




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),將的圖象上的所有點的橫坐標縮短到原來的,縱坐標保持不變;再把所得圖象向上平移個單位長度,得到函數(shù)的圖象,若,則的值可能為()A. B. C. D.2.已知集合,,則等于()A. B. C. D.3.集合,則集合的真子集的個數(shù)是A.1個 B.3個 C.4個 D.7個4.如圖所示程序框圖,若判斷框內為“”,則輸出()A.2 B.10 C.34 D.985.將函數(shù)圖象上每一點的橫坐標變?yōu)樵瓉淼?倍,再將圖像向左平移個單位長度,得到函數(shù)的圖象,則函數(shù)圖象的一個對稱中心為()A. B. C. D.6.已知雙曲線的左、右焦點分別為,,P是雙曲線E上的一點,且.若直線與雙曲線E的漸近線交于點M,且M為的中點,則雙曲線E的漸近線方程為()A. B. C. D.7.總體由編號01,,02,…,19,20的20個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是隨機數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為7816
6572
0802
6314
0702
4369
9728
0198
3204
9234
4935
8200
3623
4869
6938
7481
A.08 B.07 C.02 D.018.已知銳角滿足則()A. B. C. D.9.已知命題:是“直線和直線互相垂直”的充要條件;命題:函數(shù)的最小值為4.給出下列命題:①;②;③;④,其中真命題的個數(shù)為()A.1 B.2 C.3 D.410.函數(shù)的部分圖象大致是()A. B.C. D.11.函數(shù)在上為增函數(shù),則的值可以是()A.0 B. C. D.12.若復數(shù)滿足,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.集合,,則_____.14.已知數(shù)列滿足:點在直線上,若使、、構成等比數(shù)列,則______15.在長方體中,,則異面直線與所成角的余弦值為()A. B. C. D.16.已知函數(shù),對于任意都有,則的值為______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)己知等差數(shù)列的公差,,且,,成等比數(shù)列.(1)求使不等式成立的最大自然數(shù)n;(2)記數(shù)列的前n項和為,求證:.18.(12分)已知函數(shù),,且.(1)當時,求函數(shù)的減區(qū)間;(2)求證:方程有兩個不相等的實數(shù)根;(3)若方程的兩個實數(shù)根是,試比較,與的大小,并說明理由.19.(12分)如圖,⊙的直徑的延長線與弦的延長線相交于點,為⊙上一點,,交于點.求證:~.20.(12分)已知數(shù)列,滿足.(1)求數(shù)列,的通項公式;(2)分別求數(shù)列,的前項和,.21.(12分)某中學的甲、乙、丙三名同學參加高校自主招生考試,每位同學彼此獨立的從五所高校中任選2所.(1)求甲、乙、丙三名同學都選高校的概率;(2)若已知甲同學特別喜歡高校,他必選校,另在四校中再隨機選1所;而同學乙和丙對五所高校沒有偏愛,因此他們每人在五所高校中隨機選2所.(i)求甲同學選高校且乙、丙都未選高校的概率;(ii)記為甲、乙、丙三名同學中選高校的人數(shù),求隨機變量的分布列及數(shù)學期望.22.(10分)已知函數(shù)(I)若討論的單調性;(Ⅱ)若,且對于函數(shù)的圖象上兩點,存在,使得函數(shù)的圖象在處的切線.求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
利用二倍角公式與輔助角公式將函數(shù)的解析式化簡,然后利用圖象變換規(guī)律得出函數(shù)的解析式為,可得函數(shù)的值域為,結合條件,可得出、均為函數(shù)的最大值,于是得出為函數(shù)最小正周期的整數(shù)倍,由此可得出正確選項.【詳解】函數(shù),將函數(shù)的圖象上的所有點的橫坐標縮短到原來的倍,得的圖象;再把所得圖象向上平移個單位,得函數(shù)的圖象,易知函數(shù)的值域為.若,則且,均為函數(shù)的最大值,由,解得;其中、是三角函數(shù)最高點的橫坐標,的值為函數(shù)的最小正周期的整數(shù)倍,且.故選C.【點睛】本題考查三角函數(shù)圖象變換,同時也考查了正弦型函數(shù)與周期相關的問題,解題的關鍵在于確定、均為函數(shù)的最大值,考查分析問題和解決問題的能力,屬于中等題.2、A【解析】
進行交集的運算即可.【詳解】,1,2,,,,1,.故選:.【點睛】本題主要考查了列舉法、描述法的定義,考查了交集的定義及運算,考查了計算能力,屬于基礎題.3、B【解析】
由題意,結合集合,求得集合,得到集合中元素的個數(shù),即可求解,得到答案.【詳解】由題意,集合,則,所以集合的真子集的個數(shù)為個,故選B.【點睛】本題主要考查了集合的運算和集合中真子集的個數(shù)個數(shù)的求解,其中作出集合的運算,得到集合,再由真子集個數(shù)的公式作出計算是解答的關鍵,著重考查了推理與運算能力.4、C【解析】
由題意,逐步分析循環(huán)中各變量的值的變化情況,即可得解.【詳解】由題意運行程序可得:,,,;,,,;,,,;不成立,此時輸出.故選:C.【點睛】本題考查了程序框圖,只需在理解程序框圖的前提下細心計算即可,屬于基礎題.5、D【解析】
根據(jù)函數(shù)圖象的變換規(guī)律可得到解析式,然后將四個選項代入逐一判斷即可.【詳解】解:圖象上每一點的橫坐標變?yōu)樵瓉淼?倍,得到再將圖像向左平移個單位長度,得到函數(shù)的圖象,故選:D【點睛】考查三角函數(shù)圖象的變換規(guī)律以及其有關性質,基礎題.6、C【解析】
由雙曲線定義得,,OM是的中位線,可得,在中,利用余弦定理即可建立關系,從而得到漸近線的斜率.【詳解】根據(jù)題意,點P一定在左支上.由及,得,,再結合M為的中點,得,又因為OM是的中位線,又,且,從而直線與雙曲線的左支只有一個交點.在中.——①由,得.——②由①②,解得,即,則漸近線方程為.故選:C.【點睛】本題考查求雙曲線漸近線方程,涉及到雙曲線的定義、焦點三角形等知識,是一道中檔題.7、D【解析】從第一行的第5列和第6列起由左向右讀數(shù)劃去大于20的數(shù)分別為:08,02,14,07,01,所以第5個個體是01,選D.考點:此題主要考查抽樣方法的概念、抽樣方法中隨機數(shù)表法,考查學習能力和運用能力.8、C【解析】
利用代入計算即可.【詳解】由已知,,因為銳角,所以,,即.故選:C.【點睛】本題考查二倍角的正弦、余弦公式的應用,考查學生的運算能力,是一道基礎題.9、A【解析】
先由兩直線垂直的條件判斷出命題p的真假,由基本不等式判斷命題q的真假,從而得出p,q的非命題的真假,繼而判斷復合命題的真假,可得出選項.【詳解】已知對于命題,由得,所以命題為假命題;關于命題,函數(shù),當時,,當即時,取等號,當時,函數(shù)沒有最小值,所以命題為假命題.所以和是真命題,所以為假命題,為假命題,為假命題,為真命題,所以真命題的個數(shù)為1個.故選:A.【點睛】本題考查直線的垂直的判定和基本不等式的應用,以及復合命題的真假的判斷,注意運用基本不等式時,滿足所需的條件,屬于基礎題.10、C【解析】
判斷函數(shù)的性質,和特殊值的正負,以及值域,逐一排除選項.【詳解】,函數(shù)是奇函數(shù),排除,時,,時,,排除,當時,,時,,排除,符合條件,故選C.【點睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,屬于基礎題型,一般根據(jù)選項判斷函數(shù)的奇偶性,零點,特殊值的正負,以及單調性,極值點等排除選項.11、D【解析】
依次將選項中的代入,結合正弦、余弦函數(shù)的圖象即可得到答案.【詳解】當時,在上不單調,故A不正確;當時,在上單調遞減,故B不正確;當時,在上不單調,故C不正確;當時,在上單調遞增,故D正確.故選:D【點睛】本題考查正弦、余弦函數(shù)的單調性,涉及到誘導公式的應用,是一道容易題.12、C【解析】
化簡得到,,再計算復數(shù)模得到答案.【詳解】,故,故,.故選:.【點睛】本題考查了復數(shù)的化簡,共軛復數(shù),復數(shù)模,意在考查學生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
分析出集合A為奇數(shù)構成的集合,即可求得交集.【詳解】因為表示為奇數(shù),故.故答案為:【點睛】此題考查求集合的交集,根據(jù)已知集合求解,屬于簡單題.14、13【解析】
根據(jù)點在直線上可求得,由等比中項的定義可構造方程求得結果.【詳解】在上,,成等比數(shù)列,,即,解得:.故答案為:.【點睛】本題考查根據(jù)三項成等比數(shù)列求解參數(shù)值的問題,涉及到等比中項的應用,屬于基礎題.15、C【解析】
根據(jù)確定是異面直線與所成的角,利用余弦定理計算得到答案.【詳解】由題意可得.因為,所以是異面直線與所成的角,記為,故.故選:.【點睛】本題考查了異面直線夾角,意在考查學生的空間想象能力和計算能力.16、【解析】
由條件得到函數(shù)的對稱性,從而得到結果【詳解】∵f=f,∴x=是函數(shù)f(x)=2sin(ωx+φ)的一條對稱軸.∴f=±2.【點睛】本題考查了正弦型三角函數(shù)的對稱性,注意對稱軸必過最高點或最低點,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析【解析】
(1)根據(jù),,成等比數(shù)列,有,結合公差,,求得通項,再解不等式.(2)根據(jù)(1),用裂項相消法求和,然后研究其單調性即可.【詳解】(1)由題意,可知,即,∴.又,,∴,∴.∴,∴,故滿足題意的最大自然數(shù)為.(2),∴...從而當時,單調遞增,且,當時,單調遞增,且,所以,由,知不等式成立.【點睛】本題主要考查等差數(shù)列的基本運算和裂項相消法求和,還考查了運算求解的能力,屬于中檔題.18、(1)(2)詳見解析(3)【解析】
試題分析:(1)當時,,由得減區(qū)間;(2)因為,所以,因為所以,方程有兩個不相等的實數(shù)根;(3)因為,,所以試題解析:(1)當時,,由得減區(qū)間;(2)法1:,,,所以,方程有兩個不相等的實數(shù)根;法2:,,是開口向上的二次函數(shù),所以,方程有兩個不相等的實數(shù)根;(3)因為,,又在和增,在減,所以.考點:利用導數(shù)求函數(shù)減區(qū)間,二次函數(shù)與二次方程關系19、證明見解析【解析】
根據(jù)相似三角形的判定定理,已知兩個三角形有公共角,題中未給出線段比例關系,故可根據(jù)判定定理一需找到另外一組相等角,結合平面幾何的知識證得即可.【詳解】證明:∵,所以,又因為,所以.在與中,,,故~.【點睛】本題考查平面幾何中同弧所對的圓心角與圓周角的關系、相似三角形的判定定理;考查邏輯推理能力和數(shù)形結合思想;分析圖形,找出角與角之間的關系是證明本題的關鍵;屬于基礎題.20、(1)(2);【解析】
(1),,可得為公比為2的等比數(shù)列,可得為公差為1的等差數(shù)列,再算出,的通項公式,解方程組即可;(2)利用分組求和法解決.【詳解】(1)依題意有又.可得數(shù)列為公比為2的等比數(shù)列,為公差為1的等差數(shù)列,由,得解得故數(shù)列,的通項公式分別為.(2),.【點睛】本題考查利用遞推公式求數(shù)列的通項公式以及分組求和法求數(shù)列的前n項和,考查學生的計算能力,是一道中檔題.21、(1)(2)(i)(ii)分布列見解析,【解析】
(1)先計算甲、乙、丙同學分別選擇D高校的概率,利用事件的獨立性即得解;(2)(i)分別計算每個事件的概率,再利用事件的獨立性即得解;(ii),利用事件的獨立性,分別計算對應的概率,列出分布列,計算數(shù)學期望即得解.【詳解】(1)甲從五所高校中任選2所,共有共10種情況,甲、乙、丙同學都選高校,共有四種情況,甲同學選高校的概率為,因此乙、丙兩同學選高校的概率為,因為每位同學彼此獨立,所以甲、乙、丙三名同學都選高校的概率為.(2)(i)甲同學必選校且選高校的概率為,乙未選高校的概率為,丙未選高校的概率為,因為每位同學彼此獨立,所以甲同學選高校且乙、丙都未選高校的概率為.(ii),因此,.即的分布列為0123因此數(shù)學期望為.【點睛】本題考查了事件獨立性的應用和隨機變量的分布列和期望,考查了學生綜合分析,概念理解,實際應用,數(shù)學運算的能力,屬于中檔題.22、(1)見解析(2)見證明【解析】
(1)對函數(shù)求導,分別討論,以及,即可得出結果;(2)根據(jù)題意,由導數(shù)幾何意義得到,將證明轉化為證明即可,再令,設,用導數(shù)方法判斷出的單調性,進而可得出結論成立.【詳解】(1)解:易得,函數(shù)的定義域為,,令,得或.①當時,時,,函數(shù)單調遞減;時,,函數(shù)單
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 創(chuàng)新創(chuàng)業(yè)教育與拔尖創(chuàng)新人才的關系
- 服裝質押合同范本
- 修復窯洞合同范本
- rel-Cleroindicin-F-Rengyolone-生命科學試劑-MCE
- PF-06767832-生命科學試劑-MCE
- 2025晶益通(四川)半導體科技有限公司招聘166人筆試參考題庫附帶答案詳解
- Mephetyl-tetrazole-生命科學試劑-MCE
- BIHC-生命科學試劑-MCE
- 班級團隊目標設定與執(zhí)行策略
- 農(nóng)田收購合同范本
- 調崗未到崗解除勞動合同通知書
- 洋車夫課件教學課件
- 車間鋸木材承包合同協(xié)議書
- 公司與個人的技術服務合同書范本
- 數(shù)字出版概論 課件 第八章 數(shù)字出版產(chǎn)品開發(fā)與分析
- 高職建筑設計專業(yè)《建筑構造與識圖》說課課件
- 產(chǎn)品標準化大綱
- 西師版小學數(shù)學四年級下冊教案
- 《管理學基礎(第2版)》高職全套教學課件
- 國有企業(yè)“三定”工作方案-國有企業(yè)三定方案
- 清華大學2024年強基計劃數(shù)學試題(解析)
評論
0/150
提交評論