2021-2022學(xué)年福建省百所重點(diǎn)校高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第1頁
2021-2022學(xué)年福建省百所重點(diǎn)校高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第2頁
2021-2022學(xué)年福建省百所重點(diǎn)校高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第3頁
2021-2022學(xué)年福建省百所重點(diǎn)校高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第4頁
2021-2022學(xué)年福建省百所重點(diǎn)校高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余14頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)全集,集合,,則()A. B. C. D.2.的內(nèi)角的對(duì)邊分別為,若,則內(nèi)角()A. B. C. D.3.一小商販準(zhǔn)備用元錢在一批發(fā)市場(chǎng)購買甲、乙兩種小商品,甲每件進(jìn)價(jià)元,乙每件進(jìn)價(jià)元,甲商品每賣出去件可賺元,乙商品每賣出去件可賺元.該商販若想獲取最大收益,則購買甲、乙兩種商品的件數(shù)應(yīng)分別為()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件4.已知是平面內(nèi)互不相等的兩個(gè)非零向量,且與的夾角為,則的取值范圍是()A. B. C. D.5.已知集合,,若AB,則實(shí)數(shù)的取值范圍是()A. B. C. D.6.若實(shí)數(shù)x,y滿足條件,目標(biāo)函數(shù),則z的最大值為()A. B.1 C.2 D.07.水平放置的,用斜二測(cè)畫法作出的直觀圖是如圖所示的,其中,則繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體的表面積為()A. B. C. D.8.若函數(shù)的圖象向右平移個(gè)單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間上單調(diào)遞增,則的最大值為().A. B. C. D.9.四人并排坐在連號(hào)的四個(gè)座位上,其中與不相鄰的所有不同的坐法種數(shù)是()A.12 B.16 C.20 D.810.函數(shù),,的部分圖象如圖所示,則函數(shù)表達(dá)式為()A. B.C. D.11.已知函數(shù)(,且)在區(qū)間上的值域?yàn)椋瑒t()A. B. C.或 D.或412.設(shè)是虛數(shù)單位,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,為雙曲線的左、右焦點(diǎn),雙曲線的漸近線上存在點(diǎn)滿足,則的最大值為________.14.某高中共有1800人,其中高一、高二、高三年級(jí)的人數(shù)依次成等差數(shù)列,現(xiàn)用分層抽樣的方法從中抽取60人,那么高二年級(jí)被抽取的人數(shù)為________.15.已知一個(gè)圓錐的底面積和側(cè)面積分別為和,則該圓錐的體積為________16.己知函數(shù),若曲線在處的切線與直線平行,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓:和拋物線:,為坐標(biāo)原點(diǎn).(1)已知直線和圓相切,與拋物線交于兩點(diǎn),且滿足,求直線的方程;(2)過拋物線上一點(diǎn)作兩直線和圓相切,且分別交拋物線于兩點(diǎn),若直線的斜率為,求點(diǎn)的坐標(biāo).18.(12分)某企業(yè)生產(chǎn)一種產(chǎn)品,從流水線上隨機(jī)抽取件產(chǎn)品,統(tǒng)計(jì)其質(zhì)量指標(biāo)值并繪制頻率分布直方圖(如圖1):規(guī)定產(chǎn)品的質(zhì)量指標(biāo)值在的為劣質(zhì)品,在的為優(yōu)等品,在的為特優(yōu)品,銷售時(shí)劣質(zhì)品每件虧損元,優(yōu)等品每件盈利元,特優(yōu)品每件盈利元,以這件產(chǎn)品的質(zhì)量指標(biāo)值位于各區(qū)間的頻率代替產(chǎn)品的質(zhì)量指標(biāo)值位于該區(qū)間的概率.(1)求每件產(chǎn)品的平均銷售利潤;(2)該企業(yè)主管部門為了解企業(yè)年?duì)I銷費(fèi)用(單位:萬元)對(duì)年銷售量(單位:萬件)的影響,對(duì)該企業(yè)近年的年?duì)I銷費(fèi)用和年銷售量,數(shù)據(jù)做了初步處理,得到的散點(diǎn)圖(如圖2)及一些統(tǒng)計(jì)量的值.表中,,,.根據(jù)散點(diǎn)圖判斷,可以作為年銷售量(萬件)關(guān)于年?duì)I銷費(fèi)用(萬元)的回歸方程.①求關(guān)于的回歸方程;②用所求的回歸方程估計(jì)該企業(yè)每年應(yīng)投入多少營銷費(fèi),才能使得該企業(yè)的年收益的預(yù)報(bào)值達(dá)到最大?(收益銷售利潤營銷費(fèi)用,?。└剑簩?duì)于一組數(shù)據(jù),,,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.19.(12分)已知數(shù)列的前項(xiàng)和為,且滿足().(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)(),數(shù)列的前項(xiàng)和.若對(duì)恒成立,求實(shí)數(shù),的值.20.(12分)已知函數(shù).(1)若是函數(shù)的極值點(diǎn),求的單調(diào)區(qū)間;(2)當(dāng)時(shí),證明:21.(12分)設(shè)函數(shù).(1)求的值;(2)若,求函數(shù)的單調(diào)遞減區(qū)間.22.(10分)已知拋物線:,點(diǎn)為拋物線的焦點(diǎn),焦點(diǎn)到直線的距離為,焦點(diǎn)到拋物線的準(zhǔn)線的距離為,且.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)若軸上存在點(diǎn),過點(diǎn)的直線與拋物線相交于、兩點(diǎn),且為定值,求點(diǎn)的坐標(biāo).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】

求解不等式,得到集合A,B,利用交集、補(bǔ)集運(yùn)算即得解【詳解】由于故集合或故集合故選:D【點(diǎn)睛】本題考查了集合的交集和補(bǔ)集混合運(yùn)算,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.2.C【解析】

由正弦定理化邊為角,由三角函數(shù)恒等變換可得.【詳解】∵,由正弦定理可得,∴,三角形中,∴,∴.故選:C.【點(diǎn)睛】本題考查正弦定理,考查兩角和的正弦公式和誘導(dǎo)公式,掌握正弦定理的邊角互化是解題關(guān)鍵.3.D【解析】

由題意列出約束條件和目標(biāo)函數(shù),數(shù)形結(jié)合即可解決.【詳解】設(shè)購買甲、乙兩種商品的件數(shù)應(yīng)分別,利潤為元,由題意,畫出可行域如圖所示,顯然當(dāng)經(jīng)過時(shí),最大.故選:D.【點(diǎn)睛】本題考查線性目標(biāo)函數(shù)的線性規(guī)劃問題,解決此類問題要注意判斷,是否是整數(shù),是否是非負(fù)數(shù),并準(zhǔn)確的畫出可行域,本題是一道基礎(chǔ)題.4.C【解析】試題分析:如下圖所示,則,因?yàn)榕c的夾角為,即,所以,設(shè),則,在三角形中,由正弦定理得,所以,所以,故選C.考點(diǎn):1.向量加減法的幾何意義;2.正弦定理;3.正弦函數(shù)性質(zhì).5.D【解析】

先化簡(jiǎn),再根據(jù),且AB求解.【詳解】因?yàn)?,又因?yàn)椋褹B,所以.故選:D【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.6.C【解析】

畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最大值.【詳解】若實(shí)數(shù)x,y滿足條件,目標(biāo)函數(shù)如圖:當(dāng)時(shí)函數(shù)取最大值為故答案選C【點(diǎn)睛】求線性目標(biāo)函數(shù)的最值:當(dāng)時(shí),直線過可行域且在軸上截距最大時(shí),值最大,在軸截距最小時(shí),z值最小;當(dāng)時(shí),直線過可行域且在軸上截距最大時(shí),值最小,在軸上截距最小時(shí),值最大.7.B【解析】

根據(jù)斜二測(cè)畫法的基本原理,將平面直觀圖還原為原幾何圖形,可得,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個(gè)相同圓錐的組合體,圓錐的側(cè)面展開圖是扇形根據(jù)扇形面積公式即可求得組合體的表面積.【詳解】根據(jù)“斜二測(cè)畫法”可得,,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個(gè)相同圓錐的組合體,它的表面積為.故選:【點(diǎn)睛】本題考查斜二測(cè)畫法的應(yīng)用及組合體的表面積求法,難度較易.8.C【解析】

由題意利用函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,求出的最大值.【詳解】解:把函數(shù)的圖象向右平移個(gè)單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間,上單調(diào)遞增,在區(qū)間,上,,,則當(dāng)最大時(shí),,求得,故選:C.【點(diǎn)睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.9.A【解析】

先將除A,B以外的兩人先排,再將A,B在3個(gè)空位置里進(jìn)行插空,再相乘得答案.【詳解】先將除A,B以外的兩人先排,有種;再將A,B在3個(gè)空位置里進(jìn)行插空,有種,所以共有種.故選:A【點(diǎn)睛】本題考查排列中不相鄰問題,常用插空法,屬于基礎(chǔ)題.10.A【解析】

根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點(diǎn)求出,化簡(jiǎn)即得所求.【詳解】由圖像知,,,解得,因?yàn)楹瘮?shù)過點(diǎn),所以,,即,解得,因?yàn)椋裕?故選:A【點(diǎn)睛】本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.11.C【解析】

對(duì)a進(jìn)行分類討論,結(jié)合指數(shù)函數(shù)的單調(diào)性及值域求解.【詳解】分析知,.討論:當(dāng)時(shí),,所以,,所以;當(dāng)時(shí),,所以,,所以.綜上,或,故選C.【點(diǎn)睛】本題主要考查指數(shù)函數(shù)的值域問題,指數(shù)函數(shù)的值域一般是利用單調(diào)性求解,側(cè)重考查數(shù)學(xué)運(yùn)算和數(shù)學(xué)抽象的核心素養(yǎng).12.A【解析】

利用復(fù)數(shù)的乘法運(yùn)算可求得結(jié)果.【詳解】由復(fù)數(shù)的乘法法則得.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的乘法運(yùn)算,考查計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

設(shè),由可得,整理得,即點(diǎn)在以為圓心,為半徑的圓上.又點(diǎn)到雙曲線的漸近線的距離為,所以當(dāng)雙曲線的漸近線與圓相切時(shí),取得最大值,此時(shí),解得.14.【解析】

由三個(gè)年級(jí)人數(shù)成等差數(shù)列和總?cè)藬?shù)可求得高二年級(jí)共有人,根據(jù)抽樣比可求得結(jié)果.【詳解】設(shè)高一、高二、高三人數(shù)分別為,則且,解得:,用分層抽樣的方法抽取人,那么高二年級(jí)被抽取的人數(shù)為人.故答案為:.【點(diǎn)睛】本題考查分層抽樣問題的求解,涉及到等差數(shù)列的相關(guān)知識(shí),屬于基礎(chǔ)題.15.【解析】

依據(jù)圓錐的底面積和側(cè)面積公式,求出底面半徑和母線長,再根據(jù)勾股定理求出圓錐的高,最后利用圓錐的體積公式求出體積?!驹斀狻吭O(shè)圓錐的底面半徑為,母線長為,高為,所以有解得,故該圓錐的體積為。【點(diǎn)睛】本題主要考查圓錐的底面積、側(cè)面積和體積公式的應(yīng)用。16.【解析】

先求導(dǎo),再根據(jù)導(dǎo)數(shù)的幾何意義,有求解.【詳解】因?yàn)楹瘮?shù),所以,所以,解得.故答案為:【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,還考查運(yùn)算求解能力以及數(shù)形結(jié)合思想,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)或.【解析】試題分析:直線與圓相切只需圓心到直線的距離等于圓的半徑,直線與曲線相交于兩點(diǎn),且滿足,只需數(shù)量積為0,要聯(lián)立方程組設(shè)而不求,利用坐標(biāo)關(guān)系及根與系數(shù)關(guān)系解題,這是解析幾何常用解題方法,第二步利用直線的斜率找出坐標(biāo)滿足的要求,再利用兩直線與圓相切,求出點(diǎn)的坐標(biāo).試題解析:(1)解:設(shè),,,由和圓相切,得.∴.由消去,并整理得,∴,.由,得,即.∴.∴,∴,∴.∴.∴或(舍).當(dāng)時(shí),,故直線的方程為.(2)設(shè),,,則.∴.設(shè),由直線和圓相切,得,即.設(shè),同理可得:.故是方程的兩根,故.由得,故.同理,則,即.∴,解或.當(dāng)時(shí),;當(dāng)時(shí),.故或.18.(1)元.(2)①②萬元【解析】

(1)每件產(chǎn)品的銷售利潤為,由已知可得的取值,由頻率分布直方圖可得劣質(zhì)品、優(yōu)等品、特優(yōu)品的概率,從而可得的概率分布列,依期望公式計(jì)算出期望即為平均銷售利潤;(2)①對(duì)取自然對(duì)數(shù),得,令,,,則,這就是線性回歸方程,由所給公式數(shù)據(jù)計(jì)算出系數(shù),得線性回歸方程,從而可求得;②求出收益,可設(shè)換元后用導(dǎo)數(shù)求出最大值.【詳解】解:(1)設(shè)每件產(chǎn)品的銷售利潤為,則的可能取值為,,.由頻率分布直方圖可得產(chǎn)品為劣質(zhì)品、優(yōu)等品、特優(yōu)品的概率分別為、、.所以;;.所以的分布列為所以(元).即每件產(chǎn)品的平均銷售利潤為元.(2)①由,得,令,,,則,由表中數(shù)據(jù)可得,則,所以,即,因?yàn)槿。?,故所求的回歸方程為.②設(shè)年收益為萬元,則令,則,,當(dāng)時(shí),,當(dāng)時(shí),,所以當(dāng),即時(shí),有最大值.即該企業(yè)每年應(yīng)該投入萬元營銷費(fèi),能使得該企業(yè)的年收益的預(yù)報(bào)值達(dá)到最大,最大收益為萬元.【點(diǎn)睛】本題考查頻率分布直方圖,考查隨機(jī)變量概率分布列與期望,考查求線性回歸直線方程,及回歸方程的應(yīng)用.在求指數(shù)型回歸方程時(shí),可通過取對(duì)數(shù)的方法轉(zhuǎn)化為求線性回歸直線方程,然后再求出指數(shù)型回歸方程.19.(1)(2),.【解析】

(1)根據(jù)數(shù)列的通項(xiàng)與前n項(xiàng)和的關(guān)系式,即求解數(shù)列的通項(xiàng)公式;(2)由(1)可得,利用等比數(shù)列的前n項(xiàng)和公式和裂項(xiàng)法,求得,結(jié)合題意,即可求解.【詳解】(1)由題意,當(dāng)時(shí),由,解得;當(dāng)時(shí),可得,即,顯然當(dāng)時(shí)上式也適合,所以數(shù)列的通項(xiàng)公式為.(2)由(1)可得,所以.因?yàn)閷?duì)恒成立,所以,.【點(diǎn)睛】本題主要考查了數(shù)列的通項(xiàng)公式的求解,等差數(shù)列的前n項(xiàng)和公式,以及裂項(xiàng)法求和的應(yīng)用,其中解答中熟記等差、等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式,以及合理利用“裂項(xiàng)法”求和是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.20.(1)遞減區(qū)間為(-1,0),遞增區(qū)間為(2)見解析【解析】

(1)根據(jù)函數(shù)解析式,先求得導(dǎo)函數(shù),由是函數(shù)的極值點(diǎn)可求得參數(shù).求得函數(shù)定義域,并根據(jù)導(dǎo)函數(shù)的符號(hào)即可判斷單調(diào)區(qū)間.(2)當(dāng)時(shí),.代入函數(shù)解析式放縮為,代入證明的不等式可化為,構(gòu)造函數(shù),并求得,由函數(shù)單調(diào)性及零點(diǎn)存在定理可知存在唯一的,使得成立,因而求得函數(shù)的最小值,由對(duì)數(shù)式變形化簡(jiǎn)可證明,即成立,原不等式得證.【詳解】(1)函數(shù)可求得,則解得所以,定義域?yàn)?,在單調(diào)遞增,而,∴當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,此時(shí)是函數(shù)的極小值點(diǎn),的遞減區(qū)間為,遞增區(qū)間為(2)證明:當(dāng)時(shí),,因此要證當(dāng)時(shí),,只需證明,即令,則,在是單調(diào)遞增,而,∴存在唯一的,使得,當(dāng),單調(diào)遞減,當(dāng),單調(diào)遞增,因此當(dāng)時(shí),函數(shù)取得最小值,,,故,從而,即,結(jié)論成立.【點(diǎn)睛】本題考查了由函數(shù)極值求參數(shù),并根據(jù)導(dǎo)數(shù)判斷函數(shù)的單調(diào)區(qū)間,利用導(dǎo)數(shù)證明不等式恒成立,構(gòu)造函數(shù)法的綜合應(yīng)用,屬于難題.21.(1)(2)的遞減區(qū)間為和【解析】

(1)化簡(jiǎn)函數(shù),代入,計(jì)算即可;(2)先利用正弦函數(shù)的圖象與性質(zhì)求出函數(shù)的單調(diào)遞減區(qū)間,再結(jié)合即可求出.【詳解】(1),從而.(2)令.解得.即函數(shù)的所有減區(qū)間為,考慮到,取,可得,,故的遞減區(qū)間為和.【點(diǎn)睛】本題主要考查了三角函數(shù)的恒等變形,正弦函數(shù)的圖象與性質(zhì),屬于中檔題.22.(1)(2)【解析】

(1)先分別表示出,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論