2022年貴州省安順市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁(yè)
2022年貴州省安順市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁(yè)
2022年貴州省安順市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁(yè)
2022年貴州省安順市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁(yè)
2022年貴州省安順市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年貴州省安順市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.設(shè)函數(shù)z=y3x,則等于().A.A.y3xlny

B.3y3xlny

C.3xy3x

D.3xy3x-1

2.

3.設(shè)二元函數(shù)z=xy,則點(diǎn)P0(0,0)A.為z的駐點(diǎn),但不為極值點(diǎn)B.為z的駐點(diǎn),且為極大值點(diǎn)C.為z的駐點(diǎn),且為極小值點(diǎn)D.不為z的駐點(diǎn),也不為極值點(diǎn)

4.A.0B.1C.2D.4

5.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上

A.單調(diào)減少B.單調(diào)增加C.無(wú)最大值D.無(wú)最小值

6.A.A.

B.

C.

D.

7.當(dāng)x→0時(shí),3x2+2x3是3x2的()。A.高階無(wú)窮小B.低階無(wú)窮小C.同階無(wú)窮小但不是等價(jià)無(wú)窮小D.等價(jià)無(wú)窮小

8.A.A.0B.1C.2D.任意值

9.曲線(xiàn)y=1nx在點(diǎn)(e,1)處切線(xiàn)的斜率為().A.A.e2

B.eC.1D.1/e

10.

11.

12.

13.

14.

A.6xarctanx2

B.6xtanx2+5

C.5

D.6xcos2x

15.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex

B.y*=x(Ax+B)ex

C.y*=Ax3ex

D.y*=x2(Ax+B)ex

16.A.A.

B.

C.

D.

17.下列反常積分收斂的是()。A.∫1+∞xdx

B.∫1+∞x2dx

C.

D.

18.

19.設(shè)在點(diǎn)x=1處連續(xù),則a等于()。A.-1B.0C.1D.220.在空間中,方程y=x2表示()A.xOy平面的曲線(xiàn)B.母線(xiàn)平行于Oy軸的拋物柱面C.母線(xiàn)平行于Oz軸的拋物柱面D.拋物面二、填空題(20題)21.

22.

23.設(shè)z=sin(x2+y2),則dz=________。

24.

25.

26.微分方程y'-2y=3的通解為_(kāi)_________。

27.

28.

29.

30.

31.32.y''-2y'-3y=0的通解是______.

33.

34.

35.

36.

37.方程y'-ex-y=0的通解為_(kāi)____.

38.

39.曲線(xiàn)y=2x2-x+1在點(diǎn)(1,2)處的切線(xiàn)方程為_(kāi)_________。

40.設(shè)z=ln(x2+y),則全微分dz=__________。三、計(jì)算題(20題)41.求微分方程y"-4y'+4y=e-2x的通解.

42.設(shè)拋物線(xiàn)Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線(xiàn)與x軸所圍成的平面區(qū)域內(nèi),以線(xiàn)段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

43.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

44.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則45.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.46.

47.

48.

49.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.50.求微分方程的通解.

51.

52.53.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線(xiàn)的凹凸區(qū)間和拐點(diǎn).54.55.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).56.57.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.58.求曲線(xiàn)在點(diǎn)(1,3)處的切線(xiàn)方程.59.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線(xiàn)在點(diǎn)(1,1)處的切線(xiàn)l的方程.60.證明:四、解答題(10題)61.求微分方程y"+4y=e2x的通解。

62.

63.

64.

65.

66.

67.

68.69.70.五、高等數(shù)學(xué)(0題)71.

=________.則f(2)=__________。

六、解答題(0題)72.

參考答案

1.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.

z=y3x

是關(guān)于y的冪函數(shù),因此

故應(yīng)選D.

2.D

3.A

4.A本題考查了二重積分的知識(shí)點(diǎn)。

5.B本題考查了函數(shù)的單調(diào)性的知識(shí)點(diǎn),

因y'=ex+1/(1+x2)>0處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加。

6.B

7.D本題考查的知識(shí)點(diǎn)為無(wú)窮小階的比較。

由于,可知點(diǎn)x→0時(shí)3x2+2x3與3x2為等價(jià)無(wú)窮小,故應(yīng)選D。

8.B

9.D本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.

由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點(diǎn)x0處可導(dǎo),則曲線(xiàn)),y=f(x)在點(diǎn)(x0,f(x0))處必定存在切線(xiàn),且切線(xiàn)的斜率為f(x0).

由于y=lnx,可知可知應(yīng)選D.

10.A解析:

11.B

12.C

13.C

14.C

15.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。

16.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo).

可知應(yīng)選C.

17.DA,∫1+∞xdx==∞發(fā)散;

18.C解析:

19.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。

由于y為分段函數(shù),x=1為其分段點(diǎn)。在x=1的兩側(cè)f(x)的表達(dá)式不同。因此討論y=f(x)在x=1處的連續(xù)性應(yīng)該利用左連續(xù)與右連續(xù)的概念。由于

當(dāng)x=1為y=f(x)的連續(xù)點(diǎn)時(shí),應(yīng)有存在,從而有,即

a+1=2。

可得:a=1,因此選C。

20.C方程F(x,y)=0表示母線(xiàn)平行于Oz軸的柱面,稱(chēng)之為柱面方程,故選C。21.

22.3

23.2cos(x2+y2)(xdx+ydy)

24.

25.

26.y=Ce2x-3/2

27.

28.

29.

30.11解析:

31.e-232.y=C1e-x+C2e3x由y''-2y'-3y=0的特征方程為r2-2r-3=0,得特征根為r1=3,r2=-1,所以方程的通解為y=C1e-x+C2e3x.

33.0

34.

解析:

35.0

36.37.ey=ex+Cy'-ex-y=0,可改寫(xiě)為eydy=exdx,兩邊積分得ey=ex+C.

38.(03)(0,3)解析:

39.y-2=3(x-1)(或?qū)憺閥=3x-1)y-2=3(x-1)(或?qū)憺閥=3x-1)

40.

41.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

42.

43.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%44.由等價(jià)無(wú)窮小量的定義可知45.函數(shù)的定義域?yàn)?/p>

注意

46.由一階線(xiàn)性微分方程通解公式有

47.

48.

49.

50.

51.

52.

53.

列表:

說(shuō)明

54.

55.

56.

57.由二重積分物理意義知

58.曲線(xiàn)方程為,點(diǎn)(1,3)在曲線(xiàn)上.

因此所求曲線(xiàn)方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線(xiàn)y=f(x)在點(diǎn)

(x0,fx0))處存在切線(xiàn),且切線(xiàn)的斜率為f′(x0).切線(xiàn)方程為

59.

60.

61.

62.

63.

64.

65.

66.由題意知,使f(x)不成立的x值,均為f(x)的間斷點(diǎn).故sin(x-3)=0或x-3=0時(shí)f(x)無(wú)意義,則間斷點(diǎn)為x-3=kπ(k=0,±1,±2…)即x=3+kπ(k=0,±1,±2…)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論