2022年黑龍江省雞西市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第1頁
2022年黑龍江省雞西市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第2頁
2022年黑龍江省雞西市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第3頁
2022年黑龍江省雞西市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第4頁
2022年黑龍江省雞西市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022年黑龍江省雞西市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號(hào):________

一、單選題(20題)1.

2.方程x2+2y2-z2=0表示的二次曲面是()

A.橢球面B.錐面C.旋轉(zhuǎn)拋物面D.柱面

3.設(shè)x2是f(x)的一個(gè)原函數(shù),則f(x)=A.A.2x

B.x3

C.(1/3)x3+C

D.3x3+C

4.過曲線y=xlnx上M0點(diǎn)的切線平行于直線y=2x,則切點(diǎn)M0的坐標(biāo)是().A.A.(1,0)B.(e,0)C.(e,1)D.(e,e)

5.

6.

7.設(shè)函數(shù)f(x)在[0,b]連續(xù),在(a,b)可導(dǎo),f′(x)>0.若f(a)·f(b)<0,則y=f(x)在(a,b)().

A.不存在零點(diǎn)

B.存在唯一零點(diǎn)

C.存在極大值點(diǎn)

D.存在極小值點(diǎn)

8.設(shè)函數(shù)f(x)=2sinx,則f'(x)等于().A.A.2sinxB.2cosxC.-2sinxD.-2cosx.

9.設(shè)z=y2x,則等于().A.2xy2x-11

B.2y2x

C.y2xlny

D.2y2xlny

10.A.A.2B.1C.0D.-1

11.A.絕對收斂B.條件收斂C.發(fā)散D.無法確定斂散性

12.

13.

14.

15.

16.平面x+y一3z+1=0與平面2x+y+z=0相互關(guān)系是()。

A.斜交B.垂直C.平行D.重合

17.設(shè)曲線y=x-ex在點(diǎn)(0,-1)處與直線l相切,則直線l的斜率為().A.A.∞B.1C.0D.-1

18.下列()不是組織文化的特征。

A.超個(gè)體的獨(dú)特性B.不穩(wěn)定性C.融合繼承性D.發(fā)展性

19.

20.f(x)是可積的偶函數(shù),則是()。A.偶函數(shù)B.奇函數(shù)C.非奇非偶D.可奇可偶

二、填空題(20題)21.

22.設(shè)f(x)在x=1處連續(xù),=2,則=________。

23.設(shè).y=e-3x,則y'________。

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

三、計(jì)算題(20題)41.求微分方程y"-4y'+4y=e-2x的通解.

42.求曲線在點(diǎn)(1,3)處的切線方程.

43.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

44.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

45.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則

46.

47.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

48.

49.證明:

50.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

51.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

52.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

53.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

54.

55.

56.

57.將f(x)=e-2X展開為x的冪級數(shù).

58.

59.求微分方程的通解.

60.

四、解答題(10題)61.

62.

63.

64.

65.

66.求垂直于直線2x-6y+1=0且與曲線y=x3+3x2-5相切的直線方程.

67.

68.

69.求曲線y=x3-3x+5的拐點(diǎn).

70.

五、高等數(shù)學(xué)(0題)71.設(shè)f(x)的一個(gè)原函數(shù)是lnz,求∫f(x)f(x)dx。

六、解答題(0題)72.

參考答案

1.A

2.B對照二次曲面的標(biāo)準(zhǔn)方程,可知所給曲面為錐面,故選B。

3.A由于x2為f(x)的一個(gè)原函數(shù),由原函數(shù)的定義可知f(x)=(x2)'=2x,故選A。

4.D本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.

由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點(diǎn)x0處可導(dǎo),則曲線y=f(x)在點(diǎn)(x0,f(x0))處必定存在切線,且切線的斜率為f'(x0).

由于y=xlnx,可知

y'=1+lnx,

切線與已知直線y=2x平行,直線的斜率k1=2,可知切線的斜率k=k1=2,從而有

1+lnx0=2,

可解得x0=e,從而知

y0=x0lnx0=elne=e.

故切點(diǎn)M0的坐標(biāo)為(e,e),可知應(yīng)選D.

5.A解析:

6.B

7.B由于f(x)在[a,b]上連續(xù)f(z)·fb)<0,由閉區(qū)間上連續(xù)函數(shù)的零點(diǎn)定理可知,y=f(x)在(a,b)內(nèi)至少存在一個(gè)零點(diǎn).又由于f(x)>0,可知f(x)在(a,b)內(nèi)單調(diào)增加,因此f(x)在(a,b)內(nèi)如果有零點(diǎn),則至多存在一個(gè).

綜合上述f(x)在(a,b)內(nèi)存在唯一零點(diǎn),故選B.

8.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算.

f(x)=2sinx,

f'(x)=2(sinx)'=2cosx,

可知應(yīng)選B.

9.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算.

z=y2x,若求,則需將z認(rèn)定為指數(shù)函數(shù).從而有

可知應(yīng)選D.

10.Df(x)為分式,當(dāng)x=-1時(shí),分母x+1=0,分式?jīng)]有意義,因此點(diǎn)

x=-1為f(x)的間斷點(diǎn),故選D。

11.A本題考察了級數(shù)的絕對收斂的知識(shí)點(diǎn)。

12.D

13.A

14.C

15.C

16.Bπ1x+y一3z+1=0的法向量n1=(1,1,一3)π2:2x+y+z=0的法向量n2=(2,1,1)∵n1.n2=(1,1,一3).(2,1,1)=0∵n1⊥n2;∴π1⊥π2

17.C本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.

由于y=x-ex,y'=1-ex,y'|x=0=0.由導(dǎo)數(shù)的幾何意義可知,曲線y=x-ex在點(diǎn)(0,-1)處切線斜率為0,因此選C.

18.B解析:組織文化的特征:(1)超個(gè)體的獨(dú)特性;(2)相對穩(wěn)定性;(3)融合繼承性;(4)發(fā)展性。

19.C解析:

20.Bf(x)是可積的偶函數(shù);設(shè)令t=-u,是奇函數(shù)。

21.1/2

22.由連續(xù)函數(shù)的充要條件知f(x)在x0處連續(xù),則。

23.-3e-3x

24.

25.3x2siny3x2siny解析:

26.2x-4y+8z-7=0

27.12dx+4dy.

本題考查的知識(shí)點(diǎn)為求函數(shù)在一點(diǎn)處的全微分.

28.

29.1+2ln2

30.

本題考查的知識(shí)點(diǎn)為可分離變量方程的求解.

可分離變量方程求解的一般方法為:

(1)變量分離;

(2)兩端積分.

31.ln|x-1|+c

32.

33.

34.

35.

36.

本題考查的知識(shí)點(diǎn)為可變上限積分的求導(dǎo).

37.

38.

39.eab

40.本題考查的知識(shí)點(diǎn)為冪級數(shù)的收斂半徑.所給級數(shù)為缺項(xiàng)情形,由于

41.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

42.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

43.函數(shù)的定義域?yàn)?/p>

注意

44.

45.由等價(jià)無窮小量的定義可知

46.

47.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

48.

49.

50.由二重積分物理意義知

51.

52.

列表:

說明

53.

54.

55.

56.由一階線性微分方程通解公式有

57.

58.

59.

60.

61.

62.

63.

64.利用洛必達(dá)法則原式,接下去有兩種解法:解法1利用等價(jià)無窮小代換.

解法2利用洛必達(dá)法則.

本題考查的知識(shí)點(diǎn)為兩個(gè):“”型極限和可變上限積分的求導(dǎo).

對于可變上(下)限積分形式的極限,如果為“”型或“”型,通常利用洛必達(dá)法則求解,將其轉(zhuǎn)化為不含可變上(下)限積分形式的極限.

65.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分;選擇積分次序或利用極坐標(biāo)計(jì)算.

積分區(qū)域D如圖2—1所示.

解法1利用極坐標(biāo)系.

D可以表示為

解法2利用直角坐標(biāo)系.

如果利用直角坐標(biāo)計(jì)算,區(qū)域D的邊界曲線關(guān)于x,y地位等同,因此選擇哪種積分次序應(yīng)考慮被積函數(shù)的特點(diǎn).注意

可以看出,兩種積分次序下的二次積分都可以進(jìn)行計(jì)算,但是若先對x積分,后對y積分,將簡便些.

本題中考生出現(xiàn)的較普遍的錯(cuò)誤為,利用極坐標(biāo)將二重積分化為二次積分:

右端被積函數(shù)中丟掉了r,這是考生應(yīng)該注意的問題.通常若區(qū)域可以表示為

66.解

67.本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算(極坐標(biāo)系).

利用極坐標(biāo),區(qū)域D可以表示為

0≤0≤π,0≤r≤2,

如果積分區(qū)域?yàn)閳A域或圓的-部分,被積函數(shù)為f(x2+y2)的二重積分,通常利用極坐標(biāo)計(jì)算較方便.

使用極坐標(biāo)計(jì)算二重積分時(shí),要先將區(qū)域D的邊界曲線化為極坐標(biāo)下的方程表示,以確定出區(qū)域D的不等式表示式,再

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論