2022年四川省什邡市師古中學九年級數(shù)學第一學期期末調(diào)研試題含解析_第1頁
2022年四川省什邡市師古中學九年級數(shù)學第一學期期末調(diào)研試題含解析_第2頁
2022年四川省什邡市師古中學九年級數(shù)學第一學期期末調(diào)研試題含解析_第3頁
2022年四川省什邡市師古中學九年級數(shù)學第一學期期末調(diào)研試題含解析_第4頁
2022年四川省什邡市師古中學九年級數(shù)學第一學期期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.若⊙O的弦AB等于半徑,則AB所對的圓心角的度數(shù)是()A.30° B.60° C.90° D.120°2.如圖,點()是反比例函數(shù)上的動點,過分別作軸,軸的垂線,垂足分別為,.隨著的增大,四邊形的面積()A.增大 B.減小 C.不確定 D.不變3.某果園2017年水果產(chǎn)量為100噸,2019年水果產(chǎn)量為144噸,則該果園水果產(chǎn)量的年平均增長率為()A.10% B.20% C.25% D.40%4.如圖所示,將矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,旋轉角為α(0°<α<90°).若∠1=110°,則α等于()A.20° B.30° C.40° D.50°5.如圖,二次函數(shù)y=ax1+bx+c的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,1)與(0,3)之間(不包括這兩點),對稱軸為直線x=1.下列結論:abc<0;②9a+3b+c>0;③若點M(,y1),點N(,y1)是函數(shù)圖象上的兩點,則y1<y1;④﹣<a<﹣.其中正確結論有()A.1個 B.1個 C.3個 D.4個6.在平面直角坐標系中,點(2,-1)關于原點對稱的點的坐標為()A. B. C. D.7.如圖,點D在△ABC的邊AC上,要判斷△ADB與△ABC相似,添加一個條件,不正確的是()A.∠ABD=∠C B.∠ADB=∠ABC C. D.8.若反比例函數(shù)y=的圖象經(jīng)過點(2,﹣1),則k的值為()A.﹣2 B.2 C.﹣ D.9.關于的一元二次方程x2﹣2+k=0有兩個相等的實數(shù)根,則k的值為()A.1 B.﹣1 C.2 D.﹣210.如圖,PA是⊙O的切線,切點為A,PO的延長線交⊙O于點B,連接AB,若∠B=25°,則∠P的度數(shù)為()A.25° B.40° C.45° D.50°二、填空題(每小題3分,共24分)11.如圖,雙曲線與⊙O在第一象限內(nèi)交于P、Q兩點,分別過P、Q兩點向x軸和y軸作垂線,已知點P坐標為(1,3),則圖中陰影部分的面積為______.12.將正整數(shù)按照圖示方式排列,請寫出“2020”在第_____行左起第_____個數(shù).13.若整數(shù)使關于的二次函數(shù)的圖象在軸的下方,且使關于的分式方程有負整數(shù)解,則所有滿足條件的整數(shù)的和為__________.14.若關于x的一元二次方程x2+2x﹣m=0有兩個相等的實數(shù)根,則m的值為______.15.若二次函數(shù)的圖象與x軸的兩個交點和頂點構成等邊三角形,則稱這樣的二次函數(shù)的圖象為標準拋物線.如圖,自左至右的一組二次函數(shù)的圖象T1,T2,T3……是標準拋物線,且頂點都在直線y=x上,T1與x軸交于點A1(2,0),A2(A2在A1右側),T2與x軸交于點A2,A3,T3與x軸交于點A3,A4,……,則拋物線Tn的函數(shù)表達式為_____.16.計算:=______.17.已知圓錐的底面半徑為3,母線長為7,則圓錐的側面積是_____.18.如圖,已知等邊△ABC的邊長為4,P是AB邊上的一個動點,連接CP,過點P作∠EPC=60°,交AC于點E,以PE為邊作等邊△EPD,頂點D在線段PC上,O是△EPD的外心,當點P從點A運動到點B的過程中,點O也隨之運動,則點O經(jīng)過的路徑長為_____.三、解答題(共66分)19.(10分)如圖,已知△ABC中,點D在AC上且∠ABD=∠C,求證:AB2=AD?AC.20.(6分)(1)已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(1,﹣2)與(4,1),求這個二次函數(shù)的表達式;(2)請更換第(1)題中的部分已知條件,重新設計一個求二次函數(shù)y=x2+bx+c表達式的題目,使所得到的二次函數(shù)與(1)題得到的二次函數(shù)相同,并寫出你的求解過程.21.(6分)“十一”黃金周期間,我市享有“江南八達嶺”美譽的江南長城旅游區(qū),為吸引游客組團來此旅游,特推出了如下門票收費標準:標準一:如果人數(shù)不超過20人,門票價格60元/人;標準二:如果人數(shù)超過20人,每超過1人,門票價格降低2元,但門票價格不低于50元/人.(1)若某單位組織23名員工去江南長城旅游區(qū)旅游,購買門票共需費用多少元?(2)若某單位共支付江南長城旅游區(qū)門票費用共計1232元,試求該單位這次共有多少名員工去江南長城旅游區(qū)旅游?22.(8分)某養(yǎng)豬場對豬舍進行噴藥消毒.在消毒的過程中,先經(jīng)過的藥物集中噴灑,再封閉豬舍,然后再打開窗戶進行通風.已知室內(nèi)每立方米空氣中含藥量()與藥物在空氣中的持續(xù)時間()之間的函數(shù)圖象如圖所示,其中在打開窗戶通風前與分別滿足兩個一次函數(shù),在通風后與滿足反比例函數(shù).(1)求反比例函數(shù)的關系式;(2)當豬舍內(nèi)空氣中含藥量不低于且持續(xù)時間不少于,才能有效殺死病毒,問此次消毒是否有效?23.(8分)如圖,,是的兩條弦,點分別在,上,且,是的中點.求證:(1).(2)過作于點.當,時,求的半徑.24.(8分)隨著私家車的增多,“停車難”成了很多小區(qū)的棘手問題.某小區(qū)為解決這個問題,擬建造一個地下停車庫.如圖是該地下停車庫坡道入口的設計示意圖,其中,入口處斜坡的坡角為,水平線.根據(jù)規(guī)定,地下停車庫坡道入口上方要張貼限高標志,以提醒駕駛員所駕車輛能否安全駛入.請求出限制高度為多少米,(結果精確到,參考數(shù)據(jù):,,).25.(10分)如圖,⊙O的直徑AB為10cm,弦BC=8cm,∠ACB的平分線交⊙O于點D.連接AD,BD.求四邊形ABCD的面積.26.(10分)如圖,四邊形內(nèi)接于⊙,是⊙的直徑,,垂足為,平分.(1)求證:是⊙的切線;(2),,求的長.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】試題分析:∵OA=OB=AB,∴△OAB是等邊三角形,∴∠AOB=60°.故選B.【考點】圓心角、弧、弦的關系;等邊三角形的判定與性質(zhì).2、D【分析】由長方形的面積公式可得出四邊形的面積為mn,再根據(jù)點Q在反比例函數(shù)圖象上,可知,從而可判斷面積的變化情況.【詳解】∵點∴四邊形的面積為,∵點()是反比例函數(shù)上的動點∴四邊形的面積為定值,不會發(fā)生改變故選:D.【點睛】本題主要考查反比例函數(shù)比例系數(shù)的幾何意義,掌握反比例函數(shù)比例系數(shù)的幾何意義是解題的關鍵.3、B【分析】2019年水果產(chǎn)量=2017年水果產(chǎn)量,列出方程即可.【詳解】解:根據(jù)題意得,解得(舍去)故答案為20%,選B.【點睛】本題考查了一元二次方程的應用.4、A【解析】由性質(zhì)性質(zhì)得,∠D′=∠D=90°,∠4=α,由四邊形內(nèi)角和性質(zhì)得∠3=360°-90°-90°-110°=70°,所以∠4=90°-70°=20°.【詳解】如圖,因為四邊形ABCD為矩形,所以∠B=∠D=∠BAD=90°,因為矩形ABCD繞點A順時針旋轉得到矩形AB′C′D′,所以∠D′=∠D=90°,∠4=α,因為∠1=∠2=110°,所以∠3=360°-90°-90°-110°=70°,所以∠4=90°-70°=20°,所以α=20°.故選:A【點睛】本題考核知識點:旋轉角.解題關鍵點:理解旋轉的性質(zhì).5、D【分析】根據(jù)二次函數(shù)的圖象與系數(shù)的關系即可求出答案.【詳解】①由開口可知:a<0,∴對稱軸x=?>0,∴b>0,由拋物線與y軸的交點可知:c>0,∴abc<0,故①正確;②∵拋物線與x軸交于點A(-1,0),對稱軸為x=1,∴拋物線與x軸的另外一個交點為(5,0),∴x=3時,y>0,∴9a+3b+c>0,故②正確;③由于<1<,且(,y1)關于直線x=1的對稱點的坐標為(,y1),∵<,∴y1<y1,故③正確,④∵?=1,∴b=-4a,∵x=-1,y=0,∴a-b+c=0,∴c=-5a,∵1<c<3,∴1<-5a<3,∴-<a<-,故④正確故選D.【點睛】本題考查二次函數(shù)的圖象與性質(zhì),解題的關鍵是熟練運用圖象與系數(shù)的關系,本題屬于中等題型.6、D【分析】根據(jù)關于原點的對稱點,橫、縱坐標都互為相反數(shù)”解答即可得答案.【詳解】∵關于原點的對稱點,橫、縱坐標都互為相反數(shù),∴點(2,-1)關于原點對稱的點的坐標為(-2,1),故選:D.【點睛】本題主要考查了關于原點對稱的點的坐標的特點,熟記關于原點的對稱點,橫、縱坐標都互為相反數(shù)是解題關鍵.7、C【分析】由∠A是公共角,利用有兩角對應相等的三角形相似,即可得A與B正確;又由兩組對應邊的比相等且夾角對應相等的兩個三角形相似,即可得D正確,繼而求得答案,注意排除法在解選擇題中的應用.【詳解】∵∠A是公共角,∴當∠ABD=∠C或∠ADB=∠ABC時,△ADB∽△ABC(有兩角對應相等的三角形相似),故A與B正確,不符合題意要求;當AB:AD=AC:AB時,△ADB∽△ABC(兩組對應邊的比相等且夾角對應相等的兩個三角形相似),故D正確,不符合題意要求;AB:BD=CB:AC時,∠A不是夾角,故不能判定△ADB與△ABC相似,故C錯誤,符合題意要求,故選C.8、A【解析】把點(1,-1)代入解析式得-1=,

解得k=-1.

故選A.9、A【分析】關于x的一元二次方程x2+2x+k=0有兩個相等的實數(shù)根,可知其判別式為0,據(jù)此列出關于k的不等式,解答即可.【詳解】根據(jù)一元二次方程根與判別式的關系,要使得x2﹣2+k=0有兩個相等實根,只需要△=(-2)2-4k=0,解得k=1.故本題正確答案為A.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.10、B【分析】連接OA,由圓周角定理得,∠AOP=2∠B=50°,根據(jù)切線定理可得∠OAP=90°,繼而推出∠P=90°﹣50°=40°.【詳解】連接OA,由圓周角定理得,∠AOP=2∠B=50°,∵PA是⊙O的切線,∴∠OAP=90°,∴∠P=90°﹣50°=40°,故選:B.【點睛】本題考查圓周角定理、切線的性質(zhì)、三角形內(nèi)角和定理,解題的關鍵是求出∠AOP的度數(shù).二、填空題(每小題3分,共24分)11、1.【詳解】解:∵⊙O在第一象限關于y=x對稱,也關于y=x對稱,P點坐標是(1,3),∴Q點的坐標是(3,1),∴S陰影=1×3+1×3-2×1×1=1.故答案為:112、611【分析】根據(jù)圖形中的數(shù)字,可以寫出前n行的數(shù)字之和,然后即可計算出2020在多少行左起第幾個數(shù)字,本題得以解決.【詳解】解:由圖可知,第一行1個數(shù),第二行2個數(shù),第三行3個數(shù),…,則第n行n個數(shù),故前n個數(shù)字的個數(shù)為:1+2+3+…+n=,∵當n=63時,前63行共有=2016個數(shù)字,2020﹣2016=1,∴2020在第61行左起第1個數(shù),故答案為:61,1.【點睛】本題考查了數(shù)字類規(guī)律探究,從已有數(shù)字確定其變化規(guī)律是解題的關鍵.13、【分析】根據(jù)二次函數(shù)的圖象在軸的下方得出,,解分式方程得,注意,根據(jù)分式方程有負整數(shù)解求出a,最后結合a的取值范圍進行求解.【詳解】∵二次函數(shù)的圖象在軸的下方,∴,,解得,,,解得,,∵分式方程有負整數(shù)解,∴,即,∵,∴,∴所有滿足條件的整數(shù)的和為,故答案為:.【點睛】本題考查二次函數(shù)的圖象,解分式方程,分式方程的整數(shù)解,二次函數(shù)的圖象在x軸下方,則開口向下且函數(shù)的最大值小于1,解分式方程時注意分母不為1.14、-1【分析】根據(jù)關于x的一元二次方程x2+2x﹣m=0有兩個相等的實數(shù)根可知△=0,求出m的取值即可.【詳解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案為-1.【點睛】本題考查的是根的判別式,即一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:①當△>0時,方程有兩個不相等的兩個實數(shù)根;②當△=0時,方程有兩個相等的兩個實數(shù)根;③當△<0時,方程無實數(shù)根.15、【分析】設拋物線T1,T2,T3…的頂點依次為B1,B2,B3…,連接A1B1,A2B1,A2B2,A3B2,A3B3,A4B3…,過拋物線各頂點作x軸的垂線,由△A1B1A2是等邊三角形,結合頂點都在直線y=x上,可以求出,A2(4,0),進而得到T1的表達式:,同理,依次類推即可得到結果.【詳解】解:設拋物線T1,T2,T3…的頂點依次為B1,B2,B3…,連接A1B1,A2B1,A2B2,A3B2,A3B3,A4B3…,過拋物線各頂點作x軸的垂線,如圖所示:∵△A1B1A2是等邊三角形,∴∠B1A1A2=60°,∵頂點都在直線y=x上,設,∴OC1=m,,∴,∴∠B1OC1=30°,∴∠OB1A1=30°,∴OA1=A1B1=2=A2B1,∴A1C1=A1B1?cos60°=1,,∴OC1=OA1+A1C1=3,∴,A2(4,0),設T1的解析式為:,則,∴,∴T1:,同理,T2的解析式為:,T3的解析式為:,…則Tn的解析式為:,故答案為:.【點睛】本題考查了等邊三角形的性質(zhì),直角三角形中銳角三角函數(shù)值的應用,直線表達式的應用,圖形規(guī)律中類比歸納思想的應用,頂點式設二次函數(shù)解析式并求解,掌握二次函數(shù)解析式的求解是解題的關鍵.16、【分析】直接利用平面向量的加減運算法則求解即可求得,注意去括號時符號的變化.【詳解】解:==故答案為:.【點睛】此題考查了平面向量的運算.此題難度不大,注意掌握運算法則是解此題的關鍵.17、21π.【分析】利用圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形的面積公式計算.【詳解】解:圓錐的側面積=×2π×3×7=21π.故答案為21π.【點睛】本題考查圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.18、【分析】根據(jù)等邊三角形的外心性質(zhì),根據(jù)特殊角的三角函數(shù)即可求解.【詳解】解:如圖,作BG⊥AC、CF⊥AB于點G、F,交于點I,則點I是等邊三角形ABC的外心,∵等邊三角形ABC的邊長為4,∴AF=BF=2∠IAF=30°∴AI=∵點P是AB邊上的一個動點,O是等邊三角形△EPD的外心,∴當點P從點A運動到點B的過程中,點O也隨之運動,點O的經(jīng)過的路徑長是AI的長,∴點O的經(jīng)過的路徑長是.故答案為:.【點睛】本題考查等邊三角形的外心性質(zhì),關鍵在于熟悉性質(zhì),結合圖形計算.三、解答題(共66分)19、證明見解析.【解析】試題分析:利用兩個角對應相等的兩個三角形相似,證得△ABD∽△ACB,進一步得出,整理得出答案即可.試題解析:∵∠ABD=∠C,∠A是公共角,∴△ABD∽△ACB,∴,∴AB2=AD?AC.考點:相似三角形的判定與性質(zhì).20、(1)y=x2﹣4x+1;(2)題目見解析,求解過程見解析.【分析】(1)把已知點的坐標代入y=x2+bx+c中得到關于b、c的方程組,然后解方程組即可求出b、c的值;(2)寫出把(4,1)換成它關于直線x=2的對稱點(0,1),利用待定系數(shù)法求出拋物線的解析式與(1)中的解析式相同.【詳解】(1)根據(jù)題意得,解得,∴拋物線解析式為y=x2﹣4x+1;(2)題目:已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(1,﹣2)與(0,1),求這個二次函數(shù)的表達式;根據(jù)題意得,解得,∴拋物線解析式為y=x2﹣4x+1.【點睛】本題考查待定系數(shù)法求二次函數(shù)的解析式,熟練掌握二元一次方程組的解法是解題的關鍵.21、(1)112;(2)22【分析】(1)利用單價=原價﹣2×超出20人的人數(shù),可求出22人去旅游時門票的單價,再利用總價=單價×數(shù)量即可求出結論;(2)設該單位這次共有x名員工去江南長城旅游區(qū)旅游,利用數(shù)量=總價÷單價結合人數(shù)為整數(shù)可得出20<x≤27,由總價=單價×數(shù)量,即可得出關于x的一元二次方程,解之取其較小值即可得出結論.【詳解】解:(1)60﹣2×(23﹣20)=54(元/人),54×23=1452(元).答:購買門票共需費用112元.(2)設該單位這次共有x名員工去江南長城旅游區(qū)旅游,∵1232÷60=20(人),1232÷50=1,∴20<x≤1.依題意,得:x[60﹣2(x﹣20)]=1232,整理,得:x2﹣50x+616=0,解得:x1=22,x2=28(不合題意,舍去).答:該單位這次共有22名員工去江南長城旅游區(qū)旅游.【點睛】本題考查一元二次方程的應用,關鍵在于理解題意找到等量關系.22、(1);(2)此次消毒能有效殺死該病毒.【分析】(1)用待定系數(shù)法求函數(shù)解析式;(2)求正比例函數(shù)解析式,計算正比例函數(shù)和反比例函數(shù)的函數(shù)值為5對應的自變量的值,則它們的差為含藥量不低于5mg/m3的持續(xù)時間,然后與21比較大小即可判斷此次消毒是否有效.【詳解】解:(1)設反比例函數(shù)關系式為.∵反比例函數(shù)的圖像過點,∴.∴.(2)設正比例函數(shù)關系式為.把,代入上式,得.∴.當時,.把代入,得.∴.答:此次消毒能有效殺死該病毒.【點睛】本題考查了反比例函數(shù)的應用:能把實際的問題轉化為數(shù)學問題,建立反比例函數(shù)的數(shù)學模型.注意在自變量和函數(shù)值的取值上的實際意義.也考查了一次函數(shù).23、(1)見解析;(2)【分析】(1)根據(jù)圓心角、弧和弦之間的關系定理證明即可解決問題.

(2)連接OM,利用垂徑定理得出,再根據(jù)勾股定理解決問題即可.【詳解】解:(1)∵為的中點∴,∵,∴∴,∴∴(2)連接OM,∵,∴,∵根據(jù)勾股定理得:∴半徑為【點睛】本題考查圓心角,弧,弦之間的關系,垂徑定理,勾股定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.24、2.6米.【分析】根據(jù)銳角三角函數(shù)關系得出CF以及DF的長,進而得出DE的長即可得出答案.【詳解】過點D作DE⊥AB于點E,延長CD交AB于點F.在△ACF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論