版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與軸的非負(fù)半軸重合,它的終邊過(guò)點(diǎn),則的值為()A. B. C. D.2.我國(guó)著名數(shù)學(xué)家陳景潤(rùn)在哥德巴赫猜想的研究中取得了世界矚目的成就,哥德巴赫猜想內(nèi)容是“每個(gè)大于的偶數(shù)可以表示為兩個(gè)素?cái)?shù)的和”(注:如果一個(gè)大于的整數(shù)除了和自身外無(wú)其他正因數(shù),則稱(chēng)這個(gè)整數(shù)為素?cái)?shù)),在不超過(guò)的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,則的概率是()A. B. C. D.3.已知函數(shù)的定義域?yàn)?,且,?dāng)時(shí),.若,則函數(shù)在上的最大值為()A.4 B.6 C.3 D.84.下圖所示函數(shù)圖象經(jīng)過(guò)何種變換可以得到的圖象()A.向左平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向右平移個(gè)單位5.在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且.若,的面積為,則()A.5 B. C.4 D.166.若實(shí)數(shù)滿(mǎn)足的約束條件,則的取值范圍是()A. B. C. D.7.一個(gè)超級(jí)斐波那契數(shù)列是一列具有以下性質(zhì)的正整數(shù):從第三項(xiàng)起,每一項(xiàng)都等于前面所有項(xiàng)之和(例如:1,3,4,8,16…).則首項(xiàng)為2,某一項(xiàng)為2020的超級(jí)斐波那契數(shù)列的個(gè)數(shù)為()A.3 B.4 C.5 D.68.第七屆世界軍人運(yùn)動(dòng)會(huì)于2019年10月18日至27日在中國(guó)武漢舉行,中國(guó)隊(duì)以133金64銀42銅位居金牌榜和獎(jiǎng)牌榜的首位.運(yùn)動(dòng)會(huì)期間有甲、乙等五名志愿者被分配到射擊、田徑、籃球、游泳四個(gè)運(yùn)動(dòng)場(chǎng)地提供服務(wù),要求每個(gè)人都要被派出去提供服務(wù),且每個(gè)場(chǎng)地都要有志愿者服務(wù),則甲和乙恰好在同一組的概率是()A. B. C. D.9.已知,,,則的最小值為()A. B. C. D.10.是定義在上的增函數(shù),且滿(mǎn)足:的導(dǎo)函數(shù)存在,且,則下列不等式成立的是()A. B.C. D.11.若復(fù)數(shù)滿(mǎn)足,則()A. B. C.2 D.12.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn)是雙曲線(xiàn)漸近線(xiàn)上的一點(diǎn),則雙曲線(xiàn)的離心率為_(kāi)______14.在中,角,,的對(duì)邊長(zhǎng)分別為,,,滿(mǎn)足,,則的面積為_(kāi)_.15.記數(shù)列的前項(xiàng)和為,已知,且.若,則實(shí)數(shù)的取值范圍為_(kāi)_______.16.已知全集,集合,則______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知點(diǎn)為橢圓上任意一點(diǎn),直線(xiàn)與圓交于,兩點(diǎn),點(diǎn)為橢圓的左焦點(diǎn).(1)求證:直線(xiàn)與橢圓相切;(2)判斷是否為定值,并說(shuō)明理由.18.(12分)中國(guó)古代數(shù)學(xué)經(jīng)典《數(shù)書(shū)九章》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱(chēng)為“陽(yáng)馬”,將四個(gè)面都為直角三角形的四面體稱(chēng)之為“鱉臑”.在如圖所示的陽(yáng)馬中,底面ABCD是矩形.平面,,,以的中點(diǎn)O為球心,AC為直徑的球面交PD于M(異于點(diǎn)D),交PC于N(異于點(diǎn)C).(1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫(xiě)出它每個(gè)面的直角(只需寫(xiě)出結(jié)論);若不是,請(qǐng)說(shuō)明理由;(2)求直線(xiàn)與平面所成角的正弦值.19.(12分)在中,角,,的對(duì)邊分別為,其中,.(1)求角的值;(2)若,,為邊上的任意一點(diǎn),求的最小值.20.(12分)的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知,.求C;若,求,的面積21.(12分)已知橢圓的短軸長(zhǎng)為,左右焦點(diǎn)分別為,,點(diǎn)是橢圓上位于第一象限的任一點(diǎn),且當(dāng)時(shí),.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若橢圓上點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),過(guò)點(diǎn)作垂直于軸,垂足為,連接并延長(zhǎng)交于另一點(diǎn),交軸于點(diǎn).(ⅰ)求面積最大值;(ⅱ)證明:直線(xiàn)與斜率之積為定值.22.(10分)已知.(Ⅰ)當(dāng)時(shí),解不等式;(Ⅱ)若的最小值為1,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)三角函數(shù)定義得到,故,再利用和差公式得到答案.【詳解】∵角的終邊過(guò)點(diǎn),∴,.∴.故選:.【點(diǎn)睛】本題考查了三角函數(shù)定義,和差公式,意在考查學(xué)生的計(jì)算能力.2、B【解析】
先列舉出不超過(guò)的素?cái)?shù),并列舉出所有的基本事件以及事件“在不超過(guò)的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,滿(mǎn)足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【詳解】不超過(guò)的素?cái)?shù)有:、、、、、,在不超過(guò)的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù),所有的基本事件有:、、、、、、、、、、、、、、,共種情況,其中,事件“在不超過(guò)的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,且”包含的基本事件有:、、、,共種情況,因此,所求事件的概率為.故選:B.【點(diǎn)睛】本題考查古典概型概率的計(jì)算,一般利用列舉法列舉出基本事件,考查計(jì)算能力,屬于基礎(chǔ)題.3、A【解析】
根據(jù)所給函數(shù)解析式滿(mǎn)足的等量關(guān)系及指數(shù)冪運(yùn)算,可得;利用定義可證明函數(shù)的單調(diào)性,由賦值法即可求得函數(shù)在上的最大值.【詳解】函數(shù)的定義域?yàn)?,且,則;任取,且,則,故,令,,則,即,故函數(shù)在上單調(diào)遞增,故,令,,故,故函數(shù)在上的最大值為4.故選:A.【點(diǎn)睛】本題考查了指數(shù)冪的運(yùn)算及化簡(jiǎn),利用定義證明抽象函數(shù)的單調(diào)性,賦值法在抽象函數(shù)求值中的應(yīng)用,屬于中檔題.4、D【解析】
根據(jù)函數(shù)圖像得到函數(shù)的一個(gè)解析式為,再根據(jù)平移法則得到答案.【詳解】設(shè)函數(shù)解析式為,根據(jù)圖像:,,故,即,,,取,得到,函數(shù)向右平移個(gè)單位得到.故選:.【點(diǎn)睛】本題考查了根據(jù)函數(shù)圖像求函數(shù)解析式,三角函數(shù)平移,意在考查學(xué)生對(duì)于三角函數(shù)知識(shí)的綜合應(yīng)用.5、C【解析】
根據(jù)正弦定理邊化角以及三角函數(shù)公式可得,再根據(jù)面積公式可求得,再代入余弦定理求解即可.【詳解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故選:C【點(diǎn)睛】本題主要考查了解三角形中正余弦定理與面積公式的運(yùn)用,屬于中檔題.6、B【解析】
根據(jù)所給不等式組,畫(huà)出不等式表示的可行域,將目標(biāo)函數(shù)化為直線(xiàn)方程,平移后即可確定取值范圍.【詳解】實(shí)數(shù)滿(mǎn)足的約束條件,畫(huà)出可行域如下圖所示:將線(xiàn)性目標(biāo)函數(shù)化為,則將平移,平移后結(jié)合圖像可知,當(dāng)經(jīng)過(guò)原點(diǎn)時(shí)截距最小,;當(dāng)經(jīng)過(guò)時(shí),截距最大值,,所以線(xiàn)性目標(biāo)函數(shù)的取值范圍為,故選:B.【點(diǎn)睛】本題考查了線(xiàn)性規(guī)劃的簡(jiǎn)單應(yīng)用,線(xiàn)性目標(biāo)函數(shù)取值范圍的求法,屬于基礎(chǔ)題.7、A【解析】
根據(jù)定義,表示出數(shù)列的通項(xiàng)并等于2020.結(jié)合的正整數(shù)性質(zhì)即可確定解的個(gè)數(shù).【詳解】由題意可知首項(xiàng)為2,設(shè)第二項(xiàng)為,則第三項(xiàng)為,第四項(xiàng)為,第五項(xiàng)為第n項(xiàng)為且,則,因?yàn)?,?dāng)?shù)闹悼梢詾椋患从?個(gè)這種超級(jí)斐波那契數(shù)列,故選:A.【點(diǎn)睛】本題考查了數(shù)列新定義的應(yīng)用,注意自變量的取值范圍,對(duì)題意理解要準(zhǔn)確,屬于中檔題.8、A【解析】
根據(jù)題意,五人分成四組,先求出兩人組成一組的所有可能的分組種數(shù),再將甲乙組成一組的情況,即可求出概率.【詳解】五人分成四組,先選出兩人組成一組,剩下的人各自成一組,所有可能的分組共有種,甲和乙分在同一組,則其余三人各自成一組,只有一種分法,與場(chǎng)地?zé)o關(guān),故甲和乙恰好在同一組的概率是.故選:A.【點(diǎn)睛】本題考查組合的應(yīng)用和概率的計(jì)算,屬于基礎(chǔ)題.9、B【解析】,選B10、D【解析】
根據(jù)是定義在上的增函數(shù)及有意義可得,構(gòu)建新函數(shù),利用導(dǎo)數(shù)可得為上的增函數(shù),從而可得正確的選項(xiàng).【詳解】因?yàn)槭嵌x在上的增函數(shù),故.又有意義,故,故,所以.令,則,故在上為增函數(shù),所以即,整理得到.故選:D.【點(diǎn)睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用,一般地,數(shù)的大小比較,可根據(jù)數(shù)的特點(diǎn)和題設(shè)中給出的原函數(shù)與導(dǎo)數(shù)的關(guān)系構(gòu)建新函數(shù),本題屬于中檔題.11、D【解析】
把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由復(fù)數(shù)模的計(jì)算公式計(jì)算.【詳解】解:由題意知,,,∴,故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)模的求法.12、D【解析】
設(shè)非零向量與的夾角為,在等式兩邊平方,求出的值,進(jìn)而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.【點(diǎn)睛】本題考查向量投影的計(jì)算,同時(shí)也考查利用向量的模計(jì)算向量的夾角,考查計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先表示出漸近線(xiàn),再代入點(diǎn),求出,則離心率易求.【詳解】解:的漸近線(xiàn)是因?yàn)樵跐u近線(xiàn)上,所以,故答案為:【點(diǎn)睛】考查雙曲線(xiàn)的離心率的求法,是基礎(chǔ)題.14、.【解析】
由二次方程有解的條件,結(jié)合輔助角公式和正弦函數(shù)的值域可求,進(jìn)而可求,然后結(jié)合余弦定理可求,代入,計(jì)算可得所求.【詳解】解:把看成關(guān)于的二次方程,則,即,即為,化為,而,則,由于,可得,可得,即,代入方程可得,,,由余弦定理可得,,解得:(負(fù)的舍去),.故答案為.【點(diǎn)睛】本題主要考查一元二次方程的根的存在條件及輔助角公式及余弦定理和三角形的面積公式的應(yīng)用,屬于中檔題.15、【解析】
根據(jù)遞推公式,以及之間的關(guān)系,即可容易求得,再根據(jù)數(shù)列的單調(diào)性,求得其最大值,則參數(shù)的范圍可求.【詳解】當(dāng)時(shí),,解得.所以.因?yàn)?,則,兩式相減,可得,即,則.兩式相減,可得.所以數(shù)列是首項(xiàng)為3,公差為2的等差數(shù)列,所以,則.令,則.當(dāng)時(shí),,數(shù)列單調(diào)遞減,而,,,故,即實(shí)數(shù)的取值范圍為.故答案為:.【點(diǎn)睛】本題考查由遞推公式求數(shù)列的通項(xiàng)公式,涉及數(shù)列單調(diào)性的判斷,屬綜合困難題.16、【解析】
根據(jù)題意可得出,然后進(jìn)行補(bǔ)集的運(yùn)算即可.【詳解】根據(jù)題意知,,,,.故答案為:.【點(diǎn)睛】本題考查列舉法的定義、全集的定義、補(bǔ)集的運(yùn)算,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2)是,理由見(jiàn)解析.【解析】
(1)根據(jù)判別式即可證明.(2)根據(jù)向量的數(shù)量積和韋達(dá)定理即可證明,需要分類(lèi)討論,【詳解】解:(1)當(dāng)時(shí)直線(xiàn)方程為或,直線(xiàn)與橢圓相切.當(dāng)時(shí),由得,由題知,,即,所以.故直線(xiàn)與橢圓相切.(2)設(shè),,當(dāng)時(shí),,,,所以,即.當(dāng)時(shí),由得,則,,.因?yàn)?所以,即.故為定值.【點(diǎn)睛】本題考查橢圓的簡(jiǎn)單性質(zhì),考查向量的運(yùn)算,注意直線(xiàn)方程和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.18、(1)證明見(jiàn)解析,是,,,,;(2)【解析】
(1)根據(jù)是球的直徑,則,又平面,得到,再由線(xiàn)面垂直的判定定理得到平面,,進(jìn)而得到,再利用線(xiàn)面垂直的判定定理得到平面.(2)以A為原點(diǎn),,,所在直線(xiàn)為x,y,z軸建立直角坐標(biāo)系,設(shè),由,解得,得到,從而得到,然后求得平面的一個(gè)法向量,代入公式求解.【詳解】(1)因?yàn)槭乔虻闹睆?,則,又平面,∴,.∴平面,∴,∴平面.根據(jù)證明可知,四面體是鱉臑.它的每個(gè)面的直角分別是,,,.(2)如圖,以A為原點(diǎn),,,所在直線(xiàn)為x,y,z軸建立直角坐標(biāo)系,則,,,,.M為中點(diǎn),從而.所以,設(shè),則.由,得.由得,即.所以.設(shè)平面的一個(gè)法向量為.由.取,,,得到.記與平面所成角為θ,則.所以直線(xiàn)與平面所成的角的正弦值為.【點(diǎn)睛】本題主要考查線(xiàn)面垂直的判定定理和線(xiàn)面角的向量求法,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.19、(1);(2).【解析】
(1)利用余弦定理和二倍角的正弦公式,化簡(jiǎn)即可得出結(jié)果;(2)在中,由余弦定理得,在中結(jié)合正弦定理求出,從而得出,即可得出的解析式,最后結(jié)合斜率的幾何意義,即可求出的最小值.【詳解】(1),,由題知,,則,則,,;(2)在中,由余弦定理得,,設(shè),其中.在中,,,,,所以,,所以的幾何意義為兩點(diǎn)連線(xiàn)斜率的相反數(shù),數(shù)形結(jié)合可得,故的最小值為.【點(diǎn)睛】本題考查正弦定理和余弦定理的實(shí)際應(yīng)用,還涉及二倍角正弦公式和誘導(dǎo)公式,考查計(jì)算能力.20、(1).(2).【解析】
由已知利用正弦定理,同角三角函數(shù)基本關(guān)系式可求,結(jié)合范圍,可求,由已知利用二倍角的余弦函數(shù)公式可得,結(jié)合范圍,可求A,根據(jù)三角形的內(nèi)角和定理即可解得C的值.由及正弦定理可得b的值,根據(jù)兩角和的正弦函數(shù)公式可求sinC的值,進(jìn)而根據(jù)三角形的面積公式即可求解.【詳解】由已知可得,又由正弦定理,可得,即,,,,即,又,,或舍去,可得,.,,,由正弦定理,可得,,.【點(diǎn)睛】本題主要考查了正弦定理,同角三角函數(shù)基本關(guān)系式,二倍角的余弦函數(shù)公式,三角形的內(nèi)角和定理,兩角和的正弦函數(shù)公式,三角形的面積公式等知識(shí)在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.21、(1);(2)(ⅰ);(ⅱ)證明見(jiàn)解析.【解析】
(1)由,解方程組即可得到答案;(2)(?。┰O(shè),,則,,易得,注意到,利用基本不等式得到的最大值即可得到答案;(ⅱ)設(shè)直線(xiàn)斜率為,直線(xiàn)方程為,聯(lián)立橢圓方程得到的坐標(biāo),再利用兩點(diǎn)的斜率公式計(jì)算即可.【詳解】(1)設(shè),由,得.將代入,得,即,由,解得,所以橢圓的標(biāo)準(zhǔn)方程為.(2)設(shè),,則,(ⅰ)易知為的中位線(xiàn),所以,所以,又滿(mǎn)足,所以,得,故,當(dāng)且僅當(dāng),即,時(shí)取等號(hào),所以面積最大值為.(ⅱ)記直線(xiàn)斜率為,則直線(xiàn)斜率為,所以直線(xiàn)方程為.由,得,由韋達(dá)定理得,所以,代入直線(xiàn)方程,得,于是,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度生物質(zhì)能epc工程總承包合同規(guī)范3篇
- 二零二五年度文化旅游并購(gòu)與全域旅游重組合同3篇
- 二零二五年度智慧城市定向技術(shù)服務(wù)合同范本3篇
- 2025年度網(wǎng)絡(luò)建設(shè)施工合同服務(wù)內(nèi)容擴(kuò)展3篇
- 二零二五年度智能交通信號(hào)系統(tǒng)安裝服務(wù)協(xié)議
- 海南政法職業(yè)學(xué)院《商業(yè)美術(shù)插圖》2023-2024學(xué)年第一學(xué)期期末試卷
- 邯鄲科技職業(yè)學(xué)院《創(chuàng)意設(shè)計(jì)實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 洪水調(diào)解課程設(shè)計(jì)
- 二零二五年度房屋拆除項(xiàng)目居民意見(jiàn)征詢(xún)及協(xié)調(diào)協(xié)議3篇
- 運(yùn)輸課課程設(shè)計(jì)書(shū)模板
- 漫談?lì)I(lǐng)導(dǎo)干部溝通技巧與藝術(shù)課件
- 高低壓配電柜-福建寧德核電站投標(biāo)書(shū)
- 少兒繪畫(huà)之《水仙花開(kāi)迎春來(lái)》
- 《法學(xué)概論》課程教學(xué)大綱
- 成品油稅收分類(lèi)編碼
- 福建省廈門(mén)市高一上學(xué)期期末考試政治試題 Word版含答案
- 山東中醫(yī)藥大學(xué)中西醫(yī)臨床(專(zhuān)升本)學(xué)士學(xué)位考試復(fù)習(xí)題
- 鐵路貨場(chǎng)平面設(shè)計(jì)說(shuō)明書(shū)
- 抽象函數(shù)的單調(diào)性
- 2019年血站績(jī)效考核標(biāo)準(zhǔn)
- 義務(wù)教育語(yǔ)文課程常用字表3500字
評(píng)論
0/150
提交評(píng)論