版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年黑龍江省齊齊哈爾市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.A.(1/3)x3
B.x2
C.2xD.(1/2)x
2.
3.設(shè)f(x)為連續(xù)的奇函數(shù),則等于().A.A.2af(x)
B.
C.0
D.f(a)-f(-a)
4.當(dāng)x→0時(shí),3x2+2x3是3x2的()。A.高階無窮小B.低階無窮小C.同階無窮小但不是等價(jià)無窮小D.等價(jià)無窮小
5.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2
6.A.連續(xù)且可導(dǎo)B.連續(xù)且不可導(dǎo)C.不連續(xù)D.不僅可導(dǎo),導(dǎo)數(shù)也連續(xù)
7.圖示懸臂梁,若已知截面B的撓度和轉(zhuǎn)角分別為vB和θB,則C端撓度為()。
A.vC=2uB
B.uC=θBα
C.vC=uB+θBα
D.vC=vB
8.設(shè)y1(x),y2(x)二階常系數(shù)線性微分方程y+py+qy=0的兩個(gè)線性無關(guān)的解,則它的通解為()A.A.y1(x)+c2y2(x)
B.c1y1(x)+y2(x)
C.y1(x)+y2(x)
D.c1y1(x)+c2y2(x)注.c1,C2為任意常數(shù).
9.
10.
11.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
12.
13.A.A.1/4B.1/2C.1D.2
14.
15.
16.方程x2+y2-z2=0表示的二次曲面是()。
A.球面B.旋轉(zhuǎn)拋物面C.圓柱面D.圓錐面17.A.A.
B.
C.
D.
18.
19.下列關(guān)系正確的是()。A.
B.
C.
D.
20.設(shè)f(x)在點(diǎn)x0處連續(xù),則下面命題正確的是()A.A.
B.
C.
D.
二、填空題(20題)21.22.23.
24.
25.
26.微分方程y'-2y=3的通解為__________。
27.
28.如果函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得f(b)-f(a)=________。
29.
30.
31.
32.33.34.設(shè)y=f(x)在點(diǎn)x=0處可導(dǎo),且x=0為f(x)的極值點(diǎn),則f(0)=.35.
36.
37.
38.39.冪級(jí)數(shù)的收斂半徑為______.
40.
三、計(jì)算題(20題)41.求微分方程的通解.42.求曲線在點(diǎn)(1,3)處的切線方程.43.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.44.45.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.46.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則47.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.48.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
49.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
50.
51.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.52.將f(x)=e-2X展開為x的冪級(jí)數(shù).53.54.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
55.證明:
56.
57.
58.
59.求微分方程y"-4y'+4y=e-2x的通解.
60.四、解答題(10題)61.
62.
63.64.65.66.設(shè)y=y(x)由確定,求dy.
67.
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.當(dāng)x→0+時(shí),()與x是等價(jià)無窮小量。
A.
B.1n(1+x)
C.x2(x+1)
D.
六、解答題(0題)72.
參考答案
1.C本題考查了一元函數(shù)的一階導(dǎo)數(shù)的知識(shí)點(diǎn)。
Y=x2+1,(dy)/(dx)=2x
2.C
3.C本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱性.
由定積分的對(duì)稱性質(zhì)可知:若f(x)為[-a,a]上的連續(xù)的奇函數(shù),則
可知應(yīng)選C.
4.D本題考查的知識(shí)點(diǎn)為無窮小階的比較。
由于,可知點(diǎn)x→0時(shí)3x2+2x3與3x2為等價(jià)無窮小,故應(yīng)選D。
5.D本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。
6.B
7.C
8.D
9.A
10.C
11.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。
12.A
13.C
14.B
15.C
16.D因方程可化為,z2=x2+y2,由方程可知它表示的是圓錐面.
17.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)收斂性的定義.
18.D解析:
19.B由不定積分的性質(zhì)可知,故選B.
20.C本題考查的知識(shí)點(diǎn)有兩個(gè):連續(xù)性與極限的關(guān)系;連續(xù)性與可導(dǎo)的關(guān)系.
連續(xù)性的定義包含三個(gè)要素:若f(x)在點(diǎn)x0處連續(xù),則
(1)f(x)在點(diǎn)x0處必定有定義;
(2)必定存在;
(3)
由此可知所給命題C正確,A,B不正確.
注意連續(xù)性與可導(dǎo)的關(guān)系:可導(dǎo)必定連續(xù);連續(xù)不一定可導(dǎo),可知命題D不正確.故知,應(yīng)選C.
本題常見的錯(cuò)誤是選D.這是由于考生沒有正確理解可導(dǎo)與連續(xù)的關(guān)系.
若f(x)在點(diǎn)x0處可導(dǎo),則f(x)在點(diǎn)x0處必定連續(xù).
但是其逆命題不成立.
21.
22.
23.
24.
25.
解析:
26.y=Ce2x-3/2
27.x2+y2=Cx2+y2=C解析:
28.f"(ξ)(b-a)由題目條件可知函數(shù)f(x)在[a,b]上滿足拉格朗日中值定理的條件,因此必定存在一點(diǎn)ξ∈(a,b),使f(b)-f(a)=f"(ξ)(b-a)。
29.
30.0
31.
32.
33.1本題考查了無窮積分的知識(shí)點(diǎn)。34.0.
本題考查的知識(shí)點(diǎn)為極值的必要條件.
由于y=f(x)在點(diǎn)x=0可導(dǎo),且x=0為f(x)的極值點(diǎn),由極值的必要條件可知有f(0)=0.35.本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂區(qū)間。由于所給級(jí)數(shù)為不缺項(xiàng)情形,
36.3
37.
38.
39.0本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.
所給冪級(jí)數(shù)為不缺項(xiàng)情形
因此收斂半徑為0.
40.
41.42.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
43.
44.
45.函數(shù)的定義域?yàn)?/p>
注意
46.由等價(jià)無窮小量的定義可知
47.
48.
列表:
說明
49.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%50.由一階線性微分方程通解公式有
51.由二重積分物理意義知
52.
53.
54.
55.
56.
57.
58.
則
59.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
60.
61.
62.
63.
64.65.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分;選擇積分次序或利用極坐標(biāo)計(jì)算.
積分區(qū)域D如圖2—1所示.
解法1利用極坐標(biāo)系.
D可以表示為
解法2利用直角坐標(biāo)系.
如果利用直角坐標(biāo)計(jì)算,區(qū)域D的邊界曲線關(guān)于x,y地位等同,因此選擇哪種積分次序應(yīng)考慮被積函數(shù)的特點(diǎn).注意
可以看出,兩種積分次序下的二次積分都可以進(jìn)行計(jì)算,但是若先對(duì)x積分,后對(duì)y積分,將簡(jiǎn)便些.
本題中考生出現(xiàn)的較普遍的錯(cuò)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)業(yè)物聯(lián)網(wǎng)(IoT)行業(yè)相關(guān)項(xiàng)目經(jīng)營(yíng)管理報(bào)告
- 紗線成條和梳理機(jī)項(xiàng)目營(yíng)銷計(jì)劃書
- 為第三方提供會(huì)計(jì)服務(wù)行業(yè)營(yíng)銷策略方案
- 醫(yī)用蓖麻油產(chǎn)業(yè)鏈招商引資的調(diào)研報(bào)告
- 生物識(shí)別鎖項(xiàng)目運(yùn)營(yíng)指導(dǎo)方案
- 農(nóng)業(yè)作物病害化學(xué)防治行業(yè)經(jīng)營(yíng)分析報(bào)告
- 草料混合機(jī)產(chǎn)品供應(yīng)鏈分析
- 健康技術(shù)智能藥盒行業(yè)相關(guān)項(xiàng)目經(jīng)營(yíng)管理報(bào)告
- 自行車曲軸項(xiàng)目運(yùn)營(yíng)指導(dǎo)方案
- 電信業(yè)用收款機(jī)市場(chǎng)發(fā)展前景分析及供需格局研究預(yù)測(cè)報(bào)告
- 第二單元復(fù)習(xí)(教案)部編版語文二年級(jí)上冊(cè)
- 2018年全國(guó)統(tǒng)一施工機(jī)械臺(tái)班費(fèi)用定額
- 2023纖維復(fù)合材料修復(fù)加固邊坡支擋結(jié)構(gòu)技術(shù)規(guī)程
- 幼兒園消防演練活動(dòng)總結(jié)講話(5篇)
- 智慧農(nóng)業(yè)智慧水稻項(xiàng)目規(guī)劃設(shè)計(jì)方案
- 攝影攝像構(gòu)圖技法課件
- 胃潰瘍健康宣教
- 黑龍江龍煤雙鴨山礦業(yè)有限責(zé)任公司雙陽煤礦重大瓦斯爆炸事故專項(xiàng)風(fēng)險(xiǎn)辨識(shí)評(píng)估報(bào)告
- 《航天器熱控技術(shù)》課件
- 《藏式建筑簡(jiǎn)介》課件
- 2023-2024學(xué)年山東省棗莊市滕州市七年級(jí)(上)期中數(shù)學(xué)試卷
評(píng)論
0/150
提交評(píng)論