2021-2022學(xué)年江蘇省寶應(yīng)中學(xué)高考數(shù)學(xué)全真模擬密押卷含解析_第1頁(yè)
2021-2022學(xué)年江蘇省寶應(yīng)中學(xué)高考數(shù)學(xué)全真模擬密押卷含解析_第2頁(yè)
2021-2022學(xué)年江蘇省寶應(yīng)中學(xué)高考數(shù)學(xué)全真模擬密押卷含解析_第3頁(yè)
2021-2022學(xué)年江蘇省寶應(yīng)中學(xué)高考數(shù)學(xué)全真模擬密押卷含解析_第4頁(yè)
2021-2022學(xué)年江蘇省寶應(yīng)中學(xué)高考數(shù)學(xué)全真模擬密押卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是球的球面上兩點(diǎn),,為該球面上的動(dòng)點(diǎn).若三棱錐體積的最大值為36,則球的表面積為()A. B. C. D.2.已知集合,,若,則()A.4 B.-4 C.8 D.-83.如圖,這是某校高三年級(jí)甲、乙兩班在上學(xué)期的5次數(shù)學(xué)測(cè)試的班級(jí)平均分的莖葉圖,則下列說法不正確的是()A.甲班的數(shù)學(xué)成績(jī)平均分的平均水平高于乙班B.甲班的數(shù)學(xué)成績(jī)的平均分比乙班穩(wěn)定C.甲班的數(shù)學(xué)成績(jī)平均分的中位數(shù)高于乙班D.甲、乙兩班這5次數(shù)學(xué)測(cè)試的總平均分是1034.設(shè)為拋物線的焦點(diǎn),,,為拋物線上三點(diǎn),若,則().A.9 B.6 C. D.5.已知展開式中第三項(xiàng)的二項(xiàng)式系數(shù)與第四項(xiàng)的二項(xiàng)式系數(shù)相等,,若,則的值為()A.1 B.-1 C.8l D.-816.函數(shù)(且)的圖象可能為()A. B. C. D.7.點(diǎn)為棱長(zhǎng)是2的正方體的內(nèi)切球球面上的動(dòng)點(diǎn),點(diǎn)為的中點(diǎn),若滿足,則動(dòng)點(diǎn)的軌跡的長(zhǎng)度為()A. B. C. D.8.已知雙曲線的左、右焦點(diǎn)分別為,,點(diǎn)P是C的右支上一點(diǎn),連接與y軸交于點(diǎn)M,若(O為坐標(biāo)原點(diǎn)),,則雙曲線C的漸近線方程為()A. B. C. D.9.函數(shù)的大致圖象是A. B. C. D.10.函數(shù)的值域?yàn)椋ǎ〢. B. C. D.11.如圖是一個(gè)幾何體的三視圖,則這個(gè)幾何體的體積為()A. B. C. D.12.設(shè),,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機(jī)摸出2只球,則這2只球顏色不同的概率為__________.14.已知,則展開式的系數(shù)為__________.15.已知函數(shù),則過原點(diǎn)且與曲線相切的直線方程為____________.16.已知,若的展開式中的系數(shù)比x的系數(shù)大30,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某商場(chǎng)舉行優(yōu)惠促銷活動(dòng),顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.方案一:每滿100元減20元;方案二:滿100元可抽獎(jiǎng)一次.具體規(guī)則是從裝有2個(gè)紅球、2個(gè)白球的箱子隨機(jī)取出3個(gè)球(逐個(gè)有放回地抽?。媒Y(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)紅球個(gè)數(shù)3210實(shí)際付款7折8折9折原價(jià)(1)該商場(chǎng)某顧客購(gòu)物金額超過100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;(2)若某顧客購(gòu)物金額為180元,選擇哪種方案更劃算?18.(12分)已知.(1)當(dāng)時(shí),求不等式的解集;(2)若時(shí)不等式成立,求的取值范圍.19.(12分)已知函數(shù).(1)討論函數(shù)單調(diào)性;(2)當(dāng)時(shí),求證:.20.(12分)如圖,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,AB=AA1,M,N分別是AC,B1C1的中點(diǎn).求證:(1)MN∥平面ABB1A1;(2)AN⊥A1B.21.(12分)選修4-4:坐標(biāo)系與參數(shù)方程:在平面直角坐標(biāo)系中,曲線:(為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn)、軸的正半軸為極軸,且與平面直角坐標(biāo)系取相同單位長(zhǎng)度的極坐標(biāo)系中,曲線:.(1)求曲線的普通方程以及曲線的平面直角坐標(biāo)方程;(2)若曲線上恰好存在三個(gè)不同的點(diǎn)到曲線的距離相等,求這三個(gè)點(diǎn)的極坐標(biāo).22.(10分)某百貨商店今年春節(jié)期間舉行促銷活動(dòng),規(guī)定消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎(jiǎng)活動(dòng),隨著抽獎(jiǎng)活動(dòng)的有效開展,參與抽獎(jiǎng)活動(dòng)的人數(shù)越來越多,該商店經(jīng)理對(duì)春節(jié)前天參加抽獎(jiǎng)活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì),表示第天參加抽獎(jiǎng)活動(dòng)的人數(shù),得到統(tǒng)計(jì)表格如下:123456758810141517(1)經(jīng)過進(jìn)一步統(tǒng)計(jì)分析,發(fā)現(xiàn)與具有線性相關(guān)關(guān)系.請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;(2)該商店規(guī)定:若抽中“一等獎(jiǎng)”,可領(lǐng)取600元購(gòu)物券;抽中“二等獎(jiǎng)”可領(lǐng)取300元購(gòu)物券;抽中“謝謝惠顧”,則沒有購(gòu)物券.已知一次抽獎(jiǎng)活動(dòng)獲得“一等獎(jiǎng)”的概率為,獲得“二等獎(jiǎng)”的概率為.現(xiàn)有張、王兩位先生參與了本次活動(dòng),且他們是否中獎(jiǎng)相互獨(dú)立,求此二人所獲購(gòu)物券總金額的分布列及數(shù)學(xué)期望.參考公式:,,,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】

如圖所示,當(dāng)點(diǎn)C位于垂直于面的直徑端點(diǎn)時(shí),三棱錐的體積最大,設(shè)球的半徑為,此時(shí),故,則球的表面積為,故選C.考點(diǎn):外接球表面積和椎體的體積.2.B【解析】

根據(jù)交集的定義,,可知,代入計(jì)算即可求出.【詳解】由,可知,又因?yàn)?,所以時(shí),,解得.故選:B.【點(diǎn)睛】本題考查交集的概念,屬于基礎(chǔ)題.3.D【解析】

計(jì)算兩班的平均值,中位數(shù),方差得到正確,兩班人數(shù)不知道,所以兩班的總平均分無法計(jì)算,錯(cuò)誤,得到答案.【詳解】由題意可得甲班的平均分是104,中位數(shù)是103,方差是26.4;乙班的平均分是102,中位數(shù)是101,方差是37.6,則A,B,C正確.因?yàn)榧?、乙兩班的人?shù)不知道,所以兩班的總平均分無法計(jì)算,故D錯(cuò)誤.故選:.【點(diǎn)睛】本題考查了莖葉圖,平均值,中位數(shù),方差,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.4.C【解析】

設(shè),,,由可得,利用定義將用表示即可.【詳解】設(shè),,,由及,得,故,所以.故選:C.【點(diǎn)睛】本題考查利用拋物線定義求焦半徑的問題,考查學(xué)生等價(jià)轉(zhuǎn)化的能力,是一道容易題.5.B【解析】

根據(jù)二項(xiàng)式系數(shù)的性質(zhì),可求得,再通過賦值求得以及結(jié)果即可.【詳解】因?yàn)檎归_式中第三項(xiàng)的二項(xiàng)式系數(shù)與第四項(xiàng)的二項(xiàng)式系數(shù)相等,故可得,令,故可得,又因?yàn)?,令,則,解得令,則.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式系數(shù)的性質(zhì),以及通過賦值法求系數(shù)之和,屬綜合基礎(chǔ)題.6.D【解析】因?yàn)椋屎瘮?shù)是奇函數(shù),所以排除A,B;取,則,故選D.考點(diǎn):1.函數(shù)的基本性質(zhì);2.函數(shù)的圖象.7.C【解析】

設(shè)的中點(diǎn)為,利用正方形和正方體的性質(zhì),結(jié)合線面垂直的判定定理可以證明出平面,這樣可以確定動(dòng)點(diǎn)的軌跡,最后求出動(dòng)點(diǎn)的軌跡的長(zhǎng)度.【詳解】設(shè)的中點(diǎn)為,連接,因此有,而,而平面,,因此有平面,所以動(dòng)點(diǎn)的軌跡平面與正方體的內(nèi)切球的交線.正方體的棱長(zhǎng)為2,所以內(nèi)切球的半徑為,建立如下圖所示的以為坐標(biāo)原點(diǎn)的空間直角坐標(biāo)系:因此有,設(shè)平面的法向量為,所以有,因此到平面的距離為:,所以截面圓的半徑為:,因此動(dòng)點(diǎn)的軌跡的長(zhǎng)度為.故選:C【點(diǎn)睛】本題考查了線面垂直的判定定理的應(yīng)用,考查了立體幾何中軌跡問題,考查了球截面的性質(zhì),考查了空間想象能力和數(shù)學(xué)運(yùn)算能力.8.C【解析】

利用三角形與相似得,結(jié)合雙曲線的定義求得的關(guān)系,從而求得雙曲線的漸近線方程?!驹斀狻吭O(shè),,由,與相似,所以,即,又因?yàn)椋?,,所以,即,,所以雙曲線C的漸近線方程為.故選:C.【點(diǎn)睛】本題考查雙曲線幾何性質(zhì)、漸近線方程求解,考查數(shù)形結(jié)合思想,考查邏輯推理能力和運(yùn)算求解能力。9.A【解析】

利用函數(shù)的對(duì)稱性及函數(shù)值的符號(hào)即可作出判斷.【詳解】由題意可知函數(shù)為奇函數(shù),可排除B選項(xiàng);當(dāng)時(shí),,可排除D選項(xiàng);當(dāng)時(shí),,當(dāng)時(shí),,即,可排除C選項(xiàng),故選:A【點(diǎn)睛】本題考查了函數(shù)圖象的判斷,函數(shù)對(duì)稱性的應(yīng)用,屬于中檔題.10.A【解析】

由計(jì)算出的取值范圍,利用正弦函數(shù)的基本性質(zhì)可求得函數(shù)的值域.【詳解】,,,因此,函數(shù)的值域?yàn)?故選:A.【點(diǎn)睛】本題考查正弦型函數(shù)在區(qū)間上的值域的求解,解答的關(guān)鍵就是求出對(duì)象角的取值范圍,考查計(jì)算能力,屬于基礎(chǔ)題.11.A【解析】

由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.再由球與圓柱體積公式求解.【詳解】由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.則幾何體的體積為.故選:.【點(diǎn)睛】本題主要考查由三視圖求面積、體積,關(guān)鍵是由三視圖還原原幾何體,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.12.D【解析】

集合是一次不等式的解集,分別求出再求交集即可【詳解】,,則故選【點(diǎn)睛】本題主要考查了一次不等式的解集以及集合的交集運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】試題分析:根據(jù)題意,記白球?yàn)锳,紅球?yàn)锽,黃球?yàn)椋瑒t一次取出2只球,基本事件為、、、、、共6種,其中2只球的顏色不同的是、、、、共5種;所以所求的概率是.考點(diǎn):古典概型概率14.【解析】

先根據(jù)定積分求出的值,再用二項(xiàng)展開式公式即可求解.【詳解】因?yàn)樗缘耐?xiàng)公式為當(dāng)時(shí),當(dāng)時(shí),故展開式中的系數(shù)為故答案為:【點(diǎn)睛】此題考查定積分公式,二項(xiàng)展開式公式等知識(shí)點(diǎn),屬于簡(jiǎn)單題目.15.【解析】

設(shè)切點(diǎn)坐標(biāo)為,利用導(dǎo)數(shù)求出曲線在切點(diǎn)的切線方程,將原點(diǎn)代入切線方程,求出的值,于此可得出所求的切線方程.【詳解】設(shè)切點(diǎn)坐標(biāo)為,,,,則曲線在點(diǎn)處的切線方程為,由于該直線過原點(diǎn),則,得,因此,則過原點(diǎn)且與曲線相切的直線方程為,故答案為.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查過點(diǎn)作函數(shù)圖象的切線方程,求解思路是:(1)先設(shè)切點(diǎn)坐標(biāo),并利用導(dǎo)數(shù)求出切線方程;(2)將所過點(diǎn)的坐標(biāo)代入切線方程,求出參數(shù)的值,可得出切點(diǎn)的坐標(biāo);(3)將參數(shù)的值代入切線方程,可得出切線的方程.16.2【解析】

利用二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),求得的值.【詳解】展開式通項(xiàng)為:且的展開式中的系數(shù)比的系數(shù)大,即:解得:(舍去)或本題正確結(jié)果:【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)選擇方案二更為劃算【解析】

(1)計(jì)算顧客獲得7折優(yōu)惠的概率,獲得8折優(yōu)惠的概率,相加得到答案.(2)選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,計(jì)算概率得到數(shù)學(xué)期望,比較大小得到答案.【詳解】(1)該顧客獲得7折優(yōu)惠的概率,該顧客獲得8折優(yōu)惠的概率,故該顧客獲得7折或8折優(yōu)惠的概率.(2)若選擇方案一,則付款金額為.若選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,,則.因?yàn)?,所以選擇方案二更為劃算.【點(diǎn)睛】本題考查了概率的計(jì)算,數(shù)學(xué)期望,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.18.(1);(2)【解析】分析:(1)將代入函數(shù)解析式,求得,利用零點(diǎn)分段將解析式化為,然后利用分段函數(shù),分情況討論求得不等式的解集為;(2)根據(jù)題中所給的,其中一個(gè)絕對(duì)值符號(hào)可以去掉,不等式可以化為時(shí),分情況討論即可求得結(jié)果.詳解:(1)當(dāng)時(shí),,即故不等式的解集為.(2)當(dāng)時(shí)成立等價(jià)于當(dāng)時(shí)成立.若,則當(dāng)時(shí);若,的解集為,所以,故.綜上,的取值范圍為.點(diǎn)睛:該題考查的是有關(guān)絕對(duì)值不等式的解法,以及含參的絕對(duì)值的式子在某個(gè)區(qū)間上恒成立求參數(shù)的取值范圍的問題,在解題的過程中,需要會(huì)用零點(diǎn)分段法將其化為分段函數(shù),從而將不等式轉(zhuǎn)化為多個(gè)不等式組來解決,關(guān)于第二問求參數(shù)的取值范圍時(shí),可以應(yīng)用題中所給的自變量的范圍,去掉一個(gè)絕對(duì)值符號(hào),之后進(jìn)行分類討論,求得結(jié)果.19.(1)見解析(2)見解析【解析】

(1)根據(jù)的導(dǎo)函數(shù)進(jìn)行分類討論單調(diào)性(2)欲證,只需證,構(gòu)造函數(shù),證明,這時(shí)需研究的單調(diào)性,求其最大值即可【詳解】解:(1)的定義域?yàn)?,,①?dāng)時(shí),由得,由,得,所以在上單調(diào)遞增,在單調(diào)遞減;②當(dāng)時(shí),由得,由,得,或,所以在上單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增;③當(dāng)時(shí),,所以在上單調(diào)遞增;④當(dāng)時(shí),由,得,由,得,或,所以在上單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增.(2)當(dāng)時(shí),欲證,只需證,令,,則,因存在,使得成立,即有,使得成立.當(dāng)變化時(shí),,的變化如下:0單調(diào)遞增單調(diào)遞減所以.因?yàn)椋?,所?即,所以當(dāng)時(shí),成立.【點(diǎn)睛】考查求函數(shù)單調(diào)性的方法和用函數(shù)的最值證明不等式的方法,難題.20.(1)詳見解析;(2)詳見解析.【解析】

(1)利用平行四邊形的方法,證明平面.(2)通過證明平面,由此證得.【詳解】(1)設(shè)是中點(diǎn),連接,由于是中點(diǎn),所以且,而且,所以與平行且相等,所以四邊形是平行四邊形,所以,由于平面,平面,所以平面.(2)連接,由于直三棱柱中,而,,所以平面,所以,由于,所以.由于四邊形是矩形且,所以四邊形是正方形,所以,由于,所以平面,所以.【點(diǎn)睛】本小題主要考查線面平行的證明,考查線面垂直的證明,考查空間想象能力和邏輯推理能力,屬于中檔題.21.(1),;(2),,.【解析】

(1)把曲線的參數(shù)方程與曲線的極坐標(biāo)方程分別轉(zhuǎn)化為直角坐標(biāo)方程;(2)利用圖象求出三個(gè)點(diǎn)的極徑與極角.【詳解】解:(1)由消去參數(shù)得,即曲線的普通方程為,又由得即為,即曲線的平面直角坐標(biāo)方程為(2)∵圓心到曲線:的距離,如圖所示,所以直線與圓的切點(diǎn)以及直線與圓的兩個(gè)交點(diǎn),即為所求.∵,則,直線的傾斜角為,即點(diǎn)的極角為,所以點(diǎn)的極角為,點(diǎn)的極角為,所以三個(gè)點(diǎn)的極坐標(biāo)為,,.【點(diǎn)睛】本題考查圓的參數(shù)方程和普通方程的轉(zhuǎn)化、直線極坐標(biāo)方程和直角坐標(biāo)方程的轉(zhuǎn)化,消去參數(shù)方程中的參數(shù),就可把參數(shù)方程化

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論