版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖若輸入,則輸出的的值為()A. B. C. D.2.設復數(shù)滿足,則()A.1 B.-1 C. D.3.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如圖,白圈為陽數(shù),黑點為陰數(shù),若從陰數(shù)和陽數(shù)中各取一數(shù),則其差的絕對值為5的概率為A. B. C. D.4.△ABC的內(nèi)角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或5.歷史上有不少數(shù)學家都對圓周率作過研究,第一個用科學方法尋求圓周率數(shù)值的人是阿基米德,他用圓內(nèi)接和外切正多邊形的周長確定圓周長的上下界,開創(chuàng)了圓周率計算的幾何方法,而中國數(shù)學家劉徽只用圓內(nèi)接正多邊形就求得的近似值,他的方法被后人稱為割圓術(shù).近代無窮乘積式、無窮連分數(shù)、無窮級數(shù)等各種值的表達式紛紛出現(xiàn),使得值的計算精度也迅速增加.華理斯在1655年求出一個公式:,根據(jù)該公式繪制出了估計圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內(nèi)填入的條件為,則正整數(shù)的最小值是A. B. C. D.6.已知橢圓:的左,右焦點分別為,,過的直線交橢圓于,兩點,若,且的三邊長,,成等差數(shù)列,則的離心率為()A. B. C. D.7.已知復數(shù)滿足(其中為的共軛復數(shù)),則的值為()A.1 B.2 C. D.8.已知雙曲線的一條漸近線經(jīng)過圓的圓心,則雙曲線的離心率為()A. B. C. D.29.若直線與曲線相切,則()A.3 B. C.2 D.10.為比較甲、乙兩名高中學生的數(shù)學素養(yǎng),對課程標準中規(guī)定的數(shù)學六大素養(yǎng)進行指標測驗(指標值滿分為100分,分值高者為優(yōu)),根據(jù)測驗情況繪制了如圖所示的六大素養(yǎng)指標雷達圖,則下面敘述不正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙 B.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學建模素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙 D.甲的六大素養(yǎng)中數(shù)學運算最強11.方程的實數(shù)根叫作函數(shù)的“新駐點”,如果函數(shù)的“新駐點”為,那么滿足()A. B. C. D.12.執(zhí)行下面的程序框圖,如果輸入,,則計算機輸出的數(shù)是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的左右頂點為,以為直徑作圓,為雙曲線右支上不同于頂點的任一點,連接交圓于點,設直線的斜率分別為,若,則_____.14.已知雙曲線的左、右焦點和點為某個等腰三角形的三個頂點,則雙曲線C的離心率為________.15.戊戌年結(jié)束,己亥年伊始,小康,小梁,小譚,小楊,小劉,小林六人分成四組,其中兩個組各2人,另兩個組各1人,分別奔赴四所不同的學校參加演講,則不同的分配方案有_________種(用數(shù)字作答),16.的二項展開式中,含項的系數(shù)為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設數(shù)列的前列項和為,已知.(1)求數(shù)列的通項公式;(2)求證:.18.(12分)如圖,已知橢圓經(jīng)過點,且離心率,過右焦點且不與坐標軸垂直的直線與橢圓相交于兩點.(1)求橢圓的標準方程;(2)設橢圓的右頂點為,線段的中點為,記直線的斜率分別為,求證:為定值.19.(12分)某職稱晉級評定機構(gòu)對參加某次專業(yè)技術(shù)考試的100人的成績進行了統(tǒng)計,繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級成功,否則晉級失?。畷x級成功晉級失敗合計男16女50合計(1)求圖中的值;(2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認為“晉級成功”與性別有關?(3)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數(shù)為,求的分布列與數(shù)學期望.(參考公式:,其中)0.400.250.150.100.050.0250.7801.3232.0722.7063.8415.02420.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為(),將曲線向左平移2個單位長度得到曲線.(1)求曲線的普通方程和極坐標方程;(2)設直線與曲線交于兩點,求的取值范圍.21.(12分)如圖是圓的直徑,垂直于圓所在的平面,為圓周上不同于的任意一點(1)求證:平面平面;(2)設為的中點,為上的動點(不與重合)求二面角的正切值的最小值22.(10分)如圖在直角中,為直角,,,分別為,的中點,將沿折起,使點到達點的位置,連接,,為的中點.(Ⅰ)證明:面;(Ⅱ)若,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由程序語言依次計算,直到時輸出即可【詳解】程序的運行過程為當n=2時,時,,此時輸出.故選:C【點睛】本題考查由程序框圖計算輸出結(jié)果,屬于基礎題2、B【解析】
利用復數(shù)的四則運算即可求解.【詳解】由.故選:B【點睛】本題考查了復數(shù)的四則運算,需掌握復數(shù)的運算法則,屬于基礎題.3、A【解析】
陽數(shù):,陰數(shù):,然后分析陰數(shù)和陽數(shù)差的絕對值為5的情況數(shù),最后計算相應概率.【詳解】因為陽數(shù):,陰數(shù):,所以從陰數(shù)和陽數(shù)中各取一數(shù)差的絕對值有:個,滿足差的絕對值為5的有:共個,則.故選:A.【點睛】本題考查實際背景下古典概型的計算,難度一般.古典概型的概率計算公式:.4、D【解析】
由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎題.5、B【解析】
初始:,,第一次循環(huán):,,繼續(xù)循環(huán);第二次循環(huán):,,此時,滿足條件,結(jié)束循環(huán),所以判斷框內(nèi)填入的條件可以是,所以正整數(shù)的最小值是3,故選B.6、C【解析】
根據(jù)等差數(shù)列的性質(zhì)設出,,,利用勾股定理列方程,結(jié)合橢圓的定義,求得.再利用勾股定理建立的關系式,化簡后求得離心率.【詳解】由已知,,成等差數(shù)列,設,,.由于,據(jù)勾股定理有,即,化簡得;由橢圓定義知的周長為,有,所以,所以;在直角中,由勾股定理,,∴離心率.故選:C【點睛】本小題主要考查橢圓離心率的求法,考查橢圓的定義,考查等差數(shù)列的性質(zhì),屬于中檔題.7、D【解析】
按照復數(shù)的運算法則先求出,再寫出,進而求出.【詳解】,,.故選:D【點睛】本題考查復數(shù)的四則運算、共軛復數(shù)及復數(shù)的模,考查基本運算能力,屬于基礎題.8、B【解析】
求出圓心,代入漸近線方程,找到的關系,即可求解.【詳解】解:,一條漸近線,故選:B【點睛】利用的關系求雙曲線的離心率,是基礎題.9、A【解析】
設切點為,對求導,得到,從而得到切線的斜率,結(jié)合直線方程的點斜式化簡得切線方程,聯(lián)立方程組,求得結(jié)果.【詳解】設切點為,∵,∴由①得,代入②得,則,,故選A.【點睛】該題考查的是有關直線與曲線相切求參數(shù)的問題,涉及到的知識點有導數(shù)的幾何意義,直線方程的點斜式,屬于簡單題目.10、D【解析】
根據(jù)所給的雷達圖逐個選項分析即可.【詳解】對于A,甲的數(shù)據(jù)分析素養(yǎng)為100分,乙的數(shù)據(jù)分析素養(yǎng)為80分,故甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙,故A正確;對于B,乙的數(shù)據(jù)分析素養(yǎng)為80分,數(shù)學建模素養(yǎng)為60分,故乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學建模素養(yǎng),故B正確;對于C,甲的六大素養(yǎng)整體水平平均得分為,乙的六大素養(yǎng)整體水平均得分為,故C正確;對于D,甲的六大素養(yǎng)中數(shù)學運算為80分,不是最強的,故D錯誤;故選:D【點睛】本題考查了樣本數(shù)據(jù)的特征、平均數(shù)的計算,考查了學生的數(shù)據(jù)處理能力,屬于基礎題.11、D【解析】
由題設中所給的定義,方程的實數(shù)根叫做函數(shù)的“新駐點”,根據(jù)零點存在定理即可求出的大致范圍【詳解】解:由題意方程的實數(shù)根叫做函數(shù)的“新駐點”,對于函數(shù),由于,,設,該函數(shù)在為增函數(shù),,,在上有零點,故函數(shù)的“新駐點”為,那么故選:.【點睛】本題是一個新定義的題,理解定義,分別建立方程解出存在范圍是解題的關鍵,本題考查了推理判斷的能力,屬于基礎題..12、B【解析】
先明確該程序框圖的功能是計算兩個數(shù)的最大公約數(shù),再利用輾轉(zhuǎn)相除法計算即可.【詳解】本程序框圖的功能是計算,中的最大公約數(shù),所以,,,故當輸入,,則計算機輸出的數(shù)是57.故選:B.【點睛】本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)雙曲線上的點的坐標關系得,交圓于點,所以,建立等式,兩式作商即可得解.【詳解】設,交圓于點,所以易知:即.故答案為:【點睛】此題考查根據(jù)雙曲線上的點的坐標關系求解斜率關系,涉及雙曲線中的部分定值結(jié)論,若能熟記常見二級結(jié)論,此題可以簡化計算.14、【解析】
由等腰三角形及雙曲線的對稱性可知或,進而利用兩點間距離公式求解即可.【詳解】由題設雙曲線的左、右焦點分別為,,因為左、右焦點和點為某個等腰三角形的三個頂點,當時,,由可得,等式兩邊同除可得,解得(舍);當時,,由可得,等式兩邊同除可得,解得,故答案為:【點睛】本題考查求雙曲線的離心率,考查雙曲線的幾何性質(zhì)的應用,考查分類討論思想.15、1080【解析】
按照先分組,再分配的分式,先將六人分成四組,其中兩個組各2人,另兩個組各1人有種,再分別奔赴四所不同的學校參加演講有種,然后用分步計數(shù)原理求解.【詳解】將六人分成四組,其中兩個組各2人,另兩個組各1人有種,再分別奔赴四所不同的學校參加演講有種,則不同的分配方案有種.故答案為:1080【點睛】本題主要考查分組分配問題,還考查了理解辨析的能力,屬于中檔題.16、【解析】
寫出二項展開式的通項,然后取的指數(shù)為求得的值,則項的系數(shù)可求得.【詳解】,由,可得.含項的系數(shù)為.故答案為:【點睛】本題考查了二項式定理展開式、需熟記二項式展開式的通項公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)由已知可得,構(gòu)造等比數(shù)列即可求出通項公式;(2)當時,由,可求,時,由,可證,驗證時,不等式也成立,即可得證.【詳解】(1)由可得,,即,所以,解得,(2)當時,,,當時,,綜上,由可得遞增,,時;所以,綜上:故.【點睛】本題主要考查了遞推數(shù)列求通項公式,利用放縮法證明不等式,涉及等比數(shù)列的求和公式,屬于難題.18、(1);(2)詳見解析.【解析】
(1)由橢圓離心率、系數(shù)關系和已知點坐標構(gòu)建方程組,求得,代入標準方程中即可;(2)依題意,直線的斜率存在,且不為0,設其為,則直線的方程為,設,,通過聯(lián)立直線方程與橢圓方程化簡整理和中點的坐標表示用含k的表達式表示,,進而表示;由韋達定理表示根與系數(shù)的關系進而表示用含k的表達式表示,最后做比即得證.【詳解】(1)設橢圓的焦距為,則,即,所以.依題意,,即,解得,所以,.所以橢圓的標準方程為.(2)證明:依題意,直線的斜率存在,且不為0,設其為,則直線的方程為,設,.與橢圓聯(lián)立整理得,故所以,,所以.又,所以為定值,得證.【點睛】本題考查由離心率求橢圓的標準方程,還考查了橢圓中的定值問題,屬于較難題.19、(1);(2)列聯(lián)表見解析,有超過的把握認為“晉級成功”與性別有關;(3)分布列見解析,=3【解析】
(1)由頻率和為1,列出方程求的值;(2)由頻率分布直方圖求出晉級成功的頻率,計算晉級成功的人數(shù),填寫列聯(lián)表,計算觀測值,對照臨界值得出結(jié)論;(3)由頻率分布直方圖知晉級失敗的頻率,將頻率視為概率,知隨機變量服從二項分布,計算對應的概率值,寫出分布列,計算數(shù)學期望.【詳解】解:(1)由頻率分布直方圖各小長方形面積總和為1,可知,解得;(2)由頻率分布直方圖知,晉級成功的頻率為,所以晉級成功的人數(shù)為(人),填表如下:晉級成功晉級失敗合計男163450女94150合計2575100假設“晉級成功”與性別無關,根據(jù)上表數(shù)據(jù)代入公式可得,所以有超過的把握認為“晉級成功”與性別有關;(3)由頻率分布直方圖知晉級失敗的頻率為,將頻率視為概率,則從本次考試的所有人員中,隨機抽取1人進行約談,這人晉級失敗的概率為0.75,所以可視為服從二項分布,即,,故,,,,.所以的分布列為:01234數(shù)學期望為.或().【點睛】本題考查了頻率分布直方圖和離散型隨機變量的分布列、數(shù)學期望的應用問題,屬于中檔題.若離散型隨機變量,則.20、(1)的極坐標方程為,普通方程為;(2)【解析】
(1)根據(jù)三角函數(shù)恒等變換可得,,可得曲線的普通方程,再運用圖像的平移得依題意得曲線的普通方程為,利用極坐標與平面直角坐標互化的公式可得方程;(2)法一:將代入曲線的極坐標方程得,運用韋達定理可得,根據(jù),可求得的范圍;法二:設直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),代入曲線的普通方程得,運用韋達定理可得,根據(jù),可求得的范圍;【詳解】(1),,即曲線的普通方程為,依題意得曲線的普通方程為,令,得曲線的極坐標方程為;(2)法一:將代入曲線的極坐標方程得,則,,,異號,,,;法二:設直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),代入曲線的普通方程得,則,,,異號,,.【點睛】本題考查參數(shù)方程與普通方程,極坐標方程與平面直角坐標方程之間的轉(zhuǎn)化,求解幾何量的取值范圍,關鍵在于明確極坐標系中極徑和極角的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學年廣西百色市德保縣數(shù)學三年級第一學期期末統(tǒng)考試題含解析
- 信息技術(shù)在小學教育中的應用與挑戰(zhàn)
- 2025中國郵政集團云南省分公司第一期招考見習人員79人高頻重點提升(共500題)附帶答案詳解
- 2025中國聯(lián)通河南省分公司春季校園招聘68人高頻重點提升(共500題)附帶答案詳解
- 2025中國移動總部春季校園招聘高頻重點提升(共500題)附帶答案詳解
- 2025中國電信??诜止菊衅父哳l重點提升(共500題)附帶答案詳解
- 2025中國煙草總公司鄭州煙草研究院招聘6人(第二批)高頻重點提升(共500題)附帶答案詳解
- 2025中國建筑第七工程局限公司南方公司校園招聘高頻重點提升(共500題)附帶答案詳解
- 2025中國華電集團天順礦業(yè)限責任公司招聘20人高頻重點提升(共500題)附帶答案詳解
- 2025中國人壽保險股份限公司銅仁分公司招聘79人高頻重點提升(共500題)附帶答案詳解
- 中藥藥劑學智慧樹知到答案2024年中國藥科大學
- 專業(yè)群動態(tài)調(diào)整實施報告
- 員工調(diào)崗調(diào)薪申請表
- 叉車日常使用狀況點檢記錄表(日常檢查記錄)
- 軟質(zhì)聚氨酯泡沫配方計算(課堂PPT)
- 一片自然風景就是一個心靈的世界
- 巷道及采區(qū)車場設計
- 農(nóng)村幼兒園如何合理利用本土資源PPT課件
- 消防埋地管道施工專項方案(完整版)
- '十五'863計劃1167個項目成果匯總
- 量子力學算符的對易關系
評論
0/150
提交評論