2023年吉林省吉林市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第1頁
2023年吉林省吉林市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第2頁
2023年吉林省吉林市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第3頁
2023年吉林省吉林市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第4頁
2023年吉林省吉林市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第5頁
已閱讀5頁,還剩24頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年吉林省吉林市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.下列命題中正確的為

A.若x0為f(x)的極值點(diǎn),則必有f'(x0)=0

B.若f'(x)=0,則點(diǎn)x0必為f(x)的極值點(diǎn)

C.若f'(x0)≠0,則點(diǎn)x0必定不為f(x)的極值點(diǎn)

D.若f(x)在點(diǎn)x0處可導(dǎo),且點(diǎn)x0為f(x)的極值點(diǎn),則必有f'(x0)=0

2.

3.

4.微分方程y'+y=0的通解為()。A.y=ex

B.y=e-x

C.y=Cex

D.y=Ce-x

5.

6.

7.

()A.x2

B.2x2

C.xD.2x

8.A.

B.

C.e-x

D.

9.設(shè)y=3-x,則y'=()。A.-3-xln3

B.3-xlnx

C.-3-x-1

D.3-x-1

10.

11.

12.

13.平面π1:x-2y+3x+1=0,π2:2x+y+2=0的位置關(guān)系為()A.垂直B.斜交C.平行不重合D.重合14.A.A.0B.1/2C.1D.2

15.

16.設(shè)f(x)為連續(xù)函數(shù),則下列關(guān)系式中正確的是()A.A.

B.

C.

D.

17.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個(gè)特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解

18.在穩(wěn)定性計(jì)算中,若用歐拉公式算得壓桿的臨界壓力為Fcr,而實(shí)際上壓桿屬于中柔度壓桿,則()。

A.并不影響壓桿的臨界壓力值

B.實(shí)際的臨界壓力大于Fcr,是偏于安全的

C.實(shí)際的臨界壓力小于Fcr,是偏于不安全的

D.實(shí)際的臨界壓力大于Fcr,是偏于不安全的

19.

20.A.等價(jià)無窮小

B.f(x)是比g(x)高階無窮小

C.f(x)是比g(x)低階無窮小

D.f(x)與g(x)是同階但非等價(jià)無窮小

二、填空題(20題)21.22.23.

24.

25.

26.

27.

28.

則F(O)=_________.

29.

30.

31.

32.

33.設(shè)y=3+cosx,則y=.34.35.設(shè)y=e3x知,則y'_______。36.37.

38.微分方程xdx+ydy=0的通解是__________。

39.

40.冪級(jí)數(shù)的收斂半徑為______.

三、計(jì)算題(20題)41.證明:42.43.求曲線在點(diǎn)(1,3)處的切線方程.44.

45.

46.求微分方程的通解.

47.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

48.

49.

50.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).51.研究級(jí)數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.52.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則53.

54.將f(x)=e-2X展開為x的冪級(jí)數(shù).55.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.56.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.57.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

58.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.59.

60.求微分方程y"-4y'+4y=e-2x的通解.

四、解答題(10題)61.

62.

63.

64.

65.

66.

67.求函數(shù)f(x,y)=e2x(x+y2+2y)的極值.

68.69.70.五、高等數(shù)學(xué)(0題)71.已知函數(shù)

,則

=()。

A.1B.一1C.0D.不存在六、解答題(0題)72.求y"-2y'-8y=0的通解.

參考答案

1.D解析:由極值的必要條件知D正確。

y=|x|在x=0處取得極值,但不可導(dǎo),知A與C不正確。

y=x3在x=0處導(dǎo)數(shù)為0,但x0=0不為它的極值點(diǎn),可知B不正確。因此選D。

2.D

3.B

4.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量

兩端分別積分

或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。

5.C

6.B

7.A

8.A

9.Ay=3-x,則y'=3-x。ln3*(-x)'=-3-xln3。因此選A。

10.D

11.B解析:

12.C

13.A本題考查的知識(shí)點(diǎn)為兩平面的位置關(guān)系。兩平面的關(guān)系可由平面的法向量n1,n2間的關(guān)系確定。若n1⊥n2,則兩平面必定垂直。若n1//n2,則兩平面平行,其中當(dāng)時(shí),兩平面平行,但不重合。當(dāng)時(shí),兩平面重合。若n1與n2既不垂直,也不平行,則兩平面斜交。由于n1={1,-2,3},n2={2,1,0),n1,n2=0,可知,n1⊥n2,因此π1⊥π2,故選A。

14.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.

15.A

16.B本題考查的知識(shí)點(diǎn)為:若f(x)可積分,則定積分的值為常數(shù);可變上限積分求導(dǎo)公式的運(yùn)用.

注意到A左端為定積分,定積分存在時(shí),其值一定為常數(shù),常量的導(dǎo)數(shù)等于零.因此A不正確.

由可變上限積分求導(dǎo)公式可知B正確.C、D都不正確.

17.B如果y1,y2這兩個(gè)特解是線性無關(guān)的,即≠C,則C1y1+C2y2是其方程的通解?,F(xiàn)在題設(shè)中沒有指出是否線性無關(guān),所以可能是通解,也可能不是通解,故選B。

18.B

19.A

20.D

21.22.本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂區(qū)間。由于所給級(jí)數(shù)為不缺項(xiàng)情形,

23.

24.

25.

解析:

26.

27.極大值為8極大值為8

28.29.1

30.1/e1/e解析:

31.

32.33.-sinX.

本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)運(yùn)算.

34.1本題考查的知識(shí)點(diǎn)為定積分的換元積分法.

35.3e3x36.本題考查的知識(shí)點(diǎn)為重要極限公式。37.本題考查的知識(shí)點(diǎn)為定積分的基本公式。

38.x2+y2=C

39.y''=x(asinx+bcosx)

40.

解析:本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.

注意此處冪級(jí)數(shù)為缺項(xiàng)情形.

41.

42.

43.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

44.

45.

46.

47.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

48.

49.

50.

列表:

說明

51.

52.由等價(jià)無窮小量的定義可知53.由一階線性微分方程通解公式有

54.

55.

56.由二重積分物理意義知

57.

58.函數(shù)的定義域?yàn)?/p>

注意

59.

60.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

61.62.解法1原式(兩次利用洛必達(dá)法則)解法2原式(利用等價(jià)無窮小代換)本題考查的知識(shí)點(diǎn)為用洛必達(dá)法則求極限.

由于問題為“∞-∞”型極限問題,應(yīng)先將求極限的函數(shù)通分,使所求極限化為“”型問題.

如果將上式右端直接利用洛必達(dá)法則求之,則運(yùn)算復(fù)雜.注意到使用洛必達(dá)法則求極限時(shí),如果能與等價(jià)無窮小代換

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論