版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年甘肅省天水市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.設(shè)a={-1,1,2),b={3,0,4},則向量a在向量b上的投影為()A.A.
B.1
C.
D.-1
2.A.3B.2C.1D.0
3.方程x2+y2-2z=0表示的二次曲面是.
A.柱面B.球面C.旋轉(zhuǎn)拋物面D.橢球面
4.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx
5.微分方程y'+y=0的通解為()。A.y=ex
B.y=e-x
C.y=Cex
D.y=Ce-x
6.若x0為f(x)的極值點(diǎn),則().A.A.f'(x0)必定存在,且f'(x0)=0
B.f'(x0)必定存在,但f'(x0)不一定等于零
C.f'(x0)不存在或f'(x0)=0
D.f'(x0)必定不存在
7.設(shè)函數(shù)f(x)在點(diǎn)x0。處連續(xù),則下列結(jié)論正確的是().A.A.
B.
C.
D.
8.
有()個(gè)間斷點(diǎn)。
A.1B.2C.3D.4
9.設(shè)二元函數(shù)z=xy,則點(diǎn)P0(0,0)A.為z的駐點(diǎn),但不為極值點(diǎn)B.為z的駐點(diǎn),且為極大值點(diǎn)C.為z的駐點(diǎn),且為極小值點(diǎn)D.不為z的駐點(diǎn),也不為極值點(diǎn)
10.
11.A.充分條件B.必要條件C.充要條件D.以上都不對(duì)
12.
13.A.A.-(1/2)B.1/2C.-1D.2
14.
15.設(shè)球面方程為(x-1)2+(y+2)2+(z-3)2=4,則該球的球心坐標(biāo)與半徑分別為()A.(-1,2,-3);2B.(-1,2,-3);4C.(1,-2,3);2D.(1,-2,3);4
16.
17.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于().A.A.0B.π/4C.π/2D.π18.()。A.3B.2C.1D.0
19.
20.函數(shù)等于().
A.0B.1C.2D.不存在二、填空題(20題)21.
22.
23.過(guò)點(diǎn)M0(1,-2,0)且與直線垂直的平面方程為______.24.25.
26.
27.
28.
29.設(shè)f(x+1)=3x2+2x+1,則f(x)=_________.
30.方程y'-ex-y=0的通解為_____.
31.
32.
33.
34.35.曲線y=x3-6x的拐點(diǎn)坐標(biāo)為______.
36.設(shè)y=ex,則dy=_________。
37.y″+5y′=0的特征方程為——.38.設(shè)y=2x+sin2,則y'=______.39.40.三、計(jì)算題(20題)41.42.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.43.將f(x)=e-2X展開為x的冪級(jí)數(shù).
44.
45.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).46.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.47.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
48.求微分方程y"-4y'+4y=e-2x的通解.
49.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
50.求曲線在點(diǎn)(1,3)處的切線方程.51.52.證明:
53.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
54.
55.求微分方程的通解.56.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.57.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
58.
59.
60.四、解答題(10題)61.
62.
63.
64.
65.
66.
67.
68.
69.將展開為x的冪級(jí)數(shù).
70.
五、高等數(shù)學(xué)(0題)71.當(dāng)x→0時(shí),tan2x是()。
A.比sin3x高階的無(wú)窮小B.比sin3x低階的無(wú)窮小C.與sin3x同階的無(wú)窮小D.與sin3x等價(jià)的無(wú)窮小六、解答題(0題)72.在曲線y=x2(x≥0)上某點(diǎn)A(a,a2)處作切線,使該切線與曲線及x軸所圍成的圖形的面積為1/12.試求:(1)切點(diǎn)A的坐標(biāo)((a,a2).(2)過(guò)切點(diǎn)A的切線方程.
參考答案
1.B
2.A
3.C本題考查了二次曲面的知識(shí)點(diǎn)。x2+y2-2z=0可化為x2/2+y2/2=z,故表示的是旋轉(zhuǎn)拋物面。
4.B
5.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量
兩端分別積分
或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。
6.C本題考查的知識(shí)點(diǎn)為函數(shù)極值點(diǎn)的性質(zhì).
若x0為函數(shù)y=f(x)的極值點(diǎn),則可能出現(xiàn)兩種情形:
(1)f(x)在點(diǎn)x0處不可導(dǎo),如y=|x|,在點(diǎn)x0=0處f(x)不可導(dǎo),但是點(diǎn)x0=0為f(a)=|x|的極值點(diǎn).
(2)f(x)在點(diǎn)x0可導(dǎo),則由極值的必要條件可知,必定有f'(x0)=0.
從題目的選項(xiàng)可知應(yīng)選C.
本題常見的錯(cuò)誤是選A.其原因是考生將極值的必要條件:“若f(x)在點(diǎn)x0可導(dǎo),且x0為f(x)的極值點(diǎn),則必有f'(x0)=0”認(rèn)為是極值的充分必要條件.
7.D本題考查的知識(shí)點(diǎn)為連續(xù)性的定義,連續(xù)性與極限、可導(dǎo)性的關(guān)系.由函數(shù)連續(xù)性的定義:若在x0處f(x)連續(xù),則可知選項(xiàng)D正確,C不正確.由于連續(xù)性并不能保證f(x)的可導(dǎo)性,可知A不正確.
8.C
∵x=0,1,2,是f(x)的三個(gè)孤立間斷∴有3個(gè)間斷點(diǎn)。
9.A
10.A解析:
11.D極限是否存在與函數(shù)在該點(diǎn)有無(wú)定義無(wú)關(guān).
12.B
13.A
14.D
15.C
16.A
17.C本題考查的知識(shí)點(diǎn)為羅爾定理的條件與結(jié)論.
由于y=sinx在[0,π]上連續(xù),在(0,π)內(nèi)可導(dǎo),且y|x=0=0=y|x=π,可知y=sinx在[0,π]上滿足羅爾定理,因此必定存在ξ∈(0,π),使y'|x=ξ=cosx|x=ξ=cosξ=0,從而應(yīng)有.
故知應(yīng)選C.
18.A
19.D解析:
20.C解析:
21.3本題考查了冪級(jí)數(shù)的收斂半徑的知識(shí)點(diǎn).
所以收斂半徑R=3.
22.23.3(x-1)-(y+2)+z=0(或3x-y+z=5)本題考查的知識(shí)點(diǎn)為平面與直線的方程.
由題設(shè)條件可知應(yīng)該利用點(diǎn)法式方程來(lái)確定所求平面方程.
所給直線l的方向向量s=(3,-1,1).若所求平面π垂直于直線l,則平面π的法向量n∥s,不妨取n=s=(3,-1,1).則由平面的點(diǎn)法式方程可知
3(x-1)-[y-(-2)]+(z-0)=0,
即3(x-1)-(y+2)+z=0
為所求平面方程.
或?qū)憺?x-y+z-5=0.
上述兩個(gè)結(jié)果都正確,前者3(x-1)-(y+2)z=0稱為平面的點(diǎn)法式方程,而后者3x-y+z-5=0稱為平面的一般式方程.
24.31/16;2本題考查了函數(shù)的最大、最小值的知識(shí)點(diǎn).
f'(x)=3ax2-12ax,f'(x)=0,則x=0或x=4,而x=4不在[-1,2]中,故舍去.f''(x)=6ax-12a,f''(0)=-12a,因?yàn)閍>0,所以f"(0)<0,所以x=0是極值點(diǎn).又因f(-1)=-a-6a+b=b-7a,f(0)=b,f(2)=8a-24a+b=b-16a,因?yàn)閍>0,故當(dāng)x=0時(shí),f(x)最大,即b=2;當(dāng)x=2時(shí),f(x)最小.所以b-16a=-29,即16a=2+29=31,故a=31/16.
25.
26.
解析:
27.7
28.
29.30.ey=ex+Cy'-ex-y=0,可改寫為eydy=exdx,兩邊積分得ey=ex+C.
31.
解析:
32.
33.0
34.
本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性微分方程的求解.
35.(0,0)本題考查的知識(shí)點(diǎn)為求曲線的拐點(diǎn).
依求曲線拐點(diǎn)的一般步驟,只需
(1)先求出y".
(2)令y"=0得出x1,…,xk.
(3)判定在點(diǎn)x1,x2,…,xk兩側(cè),y"的符號(hào)是否異號(hào).若在xk的兩側(cè)y"異號(hào),則點(diǎn)(xk,f(xk)為曲線y=f(x)的拐點(diǎn).
y=x3-6x,
y'=3x2-6,y"=6x.
令y"=0,得到x=0.當(dāng)x=0時(shí),y=0.
當(dāng)x<0時(shí),y"<0;當(dāng)x>0時(shí),y">0.因此點(diǎn)(0,0)為曲線y=x3-6x的拐點(diǎn).
本題出現(xiàn)較多的錯(cuò)誤為:填x=0.這個(gè)錯(cuò)誤產(chǎn)生的原因是對(duì)曲線拐點(diǎn)的概念不清楚.拐點(diǎn)的定義是:連續(xù)曲線y=f(x)上的凸與凹的分界點(diǎn)稱之為曲線的拐點(diǎn).其一般形式為(x0,f(x0)),這是應(yīng)該引起注意的,也就是當(dāng)判定y"在x0的兩側(cè)異號(hào)之后,再求出f(x0),則拐點(diǎn)為(x0,f(x0)).
注意極值點(diǎn)與拐點(diǎn)的不同之處!
36.exdx37.由特征方程的定義可知,所給方程的特征方程為38.2xln2本題考查的知識(shí)點(diǎn)為初等函數(shù)的求導(dǎo)運(yùn)算.
本題需利用導(dǎo)數(shù)的四則運(yùn)算法則求解.
Y'=(2x+sin2)'=(2x)'+(sin2)'=2xln2.
本題中常見的錯(cuò)誤有
(sin2)'=cos2.
這是由于誤將sin2認(rèn)作sinx,事實(shí)上sin2為一個(gè)常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即
(sin2)'=0.
相仿(cos3)'=0,(ln5)'=0,(e1/2)'=0等.
請(qǐng)考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.
39.
40.
41.
42.
43.
44.
45.
列表:
說(shuō)明
46.
47.由等價(jià)無(wú)窮小量的定義可知
48.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
49.
50.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
51.
52.
53.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%54.由一階線性微分方程通解公式有
55.56.函數(shù)的定義域?yàn)?/p>
注意
57.由二重積分物理意義知
58.
59.
則
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
;本題考查的知識(shí)點(diǎn)為將初等函數(shù)展開為x的冪級(jí)數(shù).
如果題目中沒有限定展開方法,一律要利用間接展開法.這要求考生記住幾個(gè)標(biāo)準(zhǔn)展開式:,ex,sinx,cosx,ln(1+x)對(duì)于x的冪級(jí)數(shù)展開式.
70
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024至2030年中國(guó)微電流放大器數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2011-2015年太子參行業(yè)市場(chǎng)研究與競(jìng)爭(zhēng)力分析報(bào)告
- 2024至2030年中國(guó)客車有無(wú)人標(biāo)示鎖數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2024至2030年中國(guó)全銅升降式防臭地漏行業(yè)投資前景及策略咨詢研究報(bào)告
- 自然科學(xué)如何撰寫和發(fā)表高水平的科研論文
- 2024年中國(guó)木醋液市場(chǎng)調(diào)查研究報(bào)告
- 2024年中國(guó)冰箱用石英管加熱器市場(chǎng)調(diào)查研究報(bào)告
- 高中語(yǔ)文摹形傳神千載如生第13課滑稽列傳課件蘇教版選修史記蚜
- 理發(fā)美容店租賃合同三篇
- 輪胎市場(chǎng)開發(fā)與步驟
- 第二章中國(guó)的自然環(huán)境單元復(fù)習(xí)課件八年級(jí)地理上學(xué)期人教版
- 2024新教科版一年級(jí)上冊(cè)第二單元《我們自己》第6課觀察與比較表格教學(xué)設(shè)計(jì)及反思
- 鄉(xiāng)村振興民宿產(chǎn)業(yè)項(xiàng)目可行性研究報(bào)告
- 【真題】2024年常州市中考物理試卷(含答案解析)
- 2024年鄉(xiāng)村農(nóng)業(yè)(農(nóng)機(jī)修理工、技師)技能知識(shí)考試題庫(kù)與答案
- 從傳統(tǒng)生產(chǎn)力到新質(zhì)生產(chǎn)力
- 河北2024年河北北方學(xué)院招聘工作人員31人筆試歷年典型考題及考點(diǎn)附答案解析
- 批評(píng)性話語(yǔ)分析綜述與前瞻
- 2024年山東省煙臺(tái)市中考數(shù)學(xué)試卷
- NB-T11092-2023水電工程深埋隧洞技術(shù)規(guī)范
- 思辨與創(chuàng)新智慧樹知到期末考試答案章節(jié)答案2024年復(fù)旦大學(xué)
評(píng)論
0/150
提交評(píng)論