版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年四川省遂寧市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.為二次積分為()。A.
B.
C.
D.
2.設(shè)y=exsinx,則y'''=A.cosx·ex
B.sinx·ex
C.2ex(cosx-sinx)
D.2ex(sinx-cosx)
3.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上
A.單調(diào)減少B.單調(diào)增加C.無(wú)最大值D.無(wú)最小值
4.
5.設(shè)f(x)=1-cos2x,g(x)=x2,則當(dāng)x→0時(shí),比較無(wú)窮小量f(x)與g(x),有
A.f(x)對(duì)于g(x)是高階的無(wú)窮小量
B.f(x)對(duì)于g(x)是低階的無(wú)窮小量
C.f(x)與g(x)為同階無(wú)窮小量,但非等價(jià)無(wú)窮小量
D.f(x)與g(x)為等價(jià)無(wú)窮小量
6.A.A.2B.1C.0D.-1
7.。A.2B.1C.-1/2D.0
8.曲線y=x-3在點(diǎn)(1,1)處的切線斜率為()
A.-1B.-2C.-3D.-4
9.設(shè)y=cos4x,則dy=()。A.
B.
C.
D.
10.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2
11.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于().A.A.2B.1C.-lD.-2
12.
13.A.A.6dx+6dyB.3dx+6dyC.6dx+3dyD.3dx+3ay
14.設(shè)y=sin(x-2),則dy=()A.A.-cosxdx
B.cosxdX
C.-cos(x-2)dx
D.cos(x-2)dx
15.方程x=z2表示的二次曲面是A.A.球面B.橢圓拋物面C.柱面D.圓錐面
16.設(shè)f(x)在點(diǎn)x0處連續(xù),則下列命題中正確的是().A.A.f(x)在點(diǎn)x0必定可導(dǎo)B.f(x)在點(diǎn)x0必定不可導(dǎo)C.必定存在D.可能不存在
17.
18.過(guò)曲線y=xlnx上M0點(diǎn)的切線平行于直線y=2x,則切點(diǎn)M0的坐標(biāo)是().A.A.(1,0)B.(e,0)C.(e,1)D.(e,e)
19.
20.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為().A.A.
B.
C.
D.不能確定
二、填空題(20題)21.
22.
23.設(shè)y=f(x)在點(diǎn)x=0處可導(dǎo),且x=0為f(x)的極值點(diǎn),則f(0)=__________
24.25.設(shè)x=f(x,y)在點(diǎn)p0(x0,y0)可微分,且p0(x0,y0)為z的極大值點(diǎn),則______.
26.
27.
28.
29.設(shè)z=sin(x2+y2),則dz=________。
30.微分方程xdx+ydy=0的通解是__________。
31.________。
32.
33.
34.
35.函數(shù)f(x)=在[1,2]上符合拉格朗日中值定理的ξ=________。36.
37.
38.通解為C1e-x+C2e-2x的二階常系數(shù)線性齊次微分方程是____.
39.
40.
三、計(jì)算題(20題)41.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).42.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
43.
44.45.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
46.
47.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.48.證明:49.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).50.求曲線在點(diǎn)(1,3)處的切線方程.51.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
52.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
53.
54.55.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則56.
57.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
58.求微分方程y"-4y'+4y=e-2x的通解.
59.求微分方程的通解.60.四、解答題(10題)61.
62.
63.y=xlnx的極值與極值點(diǎn).
64.求通過(guò)點(diǎn)(1,2)的曲線方程,使此曲線在[1,x]上形成的曲邊梯形面積的值等于此曲線弧終點(diǎn)的橫坐標(biāo)x與縱坐標(biāo)y乘積的2倍減去4。
65.
66.
67.
68.
69.70.五、高等數(shù)學(xué)(0題)71.設(shè)f(x),g(x)在[a,b]上連續(xù),則()。
A.若,則在[a,b]上f(x)=0
B.若,則在[a,b]上f(x)=g(x)
C.若a<c<d<b,則
D.若f(x)≤g(z),則
六、解答題(0題)72.
參考答案
1.A本題考查的知識(shí)點(diǎn)為將二重積分化為極坐標(biāo)系下的二次積分。由于在極坐標(biāo)系下積分區(qū)域D可以表示為
故知應(yīng)選A。
2.C由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).
3.B本題考查了函數(shù)的單調(diào)性的知識(shí)點(diǎn),
因y'=ex+1/(1+x2)>0處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加。
4.A
5.C
6.Df(x)為分式,當(dāng)x=-1時(shí),分母x+1=0,分式?jīng)]有意義,因此點(diǎn)
x=-1為f(x)的間斷點(diǎn),故選D。
7.A
8.C由導(dǎo)數(shù)的幾何意義知,若y=f(x)可導(dǎo),則曲線在點(diǎn)(x0,f(x0))處必定存在切線,且該切線的斜率為f"(x0)。由于y=x-3,y"=-3x-4,y"|x=1=-3,可知曲線y=x-3在點(diǎn)(1,1)處的切線斜率為-3,故選C。
9.B
10.D本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。
11.D本題考查的知識(shí)點(diǎn)為原函數(shù)的概念、復(fù)合函數(shù)求導(dǎo).
12.C
13.C
14.D本題考查的知識(shí)點(diǎn)為微分運(yùn)算.
可知應(yīng)選D.
15.C方程x=z2中缺少坐標(biāo)y,是以xOy坐標(biāo)面上的拋物線x=z2為準(zhǔn)線,平行于y軸的直線為母線的拋物柱面。所以選C。
16.C本題考查的知識(shí)點(diǎn)為極限、連續(xù)與可導(dǎo)性的關(guān)系.
函數(shù)f(x)在點(diǎn)x0可導(dǎo),則f(x)在點(diǎn)x0必連續(xù).
函數(shù)f(x)在點(diǎn)x0連續(xù),則必定存在.
函數(shù)f(x)在點(diǎn)x0連續(xù),f(x)在點(diǎn)x0不一定可導(dǎo).
函數(shù)f(x)在點(diǎn)x0不連續(xù),則f(x)在點(diǎn)x0必定不可導(dǎo).
這些性質(zhì)考生應(yīng)該熟記.由這些性質(zhì)可知本例應(yīng)該選C.
17.C
18.D本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.
由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點(diǎn)x0處可導(dǎo),則曲線y=f(x)在點(diǎn)(x0,f(x0))處必定存在切線,且切線的斜率為f'(x0).
由于y=xlnx,可知
y'=1+lnx,
切線與已知直線y=2x平行,直線的斜率k1=2,可知切線的斜率k=k1=2,從而有
1+lnx0=2,
可解得x0=e,從而知
y0=x0lnx0=elne=e.
故切點(diǎn)M0的坐標(biāo)為(e,e),可知應(yīng)選D.
19.C解析:
20.B本題考查的知識(shí)點(diǎn)為定積分的幾何意義.
由定積分的幾何意義可知應(yīng)選B.
常見(jiàn)的錯(cuò)誤是選C.如果畫(huà)個(gè)草圖,則可以避免這類(lèi)錯(cuò)誤.
21.-2
22.
23.
24.25.0本題考查的知識(shí)點(diǎn)為二元函數(shù)極值的必要條件.
由于z=f(x,y)在點(diǎn)P0(x0,y0)可微分,P(x0,y0)為z的極值點(diǎn),由極值的必要條件可知
26.
27.本題考查的知識(shí)點(diǎn)為函數(shù)商的求導(dǎo)運(yùn)算.
考生只需熟記導(dǎo)數(shù)運(yùn)算的法則
28.
29.2cos(x2+y2)(xdx+ydy)
30.x2+y2=C31.1
32.(00)
33.
34.
35.由拉格朗日中值定理有=f"(ξ),解得ξ2=2,ξ=其中。
36.本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.
37.
38.
39.
40.00解析:
41.
列表:
說(shuō)明
42.
43.
44.
45.
46.
47.
48.
49.50.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
51.函數(shù)的定義域?yàn)?/p>
注意
52.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
53.
則
54.55.由等價(jià)無(wú)窮小量的定義可知56.由一階線性微分方程通解公式有
57.由二重積分物理意義知
58.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
59.
60.
61.
62.
63.y=xlnx的定義域?yàn)閤>0y'=1+lnx.令y'=0得駐點(diǎn)x1=e-1.當(dāng)0<x<e-1時(shí)y'<0;當(dāng)e-1<x時(shí)y'>0.可知x=e-1為y=xlnx的極小值點(diǎn).極小值為y=xlnx的定義域?yàn)閤>0y'=1+lnx.令y'=0得駐點(diǎn)x1=e-1.當(dāng)0<x<e-1時(shí),y'<0;當(dāng)e-1<x時(shí),y'>0.可知x=e-1為y=xlnx的極小值點(diǎn).極小值為
64.
65.
66.
67.68.本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的應(yīng)用.
單調(diào)增加區(qū)間為(0,+∞);
單調(diào)減少區(qū)間為(-∞,0);
極小值為5,極小值點(diǎn)為x=0;
注上述表格填正確,則可得滿(mǎn)分.
這個(gè)題目包含了利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性;求函數(shù)的極值與極值點(diǎn);求曲線的凹凸區(qū)間與拐點(diǎn).69.利用洛必達(dá)法則原式,接下
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 彩鋼房屋維修工程承包合同7篇
- 2025年沈陽(yáng)航空職業(yè)技術(shù)學(xué)院高職單招語(yǔ)文2018-2024歷年參考題庫(kù)頻考點(diǎn)含答案解析
- 2025年江西外語(yǔ)外貿(mào)職業(yè)學(xué)院高職單招語(yǔ)文2018-2024歷年參考題庫(kù)頻考點(diǎn)含答案解析
- 生產(chǎn)設(shè)備采購(gòu)合同
- 簡(jiǎn)單產(chǎn)品購(gòu)銷(xiāo)的合同范本
- 清潔生產(chǎn)技術(shù)服務(wù)合同書(shū)模板
- 考核目標(biāo)的挑戰(zhàn)性與可衡量性
- 抵押和借款合同
- 住房裝修合同范本
- 酒店單位合同協(xié)議書(shū)
- 充電樁知識(shí)培訓(xùn)課件
- 2025年七年級(jí)下冊(cè)道德與法治主要知識(shí)點(diǎn)
- 2025年交通運(yùn)輸部長(zhǎng)江口航道管理局招聘4人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 老年髖部骨折患者圍術(shù)期下肢深靜脈血栓基礎(chǔ)預(yù)防專(zhuān)家共識(shí)(2024版)解讀
- 偏癱足內(nèi)翻的治療
- 藥企質(zhì)量主管競(jìng)聘
- 信息對(duì)抗與認(rèn)知戰(zhàn)研究-洞察分析
- 手術(shù)室專(zhuān)科護(hù)士工作總結(jié)匯報(bào)
- 2025屆高三聽(tīng)力技巧指導(dǎo)-預(yù)讀、預(yù)測(cè)
- 四年級(jí)下冊(cè)部編版語(yǔ)文教學(xué)參考教師用書(shū)
- 月球基地建設(shè)與運(yùn)行管理模式
評(píng)論
0/150
提交評(píng)論