版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年山東省泰安市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.A.0B.1C.2D.-1
2.()。A.e-2
B.e-2/3
C.e2/3
D.e2
3.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)
4.∫sin5xdx等于().
A.A.
B.
C.
D.
5.下列關(guān)系正確的是()。A.
B.
C.
D.
6.在初始發(fā)展階段,國(guó)際化經(jīng)營(yíng)的主要方式是()
A.直接投資B.進(jìn)出口貿(mào)易C.間接投資D.跨國(guó)投資
7.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo),f'(x)>0,則在(0,1)內(nèi)f(x)().A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量
8.
9.若∫f(x)dx=F(x)+C,則∫f(2x)dx等于().A.A.2F(2x)+CB.F(2x)+CC.F(x)+CD.F(2x)/2+C
10.設(shè)函數(shù)Y=e-x,則Y'等于().A.A.-ex
B.ex
C.-e-xQ258
D.e-x
11.
12.如圖所示兩楔形塊A、B自重不計(jì),二者接觸面光滑,受大小相等、方向相反且沿同一直線的兩個(gè)力的作用,則()。
A.A平衡,B不平衡B.A不平衡,B平衡C.A、B均不平衡D.A、B均平衡
13.
若y1·y2為二階線性常系數(shù)微分方程y〞+p1y'+p2y=0的兩個(gè)特解,則C1y1+C2y2().A.為所給方程的解,但不是通解
B.為所給方程的解,但不一定是通解
C.為所給方程的通解
D.不為所給方程的解
14.滑輪半徑,一0.2m,可繞水平軸0轉(zhuǎn)動(dòng),輪緣上纏有不可伸長(zhǎng)的細(xì)繩,繩的一端掛有物體A,如圖所示。已知滑輪繞軸0的轉(zhuǎn)動(dòng)規(guī)律為φ=0.15t3rad,其中t單位為s。當(dāng)t-2s時(shí),輪緣上M點(diǎn)速度、加速度和物體A的速度、加速度計(jì)算不正確的是()。
A.M點(diǎn)的速度為VM=0.36m/s
B.M點(diǎn)的加速度為aM=0.648m/s2
C.物體A的速度為VA=0.36m/s
D.物體A點(diǎn)的加速度為aA=0.36m/s2
15.
16.鑒別的方法主要有查證法、比較法、佐證法、邏輯法。其中()是指通過(guò)尋找物證、人證來(lái)驗(yàn)證信息的可靠程度的方法。
A.查證法B.比較法C.佐證法D.邏輯法
17.下列說(shuō)法中不能提高梁的抗彎剛度的是()。
A.增大梁的彎度B.增加梁的支座C.提高梁的強(qiáng)度D.增大單位面積的抗彎截面系數(shù)
18.
19.微分方程y''-7y'+12y=0的通解為()A.y=C1e3x+C2e-4x
B.y=C1e-3x+C2e4x
C.y=C1e3x+C2e4x
D.y=C1e-3x+C2e-4x
20.
21.設(shè)函數(shù)f(x)=2sinx,則f'(x)等于().A.A.2sinxB.2cosxC.-2sinxD.-2cosx.
22.極限等于().A.A.e1/2B.eC.e2D.1
23.若f(x)為[a,b]上的連續(xù)函數(shù),()。A.小于0B.大于0C.等于0D.不確定
24.為二次積分為()。A.
B.
C.
D.
25.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo)f(x)>0,則在(0,1)內(nèi)f(x)().
A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量
26.A.(2+X)^2B.3(2+X)^2C.(2+X)^4D.3(2+X)^4
27.
28.()。A.2πB.πC.π/2D.π/429.A.-e2x-y
B.e2x-y
C.-2e2x-y
D.2e2x-y
30.
31.如圖所示,在半徑為R的鐵環(huán)上套一小環(huán)M,桿AB穿過(guò)小環(huán)M并勻速繞A點(diǎn)轉(zhuǎn)動(dòng),已知轉(zhuǎn)角φ=ωt(其中ω為一常數(shù),φ的單位為rad,t的單位為s),開(kāi)始時(shí)AB桿處于水平位置,則當(dāng)小環(huán)M運(yùn)動(dòng)到圖示位置時(shí)(以MO為坐標(biāo)原點(diǎn),小環(huán)Md運(yùn)動(dòng)方程為正方向建立自然坐標(biāo)軸),下面說(shuō)法不正確的一項(xiàng)是()。
A.小環(huán)M的運(yùn)動(dòng)方程為s=2Rωt
B.小環(huán)M的速度為
C.小環(huán)M的切向加速度為0
D.小環(huán)M的法向加速度為2Rω2
32.函數(shù)f(x)=2x3-9x2+12x-3單調(diào)減少的區(qū)間為A.(-∞,1]B.[1,2]C.[2,+∞)D.[1,+∞)33.設(shè)函數(shù)f(x)在(0,1)內(nèi)可導(dǎo),f'(x)>0,則f(x)在(0,1)內(nèi)A.A.單調(diào)減少B.單調(diào)增加C.為常量D.不為常量,也不單調(diào)
34.
35.
36.
37.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于()。A.0
B.
C.
D.π
38.
39.下列反常積分收斂的是()。A.∫1+∞xdx
B.∫1+∞x2dx
C.
D.
40.設(shè)在點(diǎn)x=1處連續(xù),則a等于()。A.-1B.0C.1D.2
41.
42.
43.A.A.發(fā)散B.條件收斂C.絕對(duì)收斂D.無(wú)法判定斂散性
44.
45.曲線y=1nx在點(diǎn)(e,1)處切線的斜率為().A.A.e2
B.eC.1D.1/e46.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2
47.
48.設(shè)y=exsinx,則y'''=A.cosx·ex
B.sinx·ex
C.2ex(cosx-sinx)
D.2ex(sinx-cosx)
49.()。A.3B.2C.1D.050.設(shè)y=sin2x,則y'等于().A.A.-cos2xB.cos2xC.-2cos2xD.2cos2x二、填空題(20題)51.
52.
53.
54.過(guò)點(diǎn)M1(1,2,-1)且與平面x-2y+4z=0垂直的直線方程為_(kāi)_________。
55.函數(shù)f(x)=ex,g(x)=sinx,則f[g(x)]=__________。
56.
57.
58.
59.微分方程y'+4y=0的通解為_(kāi)________。
60.61.62.63.64.y″+5y′=0的特征方程為——.65.設(shè)函數(shù)y=y(x)由方程x2y+y2x+2y=1確定,則y'=______.66.67.68.曲線y=x3—6x的拐點(diǎn)坐標(biāo)為_(kāi)_______.69.設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,則該切線方程為.70.過(guò)點(diǎn)Mo(1,-1,0)且與平面x-y+3z=1平行的平面方程為_(kāi)______.三、計(jì)算題(20題)71.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
72.
73.
74.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
75.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
76.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
77.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.78.
79.求曲線在點(diǎn)(1,3)處的切線方程.80.證明:81.82.求微分方程的通解.83.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.84.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.85.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.86.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).87.88.
89.求微分方程y"-4y'+4y=e-2x的通解.
90.四、解答題(10題)91.92.
93.
94.
95.
96.
97.(本題滿分8分)設(shè)y=y(x)由方程x2+2y3+2xy+3y-x=1確定,求y’
98.
99.100.五、高等數(shù)學(xué)(0題)101.分析
在x=0處的可導(dǎo)性
六、解答題(0題)102.
參考答案
1.C
2.B
3.A
4.A本題考查的知識(shí)點(diǎn)為不定積分的換元積分法.
,可知應(yīng)選D.
5.B由不定積分的性質(zhì)可知,故選B.
6.B解析:在初始投資階段,企業(yè)從事國(guó)際化經(jīng)營(yíng)活動(dòng)的主要特點(diǎn)是活動(dòng)方式主要以進(jìn)出口貿(mào)易為主。
7.A由于f(x)在(0,1)內(nèi)有f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.
8.D解析:un、vn可能為任意數(shù)值,因此正項(xiàng)級(jí)數(shù)的比較判別法不能成立,可知應(yīng)選D。
9.D本題考查的知識(shí)點(diǎn)為不定積分的第一換元積分法(湊微分法).
由題設(shè)知∫f(x)dx=F(x)+C,因此
可知應(yīng)選D.
10.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.
由復(fù)合函數(shù)的導(dǎo)數(shù)鏈?zhǔn)椒▌t知
可知應(yīng)選C.
11.D
12.C
13.B
14.B
15.C
16.C解析:佐證法是指通過(guò)尋找物證、人證來(lái)驗(yàn)證信息的可靠程度的方法。
17.A
18.A
19.C因方程:y''-7y'+12y=0的特征方程為r2-7r+12=0,于是有特征根r1=3,r2=4,故微分方程的通解為:y=C1e3x+C2e4x
20.A
21.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算.
f(x)=2sinx,
f'(x)=2(sinx)'=2cosx,
可知應(yīng)選B.
22.C本題考查的知識(shí)點(diǎn)為重要極限公式.
由于,可知應(yīng)選C.
23.C
24.A本題考查的知識(shí)點(diǎn)為將二重積分化為極坐標(biāo)系下的二次積分。由于在極坐標(biāo)系下積分區(qū)域D可以表示為
故知應(yīng)選A。
25.A本題考查的知識(shí)點(diǎn)為利用導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性.
由于f(x)在(0,1)內(nèi)有f(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.
26.B
27.D
28.B
29.C本題考查了二元函數(shù)的高階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。
30.C
31.D
32.Bf(x)=2x3-9x2+12x-3的定義域?yàn)?-∞,+∞)
f'(x)=6x2-18x+12=6(x23x+2)=6(x-1)(x-2)。
令f'(x)=0得駐點(diǎn)x1=1,x2=2。
當(dāng)x<1時(shí),f'(x)>0,f(x)單調(diào)增加。
當(dāng)1<x<2時(shí),f'(x)<0,f(x)單調(diào)減少。
當(dāng)x>2時(shí),f'(x)>0,f(x)單調(diào)增加。因此知應(yīng)選B。
33.B由于f'(x)>0,可知.f(x)在(0,1)內(nèi)單調(diào)增加。因此選B。
34.C
35.A
36.C
37.C本題考查的知識(shí)點(diǎn)為羅爾定理的條件與結(jié)論。
38.D解析:
39.DA,∫1+∞xdx==∞發(fā)散;
40.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。
由于y為分段函數(shù),x=1為其分段點(diǎn)。在x=1的兩側(cè)f(x)的表達(dá)式不同。因此討論y=f(x)在x=1處的連續(xù)性應(yīng)該利用左連續(xù)與右連續(xù)的概念。由于
當(dāng)x=1為y=f(x)的連續(xù)點(diǎn)時(shí),應(yīng)有存在,從而有,即
a+1=2。
可得:a=1,因此選C。
41.A
42.C
43.C
44.A
45.D本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.
由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點(diǎn)x0處可導(dǎo),則曲線),y=f(x)在點(diǎn)(x0,f(x0))處必定存在切線,且切線的斜率為f(x0).
由于y=lnx,可知可知應(yīng)選D.
46.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。
47.B
48.C由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).
49.A
50.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t.
Y=sin2x,
則y'=cos(2x)·(2x)'=2cos2x.
可知應(yīng)選D.
51.
52.x=-2x=-2解析:53.-24.
本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最大值.
若f(x)在(a,b)內(nèi)可導(dǎo),在[a,b]上連續(xù),??梢岳脤?dǎo)數(shù)判定f(x)在[a,b]上的最值:
54.55.由f(x)=exg(x)=sinx;∴f[g(x)]=f[sinx]=esinx
56.arctanx+C
57.31/16;2本題考查了函數(shù)的最大、最小值的知識(shí)點(diǎn).
f'(x)=3ax2-12ax,f'(x)=0,則x=0或x=4,而x=4不在[-1,2]中,故舍去.f''(x)=6ax-12a,f''(0)=-12a,因?yàn)閍>0,所以f"(0)<0,所以x=0是極值點(diǎn).又因f(-1)=-a-6a+b=b-7a,f(0)=b,f(2)=8a-24a+b=b-16a,因?yàn)閍>0,故當(dāng)x=0時(shí),f(x)最大,即b=2;當(dāng)x=2時(shí),f(x)最小.所以b-16a=-29,即16a=2+29=31,故a=31/16.
58.
59.y=Ce-4x
60.x
61.
62.本題考查的知識(shí)點(diǎn)為定積分計(jì)算.
可以利用變量替換,令u=2x,則du=2dx,當(dāng)x=0時(shí),a=0;當(dāng)x=1時(shí),u=2.因此
或利用湊微分法
本題中考生常在最后由于粗心而出現(xiàn)錯(cuò)誤.如
這里中丟掉第二項(xiàng).63.本題考查的知識(shí)點(diǎn)為用洛必達(dá)法則求未定型極限.
64.由特征方程的定義可知,所給方程的特征方程為
65.
;本題考查的知識(shí)點(diǎn)為隱函數(shù)的求導(dǎo).
將x2y+y2x+2y=1兩端關(guān)于x求導(dǎo),(2xy+x2y')+(2yy'x+y2)+2y'=0,(x2+2xy+2)y'+(2xy+y2)=0,因此y'=66.1.
本題考查的知識(shí)點(diǎn)為二元函數(shù)的極值.
可知點(diǎn)(0,0)為z的極小值點(diǎn),極小值為1.
67.68.(0,0).
本題考查的知識(shí)點(diǎn)為求曲線的拐點(diǎn).
依求曲線拐點(diǎn)的-般步驟,只需
69.y=f(1).
本題考查的知識(shí)點(diǎn)有兩個(gè):-是導(dǎo)數(shù)的幾何意義,二是求切線方程.
設(shè)切點(diǎn)為(x0,f(x0)),則曲線y=f(x)過(guò)該點(diǎn)的切線方程為
y-f(x0)=f(x0)(x-x0).
由題意可知x0=1,且在(1,f(1))處曲線y=f(x)的切線平行于x軸,因此應(yīng)有f(x0)=0,故所求切線方程為
y—f(1)=0.
本題中考生最常見(jiàn)的錯(cuò)誤為:將曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程寫為
y-f(x0)=f(x)(x-x0)
而導(dǎo)致錯(cuò)誤.本例中錯(cuò)誤地寫為
y-f(1)=f(x)(x-1).
本例中由于f(x)為抽象函數(shù),-些考生不習(xí)慣于寫f(1),有些人誤寫切線方程為
y-1=0.70.由于已知平面的法線向量,所求平面與已知平面平行,可取所求平面法線向量,又平面過(guò)點(diǎn)Mo(1,-1,0),由平面的點(diǎn)法式方程可知,所求平面為
71.
列表:
說(shuō)明
72.
73.
74.由等價(jià)無(wú)窮小量的定義可知
75.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
76.
77.
78.
則
79.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版企業(yè)清算注銷及稅務(wù)籌劃合同3篇
- 二零二五版供配電設(shè)施安全風(fēng)險(xiǎn)評(píng)估與治理合同3篇
- 二零二五版鍋爐安裝與能源審計(jì)服務(wù)合同范本3篇
- 二零二五版阿拉爾經(jīng)濟(jì)技術(shù)開(kāi)發(fā)區(qū)綠色建筑推廣應(yīng)用合同3篇
- 二零二五版高職高專土建專業(yè)校企合作項(xiàng)目合同3篇
- 二零二五版二手車買賣糾紛處理合同3篇
- 二零二五版公益項(xiàng)目合同擔(dān)保法合規(guī)合同3篇
- 二零二五版專業(yè)打印設(shè)備升級(jí)與維護(hù)服務(wù)合同2篇
- 二零二五版電子商務(wù)平臺(tái)食品農(nóng)產(chǎn)品溯源合同3篇
- 二零二五版建筑材料租賃合同質(zhì)量檢測(cè)與驗(yàn)收標(biāo)準(zhǔn)合同3篇
- 2025年工程合作協(xié)議書
- 2025年山東省東營(yíng)市東營(yíng)區(qū)融媒體中心招聘全媒體采編播專業(yè)技術(shù)人員10人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年宜賓人才限公司招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- KAT1-2023井下探放水技術(shù)規(guī)范
- 駕駛證學(xué)法減分(學(xué)法免分)題庫(kù)及答案200題完整版
- 竣工驗(yàn)收程序流程圖
- 清華經(jīng)管工商管理碩士研究生培養(yǎng)計(jì)劃
- 口腔科診斷證明書模板
- 管溝挖槽土方計(jì)算公式
- 國(guó)網(wǎng)浙江省電力公司住宅工程配電設(shè)計(jì)技術(shù)規(guī)定
- 煙花爆竹零售應(yīng)急預(yù)案
評(píng)論
0/150
提交評(píng)論