版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022年黑龍江省伊春市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(50題)1.
2.
3.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
4.()。A.0
B.1
C.2
D.+∞
5.對于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時,下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
6.()有助于同級部門或同級領(lǐng)導(dǎo)之間的溝通了解。
A.上行溝通B.下行溝通C.平行溝通D.分權(quán)
7.()A.A.sinx+C
B.cosx+C
C.-sinx+C
D.-cosx+C
8.當(dāng)x→0時,與x等價的無窮小量是()
A.
B.ln(1+x)
C.
D.x2(x+1)
9.設(shè)f(x)的一個原函數(shù)為x2,則f'(x)等于().
A.
B.x2
C.2x
D.2
10.方程x=z2表示的二次曲面是A.A.球面B.橢圓拋物面C.柱面D.圓錐面
11.
12.
13.
14.
15.A.
B.
C.
D.
16.若,則()。A.-1B.0C.1D.不存在
17.
18.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-2
19.
A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與a有關(guān)
20.
21.A.A.5B.3C.-3D.-522.方程y'-3y'+2y=xe2x的待定特解y*應(yīng)取().A.A.Axe2x
B.(Ax+B)e2x
C.Ax2e2x
D.x(Ax+B)e2x
23.圖示為研磨細(xì)砂石所用球磨機的簡化示意圖,圓筒繞0軸勻速轉(zhuǎn)動時,帶動筒內(nèi)的許多鋼球一起運動,當(dāng)鋼球轉(zhuǎn)動到一定角度α=50。40時,它和筒壁脫離沿拋物線下落,借以打擊礦石,圓筒的內(nèi)徑d=32m。則獲得最大打擊時圓筒的轉(zhuǎn)速為()。
A.8.99r/minB.10.67r/minC.17.97r/minD.21.35r/min
24.A.dx+dy
B.
C.
D.2(dx+dy)
25.
26.若f(x)為[a,b]上的連續(xù)函數(shù),()。A.小于0B.大于0C.等于0D.不確定27.當(dāng)α<x<b時,f'(x)<0,f'(x)>0。則在區(qū)間(α,b)內(nèi)曲線段y=f(x)的圖形A.A.沿x軸正向下降且為凹B.沿x軸正向下降且為凸C.沿x軸正向上升且為凹D.沿x軸正向上升且為凸28.A.A.
B.
C.
D.
29.A.A.
B.0
C.
D.1
30.A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)31.f(x)在x=0有二階連續(xù)導(dǎo)數(shù),則f(x)在x=0處()。A.取極小值B.取極大值C.不取極值D.以上都不對
32.
33.A.A.1B.2C.3D.434.f(x)在x=0的某鄰域內(nèi)一階導(dǎo)數(shù)連續(xù)且則()。A.x=0不是f(x)的極值點B.x=0是f(x)的極大值點C.x=0是f(x)的極小值點D.x=0是f(x)的拐點
35.
36.
37.A.A.sinx+sin2B.-sinx+sin2C.sinxD.-sinx
38.
39.
40.
41.
42.下列反常積分收斂的是()。A.∫1+∞xdx
B.∫1+∞x2dx
C.
D.
43.
A.2B.1C.1/2D.0
44.
45.設(shè)f(x)為連續(xù)函數(shù),則等于().A.A.f(x2)B.x2f(x2)C.xf(x2)D.2xf(x2)
46.函數(shù)在(-3,3)內(nèi)展開成x的冪級數(shù)是()。
A.
B.
C.
D.
47.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上
A.單調(diào)減少B.單調(diào)增加C.無最大值D.無最小值48.A.A.e-x+CB.-e-x+CC.ex+CD.-ex+C49.微分方程y'=1的通解為A.y=xB.y=CxC.y=C-xD.y=C+x
50.
二、填空題(20題)51.曲線y=x3-3x2-x的拐點坐標(biāo)為____。
52.
53.
54.微分方程y"-y'-2y=0的通解為______.55.56.57.58.
59.設(shè)sinx為f(x)的原函數(shù),則f(x)=______.
60.
61.
62.
63.微分方程xy'=1的通解是_________。64.65.66.67.68.69.設(shè)z=ln(x2+y),則全微分dz=__________。
70.
三、計算題(20題)71.
72.
73.證明:74.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.75.
76.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
77.求微分方程的通解.78.求曲線在點(1,3)處的切線方程.79.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.
80.
81.82.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.83.84.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.85.將f(x)=e-2X展開為x的冪級數(shù).86.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
87.
88.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
89.求微分方程y"-4y'+4y=e-2x的通解.
90.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則四、解答題(10題)91.求方程y''-2y'+5y=ex的通解.92.計算
93.
94.(本題滿分8分)
95.
96.97.計算不定積分
98.
99.
100.
五、高等數(shù)學(xué)(0題)101.
是
收斂的()條件。
A.充分B.必要C.充分且必要D.無關(guān)六、解答題(0題)102.
參考答案
1.C
2.C
3.C
4.B
5.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。
6.C解析:平行溝通有助于同級部門或同級領(lǐng)導(dǎo)之間的溝通了解。
7.A
8.B?
9.D解析:本題考查的知識點為原函數(shù)的概念.
由于x2為f(x)的原函數(shù),因此
f(x)=(x2)'=2x,
因此
f'(x)=2.
可知應(yīng)選D.
10.C方程x=z2中缺少坐標(biāo)y,是以xOy坐標(biāo)面上的拋物線x=z2為準(zhǔn)線,平行于y軸的直線為母線的拋物柱面。所以選C。
11.C
12.A
13.A
14.D
15.A
16.D不存在。
17.B
18.A由于
可知應(yīng)選A.
19.A
本題考查的知識點為級數(shù)絕對收斂與條件收斂的概念.
20.A
21.Cf(x)為分式,當(dāng)x=-3時,分式的分母為零,f(x)沒有定義,因此
x=-3為f(x)的間斷點,故選C。
22.D本題考查的知識點為二階常系數(shù)線性非齊次微分方程特解y*的取法:
若自由項f(x)=Pn(x)eαx,當(dāng)α不為特征根時,可設(shè)特解為
y*=Qn(x)eαx,
Qn(x)為x的待定n次多項式.
當(dāng)α為單特征根時,可設(shè)特解為
y*=xQn(x)eαx,
當(dāng)α為二重特征根時,可設(shè)特解為
y*=x2Qn(x)eαx.
所給方程對應(yīng)齊次方程的特征方程為
r2-3r+2=0.
特征根為r1=1,r2=2.
自由項f(x)=xe2x,相當(dāng)于α=2為單特征根.又因為Pn(x)為一次式,因此應(yīng)選D.
23.C
24.C
25.C
26.C
27.A由于在(α,b)內(nèi)f'(x)<0,可知f(x)單調(diào)減少。由于f"(x)>0,
可知曲線y=f'(x)在(α,b)內(nèi)為凹,因此選A。
28.B本題考查的知識點為級數(shù)收斂性的定義.
29.D本題考查的知識點為拉格朗日中值定理的條件與結(jié)論.
可知應(yīng)選D.
30.A本題考查的知識點為無窮級數(shù)的收斂性。
31.B;又∵分母x→0∴x=0是駐點;;即f""(0)=一1<0,∴f(x)在x=0處取極大值
32.C
33.D
34.A∵分母極限為0,分子極限也為0;(否則極限不存在)用羅必達(dá)法則同理即f"(0)一1≠0;x=0不是駐點∵可導(dǎo)函數(shù)的極值點必是駐點∴選A。
35.C
36.D
37.D
38.B解析:
39.D
40.D
41.D
42.DA,∫1+∞xdx==∞發(fā)散;
43.D本題考查的知識點為重要極限公式與無窮小量的性質(zhì).
44.A
45.D解析:
46.B
47.B本題考查了函數(shù)的單調(diào)性的知識點,
因y'=ex+1/(1+x2)>0處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加。
48.B
49.D
50.A51.(1,-1)
52.y=1
53.54.y=C1e-x+C2e2x本題考查的知識點為二階線性常系數(shù)微分方程的求解.
特征方程為r2-r-2=0,
特征根為r1=-1,r2=2,
微分方程的通解為y=C1e-x+C2ex.
55.56.本題考查的知識點為重要極限公式。57.±1.
本題考查的知識點為判定函數(shù)的間斷點.
58.解析:
59.cosxcosx解析:本題考查的知識點為原函數(shù)的概念.
由于sinx為f(x)的原函數(shù),因此f(x)=(sinx)'=cosx.
60.
61.-1
62.
解析:63.y=lnx+C
64.
65.
66.
67.
68.
本題考查的知識點為:參數(shù)方程形式的函數(shù)求導(dǎo).
69.
70.271.由一階線性微分方程通解公式有
72.
則
73.
74.
75.
76.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
77.78.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
79.
80.
81.
82.由二重積分物理意義知
83.
84.
列表:
說明
85.
86.
87.
88.函數(shù)的定義域為
注意
89.解:原方程對應(yīng)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度拆除工程安全教育培訓(xùn)拆房協(xié)議范本4篇
- 個人家居裝潢服務(wù)協(xié)議(2024版)版B版
- 二零二五年度FXBIB房地產(chǎn)經(jīng)紀(jì)網(wǎng)絡(luò)平臺合作協(xié)議3篇
- 2025年度產(chǎn)業(yè)園企業(yè)入駐產(chǎn)業(yè)園區(qū)安全與應(yīng)急管理合作協(xié)議4篇
- 2025年度高科技園區(qū)產(chǎn)權(quán)轉(zhuǎn)讓合同模板及范文3篇
- 二零二五年度南京市房產(chǎn)贈與合同(親情關(guān)懷版)3篇
- 事業(yè)單位固定期限勞動協(xié)議樣式版A版
- 2025年度城市軌道交通建設(shè)合同協(xié)議4篇
- 2025年度老舊廠房拆遷評估及補償執(zhí)行標(biāo)準(zhǔn)合同3篇
- 2025年度戶外活動柴油補給服務(wù)協(xié)議4篇
- 2024-2025學(xué)年山東省濰坊市高一上冊1月期末考試數(shù)學(xué)檢測試題(附解析)
- 綿陽市高中2022級(2025屆)高三第二次診斷性考試(二診)歷史試卷(含答案)
- 《視頻壓縮基礎(chǔ)》課件
- 2025南方財經(jīng)全媒體集團(tuán)校園招聘63人高頻重點提升(共500題)附帶答案詳解
- 《A機場公司人力資源管理工作實踐調(diào)研報告》2600字(論文)
- 社工人才培訓(xùn)計劃實施方案
- 數(shù)學(xué)-湖南省新高考教學(xué)教研聯(lián)盟(長郡二十校聯(lián)盟)2024-2025學(xué)年2025屆高三上學(xué)期第一次預(yù)熱演練試題和答案
- 四年級數(shù)學(xué)(上)計算題專項練習(xí)及答案
- 6、水平四+田徑18課時大單元計劃-《雙手頭上前擲實心球》
- 幼兒園人民幣啟蒙教育方案
- 軍事理論(2024年版)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
評論
0/150
提交評論