




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
云南省昆明市呈貢縣斗南鎮(zhèn)中學(xué)2022年高三數(shù)學(xué)理期末試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.為考察A、B兩種藥物預(yù)防某疾病的效果,進(jìn)行動物試驗,分別得到如下等高條形圖:根據(jù)圖中信息,在下列各項中,說法最佳的一項是A.藥物B的預(yù)防效果優(yōu)于藥物的預(yù)防效果B.藥物A的預(yù)防效果優(yōu)于藥物B的預(yù)防效果C.藥物A、B對該疾病均有顯著的預(yù)防效果D.藥物A、B對該疾病均沒有預(yù)防效果參考答案:B2.已知集合,,則下列結(jié)論中不正確的是
A.
B.
C.
D.
參考答案:C3.若如圖所示的程序框圖輸出的S是126,則條件①可為(
)A.n≤5?
B.n≤6?
C.n≤7?
D.n≤8?參考答案:B4.等比數(shù)列{an}中,,,為函數(shù)的導(dǎo)函數(shù),則=()
參考答案:D略5.已知點、,直線與線段相交,則的最小值為A. B.
C. D.參考答案:由已知有,作出可行域,令,則的最小值為點到直線的距離,此時,所以的最小值為,選B.6.已知拋物線y=ax2(a>0)的焦點到準(zhǔn)線距離為1,則a=()A.4 B.2 C. D.參考答案:D【考點】拋物線的簡單性質(zhì).【分析】拋物線y=ax2(a>0)化為,可得.再利用拋物線y=ax2(a>0)的焦點到準(zhǔn)線的距離為1,即可得出結(jié)論.【解答】解:拋物線方程化為,∴,∴焦點到準(zhǔn)線距離為,∴,故選D.7.設(shè),函數(shù)的圖像向左平移個單位后與原圖重合,則的最小值是(
)A.
B.
C.
D.3參考答案:D∵圖象向左平移個單位后與原圖象重合∴是一個周期∴ω≥3所以最小是3
8.甲、乙、丙、丁四位同學(xué)一起去向老師詢問成語競賽的成績,老師說,你們四人中有2位優(yōu)秀,2位良好,我現(xiàn)在給甲看乙、丙的成績,給乙看丙的成績,給丁看甲的成績,看后甲對大家說:我還是不知道我的成績,根據(jù)以上信息,則A.乙可以知道四人的成績
B.丁可能知道四人的成績C.乙、丁可以知道對方的成績
D.乙、丁可以知道自己的成績參考答案:D由甲的說法可知乙、丙一人優(yōu)秀一人良好,則甲丁一人優(yōu)秀一人良好,乙看到丙的結(jié)果則知道自己的結(jié)果,丁看到甲的結(jié)果則知道自己的結(jié)果,故選D.9.設(shè)集合A={x|x<2},B={y|y=2x﹣1,x∈A},則A∩B=()A.(﹣∞,3) B.[2,3) C.(﹣∞,2) D.(﹣1,2)參考答案:D【考點】交集及其運算.【分析】由指數(shù)函數(shù)的值域和單調(diào)性,化簡集合B,再由交集的定義,即可得到所求.【解答】解:集合A={x|x<2}=(﹣∞,2),B={y|y=2x﹣1,x∈A},由x<2,可得y=2x﹣1∈(﹣1,3),即B={y|﹣1<y<3}=(﹣1,3),則A∩B=(﹣1,2).故選:D.10.“”是“復(fù)數(shù)()為純虛數(shù)”的
(
)A.充要條件B.必要不充分條件
C.充分不必要條件D.既不充分也不必要條件參考答案:A:為純虛數(shù),則=0,,所以,反之也成立.二、填空題:本大題共7小題,每小題4分,共28分11.已知{an}是首項為a,公差為1的等差數(shù)列,,若對任意的,都有成立,則實數(shù)a的取值范圍是____參考答案:(-9,-8)【分析】根據(jù)已知可求得數(shù)列的通項,進(jìn)而求得,再由數(shù)列的性質(zhì)可得的取值范圍?!驹斀狻坑深}得,則,對任意的,都有成立,而關(guān)于的單調(diào)性為時單調(diào)遞減,時單調(diào)遞減,且時,時。而時,最大,所以,且,故.【點睛】此題是關(guān)于數(shù)列單調(diào)性的問題,引用函數(shù)的單調(diào)性加以解決,但需考慮定義域是正整數(shù)集,難度屬于中等。12.宋元時期杰出的數(shù)學(xué)家朱世杰在其數(shù)學(xué)巨著《四元玉鑒》卷中“茭草形段”第一個問題“今有茭草六百八十束,欲令‘落一形’埵(同垛)之.問底子在△ABC中,角A、B、C所對的邊分別是a、b、c,M是BC的中點,BM=2,AM=c﹣b,△ABC面積的最大值為.參考答案:2【考點】余弦定理.【專題】計算題;方程思想;綜合法;解三角形.【分析】在△ABM和△ABC中分別使用余弦定理得出bc的關(guān)系,求出cosA,sinA,代入面積公式求出最大值.【解答】解:在△ABM中,由余弦定理得:cosB==.在△ABC中,由余弦定理得:cosB==.∴=.即b2+c2=4bc﹣8.∵cosA==,∴sinA==.∴S=sinA=bc=.∴當(dāng)bc=8時,S取得最大值2.故答案為2.【點評】本題考查了余弦定理得應(yīng)用,根據(jù)余弦定理得出bc的關(guān)系是解題關(guān)鍵.13.定義在上的函數(shù),則
.參考答案:114.在數(shù)列{an}中,,則的值為______.參考答案:1【分析】由,可得,利用“累加法”可得結(jié)果.【詳解】因為所以,,,各式相加,可得,,所以,,故答案為1.【點睛】本題主要考查利用遞推關(guān)系求數(shù)列中的項,屬于中檔題.利用遞推關(guān)系求數(shù)列中的項常見思路為:(1)項的序號較小時,逐步遞推求出即可;(2)項的序數(shù)較大時,考慮證明數(shù)列是等差、等比數(shù)列,或者是周期數(shù)列;(3)將遞推關(guān)系變形,利用累加法、累乘法以及構(gòu)造新數(shù)列法求解.15.(5分)已知,且關(guān)于x的方程有實根,則與的夾角的取值范圍是.參考答案:設(shè)兩向量的夾角為θ有實根即∵∴∴故答案為:16.已知是定義在[-1,1]上的奇函數(shù)且,當(dāng),且時,有,若對所有、恒成立,則實數(shù)的取值范圍是_________.參考答案:
17.有兩個相同的直三棱柱,高為,底面三角形的三邊長分別為。用它們拼成一個三棱柱或四棱柱,在所有可能的情形中,表面積最小的是一個四棱柱,則的取值范圍是__________。參考答案:答案:三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.(本小題滿分14分)在△ABC中,角A,B,C的對邊分別為a,b,c,且.(1)求角的值;
(2)若角,邊上的中線=,求的面積.參考答案:(1)因為,由正弦定理得,
………………2分即=sin(A+C).………………4分
因為B=π-A-C,所以sinB=sin(A+C),所以.因為B∈(0,π),所以sinB≠0,所以,因為,所以.
………………7分(2)由(1)知,所以,.
………………8分設(shè),則,又在△AMC中,由余弦定理得即
解得x=2.
………………12分故
………………14分19.已知函數(shù)f(x)=ax2+(b-8)x-a-ab(a≠0),當(dāng)x∈(-3,2)時,f(x)>0;當(dāng)x∈(-∞,-3)∪(2,+∞)時,f(x)<0.(1)求f(x)在[0,1]內(nèi)的值域;(2)c為何值時,不等式ax2+bx+c≤0在[1,4]上恒成立.
參考答案:解:由題意得x=-3和x=2是函數(shù)f(x)的零點且a≠0,則解得∴f(x)=-3x2-3x+18.(1)由圖像知,函數(shù)在[0,1]內(nèi)單調(diào)遞減,∴當(dāng)x=0時,y=18;當(dāng)x=1時,y=12,∴f(x)在[0,1]內(nèi)的值域為[12,18].(2)令g(x)=-3x2+5x+c.∵g(x)在上單調(diào)遞減,要使g(x)≤0在[1,4]上恒成立,則需要g(1)≤0.即-3+5+c≤0,解得c≤-2,∴當(dāng)c≤-2時,不等式ax2+bx+c≤0在[1,4]上恒成立.
20.(本小題滿分10分)(選修4-4極坐標(biāo)與參數(shù)方程選講)在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標(biāo)系.圓C1,直線C2的極坐標(biāo)方程分別為,=.(1)求C1與C2交點的極坐標(biāo);(2)設(shè)P為C1的圓心,Q為C1與C2交點連線的中點.已知直線PQ的參數(shù)方程為(t∈R為參數(shù)),求a,b的值.參考答案:(I)(4,).(2,)(2)a=-1,b=2【知識點】選修4-4
參數(shù)與參數(shù)方程N3(I)圓C1,直線C2的直角坐標(biāo)方程分別為
x2+(y-2)2=4,x+y-4=0,
解得或,
∴C1與C2交點的極坐標(biāo)為(4,).(2,).
(II)由(I)得,P與Q點的坐標(biāo)分別為(0,2),(1,3),
故直線PQ的直角坐標(biāo)方程為x-y+2=0,由參數(shù)方程可得y=x-+1∴,解得a=-1,b=2.【思路點撥】(I)先將圓C1,直線C2化成直角坐標(biāo)方程,再聯(lián)立方程組解出它們交點的直角坐標(biāo),最后化成極坐標(biāo)即可;
(II)由(I)得,P與Q點的坐標(biāo)分別為(0,2),(1,3),從而直線PQ的直角坐標(biāo)方程為x-y+2=0,由參數(shù)方程可得y=x-+1,從而構(gòu)造關(guān)于a,b的方程組,解得a,b的值.21.已知函數(shù).(1)討論f(x)的單調(diào)性;(2)若f(x)有兩個零點,求a的取值范圍.參考答案:(1)見解析;(2).(1),若,,在上單調(diào)遞減;若,當(dāng)時,,即在上單調(diào)遞減;當(dāng)時,,即在上單調(diào)遞增.(2)若,在上單調(diào)遞減,至多一個零點,不符合題意;若,由(1)可知,的最小值為,令,,所以在上單調(diào)遞增,又,當(dāng)時,,至多一個零點,不符合題意,當(dāng)時,,又因為,結(jié)合單調(diào)性可知在有一個零點,令,,當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增,的最小值為,所以,當(dāng)時,,結(jié)合單調(diào)性可知在有一個零點,綜上所述,若有兩個零點,的范圍是.22.網(wǎng)上購物逐步走進(jìn)大學(xué)生活,某大學(xué)學(xué)生宿舍4人積極參加網(wǎng)購,大家約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去哪家購物,擲出點數(shù)為5或6的人去淘寶網(wǎng)購物,擲出點數(shù)小于5的人去京東商場購物,且參加者必須從淘寶和京東商城選擇一家購物.(Ⅰ)求這4人中恰有1人去淘寶網(wǎng)購物的概率;(Ⅱ)用ξ、η分別表示這4人中去淘寶網(wǎng)和京東商城購物的人數(shù),記X=ξη,求隨機變量X的分布列與數(shù)學(xué)期望EX.參考答案:【考點】離散型隨機變量的期望與方差;離散型隨機變量及其分布列.【專題】概率與統(tǒng)計.【分析】(Ⅰ)依題意,這4個人中,每個人去淘寶網(wǎng)購物的概率為,去京東網(wǎng)購物的概率為,設(shè)“這4個人中恰有i個人去淘寶網(wǎng)購物”為事件Ai,則,(i=0,1,2,3,4),由此能求出這4個人中恰有1人去淘寶網(wǎng)購物的概率.(Ⅱ)由已知得X的所有可能取值為0,3,4,P(X=0)=P(A0)+P(A4),P(X=3)=P(A1)+P(A3),P(X=4)=P(A2),由此能求出X的分布列和EX.【解答】解:(Ⅰ)依題意,這4個人中,每個人去淘寶網(wǎng)購物的概率為,去京東網(wǎng)購物的概率為,設(shè)“這4個人中恰有i個人去淘寶
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幽門螺旋桿菌治療和護(hù)理
- 個人試用期轉(zhuǎn)正述職報告
- 頭位難產(chǎn)的護(hù)理
- 慢性白血病病人的護(hù)理
- 護(hù)理不良事件拔管
- 中職人教版語文單招知識點
- 代理銷售服務(wù)合同范例
- 師德心得體會【8篇】
- 公寓安裝護(hù)欄合同標(biāo)準(zhǔn)文本
- 對標(biāo)培訓(xùn)課程
- 航空數(shù)字化制造技術(shù)
- 化學(xué)課堂提問的原則及提問策略
- Python數(shù)據(jù)分析 課件 項目3、4 數(shù)組計算庫NumPy、數(shù)據(jù)分析庫pandas
- 職業(yè)道德與商業(yè)道德培訓(xùn)
- 2024年煤礦各類牌板制作標(biāo)準(zhǔn)及使用規(guī)定附煤礦井下牌板模版及標(biāo)準(zhǔn)
- 上門按摩項目創(chuàng)業(yè)計劃書
- 高中物理牛頓第一定律說課課件
- 幼兒園美術(shù)課件5-6歲 《烤紅薯》教案
- 大數(shù)據(jù)驅(qū)動的藥物研發(fā)
- 痛經(jīng)癥狀量表(CMSS)全
- 醫(yī)務(wù)人員手衛(wèi)生依從性調(diào)查表新(空白單)
評論
0/150
提交評論