空間直角坐標系測試卷-高二上學(xué)期數(shù)學(xué)北師大版(2019)選擇性必修第一冊_第1頁
空間直角坐標系測試卷-高二上學(xué)期數(shù)學(xué)北師大版(2019)選擇性必修第一冊_第2頁
空間直角坐標系測試卷-高二上學(xué)期數(shù)學(xué)北師大版(2019)選擇性必修第一冊_第3頁
空間直角坐標系測試卷-高二上學(xué)期數(shù)學(xué)北師大版(2019)選擇性必修第一冊_第4頁
空間直角坐標系測試卷-高二上學(xué)期數(shù)學(xué)北師大版(2019)選擇性必修第一冊_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

空間直角坐標系測試卷一、單選題1.點關(guān)于y軸的對稱點的坐標為(

)A. B.C. D.2.在空間直角坐標系中,點與點(

)A.關(guān)于原點對稱 B.關(guān)于平面對稱C.關(guān)于軸對稱 D.關(guān)于軸對稱3.一個四面體的頂點在空間直角坐標系中的坐標分別為,,,,則該四面體的外接球的表面積為(

)A. B. C. D.4.已知的頂點分別為,,,則AC邊上的高BD等于(

).A.3 B.4C.5 D.65.已知空間直角坐標系中有一點,點?是平面內(nèi)的直線上的動點,則,兩點間的最短距離是(

)A. B. C. D.6.已知為坐標原點,向量,點,.若點在直線上,且,則點的坐標為(

).A. B.C. D.7.在空間直角坐標系中,已知,且的面積為.過作平面于點.若三棱錐的體積為,則點的坐標可以為(

)A. B.C. D.8.如圖,棱長為的正四面體的三個頂點分別在空間直角坐標系的坐標軸上,則定點的坐標為A. B. C. D.二、多選題9.在空間直角坐標系中,設(shè),,若,則實數(shù)的值是(

)A. B. C. D.10.已知空間三點,則下列說法正確的是(

)A. B.C. D.11.如圖,在正方體中,點E在上,且,點F在體對角線上,且,則下列說法錯誤的是(

)A.E,F(xiàn),B三點共線 B.,B,C,D四點共面C.,E,F(xiàn)三點共線 D.,E,F(xiàn),B四點共面12.已知M(-1,1,3),N(-2,-1,4),若M,N,O三點共線,則O點坐標可能為(

)A.(3,5,-2) B.(-4,-5,6) C.(,,) D.(0,3,2)三、填空題13.空間兩點,之間的距離為____.14.點關(guān)于平面對稱點是___________.15.已知點是點關(guān)于坐標平面內(nèi)的對稱點,則__________.16.我國近代數(shù)學(xué)家蘇步青主要從事微分幾何學(xué)和計算幾何學(xué)等方面的研究,在仿射微分幾何學(xué)和射影微分幾何學(xué)等研究方面取得了出色成果.他的主要成就之一是發(fā)現(xiàn)了四次代數(shù)錐面:對于空間中的點P(x,y,z),若其坐標滿足關(guān)于x,y,z的四次代數(shù)方程式,稱點P的軌跡為四次代數(shù)曲面.若點K(1,k,0)是四次曲面:上的一點,則k=___.四、解答題17.如圖,在長方體中,中,,,,以點為原點,分別以,,所在直線為軸?軸?軸建立空間直角坐標系.求點,,,,,,,的坐標.18.已知三棱錐中,平面ABC,,若,,,建立空間直角坐標系.(1)求各頂點的坐標;(2)若點Q是PC的中點,求點Q坐標;(3)若點M在線段PC上移動,寫出點M坐標.19.如圖所示,在四棱錐中,為等腰直角三角形,且,四邊形ABCD為直角梯形,滿足,,,.(1)若點F為DC的中點,求;(2)若點E為PB的中點,點M為AB上一點,當時,求的值.20.在空間直角坐標系中,已知和,試問:(1)在軸上是否存在點,滿足?(2)在y軸上是否存在點,使為等邊三角形?若存在,試求出點的坐標.21.建立合適的空間直角坐標系,在所建立的坐標系中:(1)寫出棱長為1的正四面體各頂點的坐標;(2)寫出底面邊長為1,高為2的正三棱柱各頂點的坐標.22.如圖,在長方體中,,,,將此長方體放在空間直角坐標系中的不同位置,分別說出長方體各個頂點的坐標.參考答案1.C【分析】根據(jù)給定條件,利用空間直角坐標系關(guān)于坐標軸對稱點的坐標意義求解作答.【詳解】點關(guān)于y軸的對稱點的坐標.故選:C2.D【分析】利用空間中點的對稱性質(zhì)即可求得.【詳解】在空間直角坐標系中,點關(guān)于軸對稱的點的坐標為,則根據(jù)題所給的坐標,可以判斷它們關(guān)于軸對稱.故選:D3.C【分析】根據(jù)給定信息,將四面體補形成正方體,求出正方體的外接球表面積得解.【詳解】令,,,,過點C作面的垂線,把垂足與點A,B相連,過點C作面的垂線,把垂足與點B,D相連,過點C作面的垂線,把垂足與點D,A相連,由此得棱長為1的正方體,如圖,四面體ABCD與這個正方體有同一個外接球,此球的直徑為,所以四面體的外接球的表面積為.故選:C4.C【分析】設(shè),先表示的坐標,進而表示的坐標,再根據(jù),求得,進而得到的坐標求解.【詳解】設(shè),則,,因為,所以,即,解得,所以,所以,故選:C5.B【解析】根據(jù)空間中兩點間的距離公式,將兩點間距離的最小值,轉(zhuǎn)化為二次函數(shù)的最小值問題;【詳解】點是平面內(nèi)的直線上的動點,可設(shè)點,由空間兩點之間的距離公式,得,令,當時,的最小值為,所以當時,的最小值為,即兩點的最短距離是,故選:B.【點睛】本題考查空間中兩點間的距離公式、一元二次函數(shù)的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運算求解能力.6.A【分析】由在直線上,設(shè),再利用向量垂直,可得,進而可求E點坐標.【詳解】因為在直線上,故存在實數(shù)使得,.若,則,所以,解得,因此點的坐標為.故選:A.【定睛】本題考查了空間向量的共線和數(shù)量積運算,考查了運算求解能力和邏輯推理能力,屬于一般題目.7.B【分析】根據(jù)三棱錐的體積計算公式求得,再結(jié)合選項可得結(jié)果.【詳解】由題知,點A,B,C分別在軸正半軸,軸正半軸,軸正半軸,因為的面積為,三棱錐的體積為,且平面于點,所以,解得.設(shè),則,結(jié)合選項可知,只有B選項符合題意.故選:B.8.A【詳解】棱長為的正四面體可以放到正方體中,已知D點、O點的連線是正方體的體對角線,故D點坐標為,選A.9.CD【分析】根據(jù)空間中兩點間的距離公式即可求得.【詳解】由空間中兩點間距離公式,可得,解得或.故選:CD.10.BCD【分析】根據(jù)三點的坐標求出向量的坐標,結(jié)合空間向量共線的運算判斷選項A;結(jié)合空間向量數(shù)量積的坐標表示判斷選項B;結(jié)合空間向量的幾何意義判斷選項C;結(jié)合空間向量夾角的求法判斷選項D.【詳解】由題意知,,所以.A:因為不存在實數(shù)使得,所以與不平行,故A錯誤;B:,故B正確;C:,故C正確;D:,故D正確.故選:BCD11.BC【分析】以,,為空間的一個基底表示,可以判斷A正確,由圖形直觀及公理即可判斷另外三個選項.【詳解】因為,,所以,其中,,是空間的一個基底,因為,所以與共線,所以E,F(xiàn),B三點共線,A正確;顯然在平面ABCD(即平面BCD)外,因此,B,C,D四點不共面,B錯誤;,因此,E,F(xiàn)三點不可能共線,C錯誤;因為,所以,BC共面,而,E,F(xiàn),B四點都在這個平面內(nèi),所以,E,F(xiàn),B四面共面,D正確.故選:BC.12.BD【解析】由M(-1,1,3),N(-2,-1,4),得到,然后利用空間向量共線定理逐項驗證.【詳解】由M(-1,1,3),N(-2,-1,4),得,A.,因為所以M,N,O三點不共線,故錯誤;B.,因為所以M,N,O三點共線,故正確;C.,因為所以M,N,O三點不共線,故錯誤;D.,因為所以M,N,O三點共線,故正確;故選:BD【點睛】本題主要考查空間向量共線定理的應(yīng)用,還考查了理解辨析的能力,屬于基礎(chǔ)題.13.【分析】根據(jù)空間兩點之間的距離公式,即可求出.【詳解】空間兩點,之間的距離.故答案為:.14.【分析】根據(jù)關(guān)于什么對稱什么不變來得答案.【詳解】點關(guān)于平面對稱點是故答案為:15.【分析】按照點關(guān)于平面對稱的規(guī)律求出的坐標,再利用空間兩點的距離公式進行求解即可.【詳解】因為點是點關(guān)于坐標平面內(nèi)的對稱點,所以,所以.故答案為:.16.2【分析】由題意得,從而可求出的值【詳解】因為點K(1,k,0)是四次曲面:上的一點,所以,得,解得,故答案為:217.,,,,,,,【分析】根據(jù)空間直角坐標的表示方法直接得出即可.【詳解】由題意,知.由于點在軸上,且,則它的橫坐標為4,又它的縱坐標和豎坐標都為0,所以點的坐標為.同理可得,;由于點在平面內(nèi),則它的豎坐標為0,點在軸?軸上的投影依次為點?點,又,,所以點的橫坐標和縱坐標依次為4,3,即點的坐標為.同理可得,;點在軸?軸和軸上的投影依次為點?點和點,所以點的坐標為;所以,,,,,,,.18.(1)建系見解析,,,,;(2);(3).【分析】(1)根據(jù)給定三棱錐的特征建立空間直角坐標系,寫出頂點坐標作答.(2)利用(1)的結(jié)論結(jié)合中點坐標公式計算作答.(3)設(shè)出點M的縱坐標,直接寫出其坐標作答.【詳解】(1)在三棱錐中,平面ABC,,則射線兩兩垂直,以點A為原點,射線分別為x,y,z軸非負半軸建立空間直角坐標系,如圖,所以,,,.(2)由(1)知,點Q是PC中點,則.(3)由(1)知,點M在線段PC上移動,則點M的橫坐標為0,設(shè)其縱坐標為t,其豎坐標z,當M與A不重合時,,當M與A重合時,z=3滿足上式,因此,所以點.19.(1)(2)【分析】(1)可證,再建立如圖所示的空間直角坐標系,求出的坐標后可求夾角的余弦值.(2)設(shè),則可用表示的坐標,再利用可求,從而可得兩條線段的比值.(1)因為為等腰直角三角形,,,所以,又,,所以.而,,故,因,平面,故平面.以點C為原點,CP,CD所在直線分別為x,z軸,過點C作PB的平行線為y軸,建立空間直角坐標系,如圖所示.則,,,,.則,,所以.(2)由(1)知,設(shè),而,所以,所以,所以,又,因為,故,所以,解得,所以.20.(1)存在;(2)存在,點的坐標為或.【分析】(1)設(shè)點坐標為,由兩點坐標公式求即可;(2)由(1)得恒成立,只需要計算即可.(1)假設(shè)在軸上存在點,滿足.因為點在軸上,所以可設(shè),由,可得,顯然,此式對任意恒成立.所以在軸上存在點,滿足.(2)假設(shè)在軸上存在點,使為等邊三角形.由(1)可知,恒成立,所以只要,就可以使是等邊三角形.設(shè),因為,,所以,解得.故在軸上存在點,使為等邊三角形,且點的坐標為或.21.(1)答案見解析;(2)答案見解析.【分析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論