得到最理想的結(jié)果,而現(xiàn)實(shí)中這種嚴(yán)格的假設(shè)條件往往難以滿足。“藝術(shù)”成分的存在使得計量經(jīng)濟(jì)學(xué)有別于傳統(tǒng)的科學(xué),是使人對它提供準(zhǔn)確預(yù)測的能力產(chǎn)生懷疑的主要原因。三、計量經(jīng)濟(jì)學(xué)的地位克萊因(R.Klein):“計量經(jīng)濟(jì)學(xué)已經(jīng)在經(jīng)濟(jì)學(xué)科中居于最重要的地位”,“在大多數(shù)大學(xué)和學(xué)院中,計量經(jīng)濟(jì)學(xué)的講授已經(jīng)成為經(jīng)濟(jì)學(xué)課程表中最有權(quán)威的一部分”。薩繆爾森(P.Samuelson):“第二次大戰(zhàn)后的經(jīng)濟(jì)學(xué)是計量經(jīng)濟(jì)學(xué)的時代”。四、如何學(xué)習(xí)計量經(jīng)濟(jì)學(xué)

多重共線性;異方差;自相關(guān)

若資料與理論一致,則接受理論,利用估計好的模型;若不一致,則修正或者推翻理論。

計量經(jīng)濟(jì)學(xué)檢驗(yàn)與修正

驗(yàn)證、預(yù)測、政策評價第二節(jié)實(shí)證經(jīng)濟(jì)分析的步驟

Keynes消費(fèi)理論:平均說來,當(dāng)人們收入增多時,他們傾向于消費(fèi),但其增長的程度并不和收入增長的程度一樣多。

橫截面數(shù)據(jù);時間序列數(shù)據(jù);混合橫截面數(shù)據(jù);面板數(shù)據(jù)ols;極大似然估計;pls

C=282.2434+0.758511Y(0.9825)

(20.54)

理論或假說陳述

數(shù)學(xué)模型設(shè)定

計量模型設(shè)定

獲取數(shù)據(jù)

參數(shù)估計與假設(shè)檢驗(yàn)數(shù)據(jù)來源國家統(tǒng)計局網(wǎng)站中國人民銀行網(wǎng)站外匯管理局網(wǎng)站中國統(tǒng)計年鑒各期中國資訊行統(tǒng)計數(shù)據(jù)庫中國經(jīng)濟(jì)信息中心…….三要素經(jīng)濟(jì)理論經(jīng)濟(jì)數(shù)據(jù)統(tǒng)計方法

理論

模型計量經(jīng)濟(jì)模型事實(shí)數(shù)據(jù)加工好的數(shù)據(jù)統(tǒng)計理論計量經(jīng)濟(jì)技術(shù)使用計量經(jīng)濟(jì)技術(shù),用加工好的數(shù)據(jù),估計計量經(jīng)濟(jì)模型結(jié)構(gòu)分析

預(yù)測政策評價練習(xí)某空調(diào)生產(chǎn)商請你為他研究價格上漲對空調(diào)需求量的影響,你將如何做?簡述思路。課后學(xué)習(xí)章節(jié):引言預(yù)習(xí)章節(jié):附錄A.7----教材下冊P844第二章統(tǒng)計基礎(chǔ)知識復(fù)習(xí)4學(xué)時第二章統(tǒng)計基礎(chǔ)知識復(fù)習(xí)提綱一、總體的數(shù)字特征—數(shù)二、樣本的數(shù)字特征—統(tǒng)計量三、通過樣本估計總體1、點(diǎn)估計2、區(qū)間估計3、假設(shè)檢驗(yàn)一、總體的數(shù)字特征—數(shù)隨機(jī)變量:表示總體的數(shù)量特征。依概率不同而取不同值的變量,取值由隨機(jī)實(shí)驗(yàn)的結(jié)果決定。如計算拋10次硬幣正面朝上的次數(shù)1、期望值2、方差3、協(xié)方差4、相關(guān)系數(shù)例:女兒期待父親釣多少魚回家?數(shù)學(xué)期望是最容易發(fā)生的,因而是可以期待的。它反映數(shù)據(jù)集中的趨勢。二、樣本的數(shù)字特征—統(tǒng)計量樣本:簡單隨機(jī)抽樣,每個個體有同等入選樣本的機(jī)會n元隨機(jī)變量(x1,x2,…,xn),獨(dú)立同分布每一次具體抽樣所得的數(shù)據(jù),就是n元隨機(jī)變量的一個觀察值。1、樣本均值2、樣本方差3、樣本協(xié)方差4、樣本相關(guān)系數(shù)中心極限定理給定某一變量,無論該變量服從什么樣的分布,當(dāng)其樣本規(guī)模增大時,其樣本均值的分布就會趨于正態(tài)分布。~N(0,1)~t(n-1)概率密度x標(biāo)準(zhǔn)正態(tài)分布t-分布0三、通過樣本估計總體樣本是總體的一部分,是對總體隨機(jī)抽樣后得到的集合。對觀察者而言,總體是不了解的,了解的只是樣本的具體情況。我們所要做的就是通過對這些具體樣本的情況的研究,來推知整個總體的情況。……Xn+1Xn…X1樣本總體例:燈泡壽命期望值的估計某燈泡廠某天生產(chǎn)了一大批燈泡,從中抽取了10個進(jìn)行壽命試驗(yàn),獲得數(shù)據(jù)如下(單位:小時),問該天生產(chǎn)的燈泡的平均壽命是多少?1、點(diǎn)估計方法:最小二乘估計、極大似然估計等方法總體參數(shù)樣本估計量如何選擇最佳估計量--估計量的性質(zhì)對總體的數(shù)量特征可以提出若干估計量。所謂估計量的特性指的是衡量一個統(tǒng)計量用以估計總體參數(shù)的好壞標(biāo)準(zhǔn)。我們構(gòu)造一個統(tǒng)計量時,它們就應(yīng)當(dāng)具有這些優(yōu)良性,否則就不采用它來估計總體參數(shù)。估計量的優(yōu)良性可從四個方面進(jìn)行衡量:無偏性有偏估計無偏估計有效性方差最小一個無偏有效估計量的取值在可能范圍內(nèi)最密集于β附近。即,它以最大的概率保證估計量的取值在真值β附近擺動。的真值的真值^的概率^的概率均方誤最小性在很多情況下,我們被迫在偏差的大小與方差的大小(即無偏與有效性)之間作出抉擇。有時,一個方差極小的有偏估計比一個方差極大的無偏估計可能更為我們所追求。此時,估計量的均方誤為我們在兩者之間的權(quán)衡提供了一個有效的尺度。一致性最小均方誤(有偏,方差極?。o偏,方差極大^^的概率4支比賽用槍的抽樣結(jié)果一次射擊就是一次抽樣。哪些是無偏估計?哪些是有偏估計?哪些是有效估計?哪些是無偏有效估計?準(zhǔn)而不精又精又準(zhǔn)精而不準(zhǔn)不精不準(zhǔn)對區(qū)間估計的形象比喻我們經(jīng)常說某甲的成績“大概80分左右”,可以看成一個區(qū)間估計問題。(某甲的成績?yōu)楸还烙嫷膮?shù))

P(1<<2)=大概的準(zhǔn)確程度(1-)

如:P(75<<85)=95%=1-5%“大概80分左右”冒險率(假設(shè)檢驗(yàn)中叫顯著水平)下限上限2、區(qū)間估計用點(diǎn)估計估計參數(shù),即使是無偏有效的估計量,也會由于樣本的隨機(jī)性,使得由樣本計算出的估計值并不恰恰是真值。而且即使等于真值,由于真值未知,我們也不能肯定這種相等。那么,究竟相差多少?于是問題等價為:在給定可靠程度下,指出被估計參數(shù)所在的可能值的范圍,就是參數(shù)的區(qū)間估計問題。具體作法是找出兩個統(tǒng)計量1(x1,…,xn)與2(x1,…,xn),使

P(1<<2)=1-(1,2)稱為置信區(qū)間,1-稱為置信度(置信系數(shù)),稱為冒險率(測不準(zhǔn)的概率),一般等于5%或1%。期望值的區(qū)間估計---中心極限定理的應(yīng)用n≥30正態(tài)分布n<30t分布5%1.96/2/21-例:新生兒體重的區(qū)間估計假設(shè)新生兒(男)的體重服從正態(tài)分布。隨機(jī)抽取12名新生兒,測得體重如下表,試以95%的置信度估計新生兒(男)的平均體重。3、假設(shè)檢驗(yàn)有時候我們感興趣的問題具有確定的yes或no的答案。比如,工作培訓(xùn)計劃是否有效地提高了工人的工作效率?女性在求職時是否受到歧視?運(yùn)用樣本數(shù)據(jù)設(shè)計一套方法來回答這類問題就是假設(shè)檢驗(yàn)。所謂假設(shè)檢驗(yàn),就是事先對總體參數(shù)或總體分布形式作出一個假設(shè),然后利用樣本信息來判斷原假設(shè)是否合理,即判斷樣本信息與原假設(shè)是否有顯著差異,從而決定是否接受或否定原假設(shè)。假設(shè)檢驗(yàn)采用的邏輯推理方法是反證法。先假定原假設(shè)正確,然后根據(jù)樣本信息,觀察由此假設(shè)而導(dǎo)致的結(jié)果是否合理,從而判斷是否接受原假設(shè)。判斷結(jié)果合理與否,是基于“小概率事件不易發(fā)生”這一原理的概率很小的事件在一次抽樣試驗(yàn)中幾乎是不可能發(fā)生的。若在原假設(shè)的前提下,居然發(fā)生了小概率事件,則說明原假設(shè)是錯誤的,于是否定原假設(shè)。思路提出假設(shè)根據(jù)該假設(shè),找到小概率事件抽樣,看小概率事件是否發(fā)生如果發(fā)生,表示假設(shè)是錯的。如果沒有發(fā)生,表示假設(shè)不是錯的。步驟1、設(shè)定假設(shè)條件原定假設(shè)H0:μ=μ0

替代假設(shè)H1:

μ?μ02、決定用哪種檢驗(yàn)若n≥30,用Z檢驗(yàn);若n<30,用t(n-1)檢驗(yàn)3、查表找臨界值根據(jù)α,從概率分布表查找臨界值Zα或tα4、計算統(tǒng)計值5、若|統(tǒng)計值|>臨界值,則否定原定假設(shè);---小概率事件發(fā)生若|統(tǒng)計值|<臨界值,則不能否定原定假設(shè)例:女嬰體重變化的假設(shè)檢驗(yàn)從1999年出生的女嬰中隨機(jī)地抽取20名,測得平均體重=3160克,標(biāo)準(zhǔn)差=300克,根據(jù)已有的統(tǒng)計資料新生女嬰的平均體重=3140克,問1999年與過去新生女嬰的體重是否有變化(=0.01)?兩類錯誤由于我們作出判斷的依據(jù)是一組樣本,結(jié)論卻是對于總體的,即由局部=>全面,由特殊=>一般,由個別=>整體,在作出拒絕或接受原假設(shè)之后,我們可能作出了正確的決定,也可能產(chǎn)生了錯誤,但是我們不能確定是否產(chǎn)生了錯誤。然而我們可以計算產(chǎn)生I類誤差或II類誤差的概率。第I類錯誤:原定假設(shè)本是正確的,而檢驗(yàn)結(jié)果卻否定了它。出現(xiàn)該錯誤的概率是α(失誤率、顯著性水平)。---棄真第II類錯誤:原定假設(shè)本是錯誤的,而檢驗(yàn)結(jié)果卻沒有否定它。出現(xiàn)該錯誤的概率是β。---納偽自然我們希望犯兩類錯誤的概率都越小越好。但對一定的樣本容量n,一般都不能作到犯這兩類錯誤的概率同時都小。由于減小

=>增大,或者減小

=>增大

,于是我們面臨抉擇,計量經(jīng)濟(jì)學(xué)中常常愿意使犯”第一類錯誤“的概率較小,因?yàn)槲覀兲岢黾僭O(shè)時往往就希望拒絕它,拒絕錯了的概率就較小

。而不考慮。因此,拒絕H0是堅決有力的(冒險率是確定的),而不拒絕H0則是無可奈何的(冒險率是沒有確定的)。不能同時減小犯兩類錯誤概率的圖示/2/2臨界值增大,減小,增大假設(shè)總體實(shí)際總體拒絕H0拒絕H0xp-value一般軟件在做統(tǒng)計或回歸分析的時候,都直接以統(tǒng)計值為臨界值計算出對應(yīng)的概率,稱做p-value。表示否定原定假設(shè)失誤的可能性,即精確的失誤率、顯著水平、顯著程度。若p-value小到可以接受的水平,則否定原假設(shè);否則,不能否定原假設(shè)。思考題為什么有人熱衷于買彩票?為什么有人熱衷于買車?以上兩種現(xiàn)象有矛盾嗎?課后學(xué)習(xí)章節(jié):附錄A.7---教材下冊P844預(yù)習(xí)章節(jié):第1、2、3章第3章回歸分析的基本方法:ols4學(xué)時教學(xué)要求基本要求通過本章的學(xué)習(xí),了解“回歸”名稱的由來,理解總體回歸函數(shù)與樣本回歸函數(shù)的含義,掌握最小二乘法的思路與推導(dǎo)過程,理解OLS估計量的性質(zhì)。本章重點(diǎn):最小二乘法的思路與推導(dǎo)過程本章難點(diǎn):總體回歸函數(shù)與樣本回歸函數(shù)的關(guān)系引子:中國旅游業(yè)收入將超過3000億美元?從2004年中國國際旅游交易會上獲悉,到2020年,中國旅游業(yè)總收入將超過3000億美元,相當(dāng)于國內(nèi)生產(chǎn)總值的8-11%。(資料來源國際金融報2004-11-25第二版)是什么決定性的因素能使中國旅游業(yè)總收入到2020年達(dá)到3000億美元?旅游業(yè)的發(fā)展與這種決定性因素的數(shù)量關(guān)系究竟是什么?怎樣具體測定這種數(shù)量關(guān)系?應(yīng)當(dāng)考慮的問題確定作為研究對象的經(jīng)濟(jì)變量(如中國旅游業(yè)總收入)分析影響研究對象的主要因素(如中國居民收入的增長)分析各種影響因素與所研究經(jīng)濟(jì)現(xiàn)象的相互關(guān)系(決定相互聯(lián)系的數(shù)學(xué)關(guān)系式)確定所研究的經(jīng)濟(jì)問題與影響因素間的具體數(shù)量關(guān)系(需要特定的方法進(jìn)行參數(shù)估計)分析并檢驗(yàn)所得數(shù)量結(jié)論的可靠性(需要統(tǒng)計檢驗(yàn))運(yùn)用數(shù)量研究結(jié)果作經(jīng)濟(jì)分析和預(yù)測(對數(shù)量分析的實(shí)際應(yīng)用)第3章提綱第一節(jié)簡單回歸模型的設(shè)定一、模型概念二、其他條件不變概念三、總體回歸函數(shù)第二節(jié)簡單回歸模型的估計:ols一、ols的推導(dǎo)二、樣本回歸函數(shù)三、ols估計量的性質(zhì)第一節(jié)簡單回歸模型的設(shè)定理論陳述:在其他條件不變的情況下,y如何隨著x變化數(shù)理模型:y=f(x)計量模型:-----簡單回歸模型一、模型概念1、因果關(guān)系y-因變量,被解釋變量x-自變量,解釋變量β-參數(shù),系數(shù)因變量與自變量一定是要有因果關(guān)系的,且方向不能搞反沙塵暴西北風(fēng)力土地開發(fā)狀況草木生長情況防風(fēng)眼鏡銷量皮鞋價格因此,一定要根據(jù)經(jīng)濟(jì)理論來選擇變量2、其他條件如何表示---統(tǒng)計關(guān)系u-誤差,表示除x之外影響y的其他因素??梢暈橛^測不到的因素。顯然的問題是:為什么不把這些變量明顯地引進(jìn)到模型中來,而以隨即擾動項(xiàng)來替代?理由是多方面的:(1)真正的關(guān)系是Y=f(X1,X2,…),但X2,X3,…,相對不重要或難以辨認(rèn)或欠缺數(shù)據(jù),用u代表之。(2)兩變量之間的關(guān)系可能不是嚴(yán)格線性的,u反映了與直線的偏差。(3)經(jīng)濟(jì)行為是隨機(jī)的,我們能夠用Y=α+βX解釋“典型”的行為,而用u來表示個體偏差。(4)總會出現(xiàn)測量誤差,使得任何精確的關(guān)系不可能存在。(5)節(jié)省原則3、函數(shù)關(guān)系若其他因素被看作保持不變,則x對y具有線性影響。β1-斜率參數(shù)β0-截距參數(shù)二、其他條件不變概念怎樣能在保持其他因素固定的同時又忽略所有這些其他因素,以得到x對y在其他條件不變下的影響呢?解決方法之一:采用實(shí)驗(yàn)數(shù)據(jù)---在保持其他條件u固定的前提下,做實(shí)驗(yàn)。用得到的實(shí)驗(yàn)數(shù)據(jù)(x,y)來估計模型中的參數(shù)。問題是經(jīng)濟(jì)數(shù)據(jù)絕大部分是非實(shí)驗(yàn)數(shù)據(jù),且現(xiàn)實(shí)經(jīng)濟(jì)做實(shí)驗(yàn)的難度極大,如之奈何?解決方法之二:u可以變化,但必需與x毫不相干。此時,只需滿足如下假定即可:

零條件均值假定E(u|x)=E(u)=0含義:對任何給定的x值,其他因素的平均值是相等的。如不管受教育的年數(shù)為多少,平均能力水平是一樣的。則滿足該假設(shè)。為方便起見,只要模型中有截距項(xiàng),則假設(shè)E(u)=0是合理的。因?yàn)槿舨粸?,總能夠通過重新定義模型中的截距項(xiàng),使截距包含E(u),從而使得假設(shè)E(u)=0成立。三、總體回歸函數(shù)零條件均值假定E(u|x)=E(u)=0成立的前提下,含義:說明被解釋變量Y的平均狀態(tài)(總體條件期望)隨解釋變量X變化的規(guī)律。總體回歸線解釋變量取給定值時因變量的條件期望值的軌跡。對應(yīng)于解釋變量X的給定值都有Y的一個子總體,連接這些子總體的均值就得到了總體回歸線?;貧w的含義古典意義:高爾頓遺傳學(xué)的回歸概念(父母身高與子女身高的關(guān)系)現(xiàn)代意義:一個因變量對若干解釋變量依存關(guān)系的研究目的:由解釋變量去估計因變量的平均值一個虛構(gòu)的例子---教材P25目的:研究一個由60個家庭組成的假想社會,其家庭消費(fèi)支出與收入的關(guān)系。即如果知道了家庭的周收入,能否預(yù)測該家庭的平均周消費(fèi)支出水平。理論陳述:凱恩斯消費(fèi)理論數(shù)理模型計量模型數(shù)據(jù):把所有家庭的支出、收入數(shù)據(jù)找到,然后按收入分組,尋找其關(guān)系。分析(1)由于不確定因素的影響,對同一收入水平X,不同家庭的消費(fèi)支出不完全相同;(2)由于調(diào)查的完備性,給定收入水平X的消費(fèi)支出Y的分布是確定的。因此,給定收入X的值Xi,可得消費(fèi)支出Y的條件期望值

E(Y|X=Xi)(3)描出散點(diǎn)圖發(fā)現(xiàn):隨著收入的增加,消費(fèi)“平均地說”也在增加,且Y的條件均值均落在一根正斜率的直線上,此即

總體回歸線由于找到了所有的數(shù)據(jù),我們僅僅通過觀察圖形就輕而易舉的發(fā)現(xiàn)了變量之間的依存關(guān)系---一條唯一且確定的總體回歸線若找不到所有數(shù)據(jù),怎么辦?消費(fèi)水平均值預(yù)測“一個家庭周消費(fèi)支出的期望值是多少?”計算無條件期望值=所有家庭周支出的求和平均=121.2美元(“無條件”含義---并不關(guān)心收入水平)“一個周收入為140美元的家庭的周消費(fèi)支出的期望值是多少?”計算條件期望值E(Y|X=140)=17+0.6*140=101美元----對家庭收入為140的支出的最佳均值預(yù)測因此,對收入水平(解釋變量)的了解能使我們相對于在不了解時更好地預(yù)測消費(fèi)支出(因變量)的均值。---回歸分析的本質(zhì):了解被預(yù)測變量的影響因素能提高預(yù)測質(zhì)量。個別家庭的消費(fèi)水平預(yù)測“一個周收入為90美元的家庭的周消費(fèi)支出的實(shí)際值是多少?”先利用總體回歸函數(shù)求出一個周收入為90美元的家庭的周消費(fèi)支出的期望值/平均值E(Y|X=140)=17+0.6*90=71美元再求出μi----只有求助于巫婆神漢了科學(xué)迷信第二節(jié)簡單回歸模型的估計:ols總體回歸函數(shù)的確定需要了解總體情況,而事實(shí)上總體是不可知的;現(xiàn)實(shí)的情況只能是在一次觀測中得到總體的一個樣本{(xi,yi),i=1,…,n}問題:能從一次抽樣中獲得總體的近似的信息嗎?如果可以,如何從抽樣中獲得總體的近似信息?因此我們的任務(wù):需要通過樣本來估計總體

方法:最小二乘法ols,極大似然估計法等一、ols的推導(dǎo)我們的目標(biāo)是使擬合出來的直線在某種意義上是最佳的,直觀地看,也就是要求估計直線盡可能地靠近各觀測點(diǎn)。ols思想:找到一條直線,使得樣本點(diǎn)到該直線的縱向距離和最小。為克服偏差距離正負(fù)相抵,并突出偏差較大的點(diǎn)的作用,應(yīng)計算樣本點(diǎn)到該直線的縱向距離的平方和,并使其最小。數(shù)學(xué)推導(dǎo)求解這一最小化問題,根據(jù)極小化的一階條件:可得到以下正規(guī)方程(Normalequation):解上述正規(guī)方程組得到估計值:稱為最小二乘估計量(OLS估計)。二、樣本回歸函數(shù)因此,ols是選擇一條直線,使其殘差平方和達(dá)到最小值的方法。樣本回歸線樣本回歸函數(shù)與總體回歸函數(shù)總體回歸函數(shù)是固定然而未知的樣本回歸函數(shù)是總體回歸函數(shù)的一個樣本估計,是從一組給定的數(shù)據(jù)樣本中得來的。所以新的樣本會產(chǎn)生新的不同的斜率和截距,即新的樣本回歸函數(shù)。誤差與殘差誤差出現(xiàn)在總體回歸模型中;誤差是無法觀測的殘差出現(xiàn)在樣本回歸模型中;殘差可以從數(shù)據(jù)中計算出來虛構(gòu)的例子---教材P33表2.4樣本,利用ols得樣本回歸函數(shù)表2.5樣本,利用ols得樣本回歸函數(shù)真實(shí)案例3-1研究目的:為了分析什么是影響各地區(qū)居民消費(fèi)支出有明顯差異的最主要因素,并分析影響因素與消費(fèi)水平的數(shù)量關(guān)系,可以建立相應(yīng)的計量經(jīng)濟(jì)模型去研究。理論陳述:凱恩斯消費(fèi)理論模型設(shè)定:模型的被解釋變量Y選定為“城市居民每人每年的平均消費(fèi)支出”,“城市居民每人每年可支配收入”作為解釋變量X。樣本數(shù)據(jù):2002年橫截面數(shù)據(jù)地

區(qū)城市居民家庭平均每人每年消費(fèi)支出(元)Y城市居民人均年可支配收入(元)X北京天津河北山西內(nèi)蒙古遼寧吉林黑龍江上海江蘇浙江安徽福建江西山東河南湖北湖南廣東廣西海南重慶四川貴州云南西藏陜西甘肅青海寧夏新疆10284.607191.965069.284710.964859.885342.644973.884462.0810464.006042.608713.084736.526631.684549.325596.324504.685608.925574.728988.485413.445459.646360.245413.084598.285827.926952.445278.045064.245042.526104.925636.4012463.929337.566679.685234.356051.066524.526260.166100.5613249.808177.6411715.606032.409189.366334.647614.366245.406788.526958.5611137.207315.326822.727238.046610.805944.087240.568079.126330.846151.446170.526067.446899.642002年樣本數(shù)據(jù)的結(jié)果觀察變量分布,確定模型形式估計參數(shù)以2005年數(shù)據(jù)作為新樣本地區(qū)消費(fèi)性可支配

支出Y收入X

北京13244.2017652.95天津9653.2612638.55河北6699.679107.09山西6342.638913.91內(nèi)蒙古6928.609136.79

遼寧7369.279107.55吉林6794.718690.62黑龍江6178.018272.51

上海13773.4118645.03江蘇8621.8212318.57浙江12253.7416293.77安徽6367.678470.68福建8794.4112321.31江西6109.398619.66山東7457.3110744.79

河南6038.028667.97湖北6736.568785.94湖南7504.999523.97廣東11809.8714769.94廣西7032.809286.70海南5928.798123.94

重慶8623.2910243.46四川6891.278385.96貴州6159.298151.13云南6996.909265.90西藏8617.119431.18

陜西6656.468272.02甘肅6529.208086.82青海6245.268057.85寧夏6404.318093.64新疆6207.527990.15新的樣本回歸函數(shù):三、ols估計量的性質(zhì)高斯-馬爾可夫定理:在五大假設(shè)條件滿足的前提下,用ols估計出來的參數(shù)是最好的、線性的、無偏差的估計值(BLUE,TheBestLinearUnbiasedEstimator)。含義:用ols方法估計出來的樣本回歸線是非常“接近”總體回歸線的,盡可能忠實(shí)地反映了總體回歸線,在其滿足五大假定的前提下。盡管總體回歸線永遠(yuǎn)不得而知。復(fù)習(xí):第1、2、3章預(yù)習(xí):第5章第4章回歸結(jié)果的統(tǒng)計檢驗(yàn)2學(xué)時前一章的回歸結(jié)果可信嗎?盡管在眾多估計方法中,ols估計的樣本回歸線是BLUE,但這個最優(yōu)的估計本身是否令人滿意呢?樣本回歸線是否很好的代表了樣本點(diǎn)的信息?回歸方程整體上有意義嗎?有可能出現(xiàn)所有自變量同時都不能解釋因變量的情況嗎?各個自變量的系數(shù)是否有意義?第四章提綱第一節(jié)方程的方差分析ANOVA一、總平方和TSS、解釋平方和ESS、殘差平方和RSS二、擬合優(yōu)度第二節(jié)回歸方程的整體顯著性檢驗(yàn):F檢驗(yàn)第三節(jié)單個參數(shù)的統(tǒng)計意義檢驗(yàn):t檢驗(yàn)一、ols估計量的分布二、t檢驗(yàn)第一節(jié)方程的方差分析ANOVA一、總平方和TSS、解釋平方和ESS、殘差平方和RSSTSS=ESS+RSS(證明略)Y的樣本值圍繞其均值的總變異(totalvariation)可分解為兩部分:一部分來自回歸線(ESS),另一部分則來自隨機(jī)勢力(RSS)。二、擬合優(yōu)度1=ESS/TSS+RSS/TSS擬合優(yōu)度、判定系數(shù)是解釋變異與總變異之比,表示Y的樣本變異被自變量X解釋的部分。衡量了樣本回歸線與樣本點(diǎn)之間的擬合程度。R2越接近1,說明實(shí)際觀測點(diǎn)離樣本線越近,擬合優(yōu)度越高。實(shí)際值與擬合值的樣本相關(guān)系數(shù)的平方。10不必太在意其大小。在社會科學(xué)中,過低是正常的。過低并不表示回歸方程是沒有用的。僅在要利用回歸方程做預(yù)測時,才要求較高的擬合優(yōu)度。案例3-1本例中可決系數(shù)為0.935685,說明所建模型整體上對樣本數(shù)據(jù)擬合較好,即解釋變量“城市居民人均年可支配收入”對被解釋變量“城市居民人均年消費(fèi)支出”的絕大部分差異作出了解釋。第二節(jié)回歸方程的整體顯著性檢驗(yàn):F檢驗(yàn)既然擬合優(yōu)度不能用來判斷,那么該用什么

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論