版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年吉林省遼源市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.設(shè)函數(shù)y=ex-2,則dy=()A.e^(x-3)dxB.e^(x-2)dxC.e^(x-1)dxD.e^xdx
2.
3.
4.
5.
6.設(shè)二元函數(shù)z=xy,則點(diǎn)P0(0,0)A.為z的駐點(diǎn),但不為極值點(diǎn)B.為z的駐點(diǎn),且為極大值點(diǎn)C.為z的駐點(diǎn),且為極小值點(diǎn)D.不為z的駐點(diǎn),也不為極值點(diǎn)
7.微分方程y''-2y'=x的特解應(yīng)設(shè)為
A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+c8.設(shè)函數(shù)f(x)在(0,1)內(nèi)可導(dǎo),f'(x)>0,則f(x)在(0,1)內(nèi)()A.A.單調(diào)減少B.單調(diào)增加C.為常量D.不為常量,也不單調(diào)
9.
10.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為()。A.
B.
C..
D.不能確定
11.A.A.2B.1C.1/2D.012.
13.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。
A.ln2
B.ln1
C.lne
D.
14.微分方程y'+y=0的通解為()。A.y=ex
B.y=e-x
C.y=Cex
D.y=Ce-x
15.
16.
17.
18.設(shè)y=exsinx,則y'''=A.cosx·ex
B.sinx·ex
C.2ex(cosx-sinx)
D.2ex(sinx-cosx)
19.
20.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-221.
22.剛體上A、B、C、D四點(diǎn)組成一個(gè)平行四邊形,如在其四個(gè)頂點(diǎn)作用四個(gè)力,此四個(gè)邊恰好組成封閉的力多邊形。則()
A.力系平衡
B.力系有合力
C.力系的合力偶矩等于平行四邊形ABCD的面積
D.力系的合力偶矩等于負(fù)的平行四邊形ABCD的面積的2倍
23.A.
B.
C.
D.
24.A.A.導(dǎo)數(shù)存在,且有f(a)=一1B.導(dǎo)數(shù)一定不存在C.f(a)為極大值D.f(a)為極小值
25.
26.
27.
28.設(shè)函數(shù)f(x)在x=1處可導(dǎo),且,則f'(1)等于().A.A.1/2B.1/4C.-1/4D.-1/2
29.
30.A.exln2
B.e2xln2
C.ex+ln2
D.e2x+ln2
31.A.0B.2C.2f(-1)D.2f(1)
32.A.收斂B.發(fā)散C.收斂且和為零D.可能收斂也可能發(fā)散
33.
34.
35.設(shè)z=ysinx,則等于().A.A.-cosxB.-ycosxC.cosxD.ycosx36.設(shè)un≤aυn(n=1,2,…)(a>0),且收斂,則()A.必定收斂B.必定發(fā)散C.收斂性與a有關(guān)D.上述三個(gè)結(jié)論都不正確
37.
38.
39.設(shè)y=x2-e2,則y=
A.2x-2e
B.2x-e2
C.2x-e
D.2x
40.
41.A.A.
B.
C.
D.
42.下列命題不正確的是()。
A.兩個(gè)無(wú)窮大量之和仍為無(wú)窮大量
B.上萬(wàn)個(gè)無(wú)窮小量之和仍為無(wú)窮小量
C.兩個(gè)無(wú)窮大量之積仍為無(wú)窮大量
D.兩個(gè)有界變量之和仍為有界變量
43.設(shè)方程y''-2y'-3y=f(x)有特解y*,則它的通解為A.y=C1e-x+C2e3x+y*
B.y=C1e-x+C2e3x
C.y=C1xe-x+C2e3x+y*
D.y=C1ex+C2e-3x+y*
44.若,則下列命題中正確的有()。A.
B.
C.
D.
45.設(shè)y=cosx,則y''=()A.sinxB.cosxC.-cosxD.-sinx
46.
47.
48.
49.
50.
二、填空題(20題)51.微分方程dy+xdx=0的通解為y=__________.
52.
53.54.過(guò)坐標(biāo)原點(diǎn)且與平面2x-y+z+1=0平行的平面方程為_(kāi)_____.55.設(shè)z=ln(x2+y),則全微分dz=__________。
56.
57.設(shè)z=sin(x2+y2),則dz=________。
58.
59.
60.
61.通解為C1e-x+C2e-2x的二階常系數(shù)線性齊次微分方程是____.
62.
63.
64.
65.
66.
67.68.
69.
70.三、計(jì)算題(20題)71.
72.
73.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
74.證明:75.76.77.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.78.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.79.
80.81.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則82.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).83.求曲線在點(diǎn)(1,3)處的切線方程.84.求微分方程的通解.85.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
86.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
87.
88.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.89.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
90.求微分方程y"-4y'+4y=e-2x的通解.
四、解答題(10題)91.
92.
93.
94.設(shè)y=e-3x+x3,求y'。
95.
96.
97.
98.
99.計(jì)算
100.
五、高等數(shù)學(xué)(0題)101.若f(x一1)=x2+3x+5,則f(x+1)=________。
六、解答題(0題)102.設(shè)y=x2+sinx,求y'.
參考答案
1.B
2.A
3.B
4.B
5.B
6.A
7.C本題考查了二階常系數(shù)微分方程的特解的知識(shí)點(diǎn)。
因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應(yīng)設(shè)為y*=(Ax+B)x=Ax2+Bx.
8.B由于f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加.因此選B.
9.B
10.B本題考查的知識(shí)點(diǎn)為定積分的幾何意義。由定積分的幾何意義可知應(yīng)選B。常見(jiàn)的錯(cuò)誤是選C。如果畫(huà)個(gè)草圖,則可以避免這類錯(cuò)誤。
11.D
12.C
13.D由拉格朗日定理
14.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量
兩端分別積分
或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。
15.B
16.C
17.C
18.C由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).
19.D
20.D本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。
21.A
22.D
23.D本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法。因此選D。
24.A本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.
25.B
26.B
27.C
28.B本題考查的知識(shí)點(diǎn)為可導(dǎo)性的定義.
當(dāng)f(x)在x=1處可導(dǎo)時(shí),由導(dǎo)數(shù)定義可得
可知f'(1)=1/4,故應(yīng)選B.
29.B
30.B本題考查了一階線性齊次方程的知識(shí)點(diǎn)。
因f'(x)=f(x)·2,即y'=2y,此為常系數(shù)一階線性齊次方程,其特征根為r=2,所以其通解為y=Ce2x,又當(dāng)x=0時(shí),f(0)=ln2,所以C=In2,故f(x)=e2xln2.
注:方程y'=2y求解時(shí)也可用變量分離.
31.C本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)。
32.D
33.C
34.A
35.C本題考查的知識(shí)點(diǎn)為高階偏導(dǎo)數(shù).
由于z=ysinx,因此
可知應(yīng)選C.
36.D由正項(xiàng)級(jí)數(shù)的比較判定法知,若un≤υn,則當(dāng)收斂時(shí),也收斂;若也發(fā)散,但題設(shè)未交待un與υn的正負(fù)性,由此可分析此題選D。
37.C
38.B
39.D
40.A
41.D
42.A∵f(x)→∞;g(x)→∞∴f(x)+g(x)是不定型,不一定是無(wú)窮大。
43.A考慮對(duì)應(yīng)的齊次方程y''-2y'-3y==0的通解.特征方程為r2-2r-3=0,所以r1=-1,r2=3,所以y''-2y'-3y==0的通解為,所以原方程的通解為y=C1e-x+C2e3x+y*.
44.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)收斂性的定義。
45.Cy=cosx,y'=-sinx,y''=-cosx.
46.C
47.A
48.A
49.C解析:
50.A
51.
52.
53.
本題考查的知識(shí)點(diǎn)為初等函數(shù)的求導(dǎo)運(yùn)算.
本題需利用導(dǎo)數(shù)的四則運(yùn)算法則求解.
本題中常見(jiàn)的錯(cuò)誤有
這是由于誤將sin2認(rèn)作sinx,事實(shí)上sin2為-個(gè)常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即
請(qǐng)考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.54.已知平面的法線向量n1=(2,-1,1),所求平面與已知平面平行,可設(shè)所求平面方程為2x-y+z+D=0,將x=0,y=0,z=0代入上式,可得D=0,因此所求平面方程為2x-y+z=0.
55.
56.1/21/2解析:
57.2cos(x2+y2)(xdx+ydy)
58.6x26x2
解析:59.2本題考查的知識(shí)點(diǎn)為二階導(dǎo)數(shù)的運(yùn)算.
f'(x)=(x2)'=2x,
f"(x)=(2x)'=2.
60.
61.
62.22解析:
63.11解析:64.
65.
解析:
66.
67.
68.
69.00解析:
70.>1
71.
則
72.
73.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
74.
75.
76.
77.
78.由二重積分物理意義知
79.由一階線性微分方程通解公式有
80.
81.由等價(jià)無(wú)窮小量的定義可知
82.83.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
84.
85.
86.
87.88.函數(shù)的定義域?yàn)?/p>
注意
89.
列表:
說(shuō)明
90.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
91.
92.
93.
94.
95.
96.解
97.
98.
99.本題考查的知識(shí)點(diǎn)為定積分
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 超聲波和次聲波課件
- 《PDA發(fā)展與介紹》課件
- 單位管理制度展示大全【人事管理】十篇
- 單位管理制度展示大合集【人力資源管理篇】十篇
- 策略深度研究:當(dāng)前還有哪些高股息值得關(guān)注
- 全程編制棉絲絨項(xiàng)目可行性研究報(bào)告方案可用于立項(xiàng)及銀行貸款+201
- 2024-2026年中國(guó)微信公眾號(hào)市場(chǎng)調(diào)查研究及行業(yè)投資潛力預(yù)測(cè)報(bào)告
- 可行性項(xiàng)目研究報(bào)告電子類
- 2024河南金屬及金屬礦批發(fā)市場(chǎng)前景及投資研究報(bào)告
- 2025年鹽酸酯項(xiàng)目可行性研究報(bào)告
- 2024年人教版八年級(jí)語(yǔ)文上冊(cè)期末考試卷(附答案)
- 遼寧省大連市2023-2024學(xué)年高三上學(xué)期雙基測(cè)試(期末考試) 物理 含解析
- 勞務(wù)分包的工程施工組織設(shè)計(jì)方案
- 18項(xiàng)醫(yī)療質(zhì)量安全核心制度
- 智能終端安全檢測(cè)
- 新能源發(fā)電技術(shù) 電子課件 1.4 新能源發(fā)電技術(shù)
- DB34-T 4859-2024 農(nóng)村河道清淤規(guī)范
- 中學(xué)物業(yè)管理服務(wù)采購(gòu)?fù)稑?biāo)方案(技術(shù)方案)
- 康復(fù)科年度工作亮點(diǎn)與展望計(jì)劃
- 冀教版二年級(jí)(上)數(shù)學(xué)加減乘除口算題卡
- 【期中考后反思】《反躬自省,砥礪奮進(jìn)》-2022-2023學(xué)年初中主題班會(huì)課件
評(píng)論
0/150
提交評(píng)論