版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.如圖,該幾何體的主視圖是()A. B. C. D.2.如圖,在矩形ABCD中,AB=3,BC=6,若點E,F(xiàn)分別在AB,CD上,且BE=2AE,DF=2FC,G,H分別是AC的三等分點,則四邊形EHFG的面積為()A.1 B. C.2 D.43.已知三角形兩邊長為4和7,第三邊的長是方程的一個根,則第三邊長是()A.5 B.5或11 C.6 D.114.關于x的方程有一個根是2,則另一個根等于()A.-4 B. C. D.5.在平面直角坐標系xOy中,若點P的橫坐標和縱坐標相等,則稱點P為完美點.已知二次函數(shù)的圖象上有且只有一個完美點,且當時,函數(shù)的最小值為﹣3,最大值為1,則m的取值范圍是()A. B. C. D.6.雙曲線y=在第一、三象限內(nèi),則k的取值范圍是()A.k>0 B.k<0 C.k>1 D.k<17.如圖,已知∠BAC=∠ADE=90°,AD⊥BC,AC=DC.關于優(yōu)弧CAD,下列結(jié)論正確的是()A.經(jīng)過點B和點E B.經(jīng)過點B,不一定經(jīng)過點EC.經(jīng)過點E,不一定經(jīng)過點B D.不一定經(jīng)過點B和點E8.在△ABC中,若cosA=,tanB=,則這個三角形一定是()A.銳角三角形 B.直角三角形 C.鈍角三角形 D.等腰三角形9.單靠“死”記還不行,還得“活”用,姑且稱之為“先死后活”吧。讓學生把一周看到或聽到的新鮮事記下來,摒棄那些假話套話空話,寫出自己的真情實感,篇幅可長可短,并要求運用積累的成語、名言警句等,定期檢查點評,選擇優(yōu)秀篇目在班里朗讀或展出。這樣,即鞏固了所學的材料,又鍛煉了學生的寫作能力,同時還培養(yǎng)了學生的觀察能力、思維能力等等,達到“一石多鳥”的效果。如圖,由兩個相同的正方體和一個圓錐體組成一個立體圖形,其左視圖是(
)A. B. C. D.10.如圖,在中,是的中點,,,則的長為()A. B.4 C. D.二、填空題(每小題3分,共24分)11.如圖,E是?ABCD的BC邊的中點,BD與AE相交于F,則△ABF與四邊形ECDF的面積之比等于_____.12.如果3是數(shù)和6的比例中項,那么__________13.如圖,C為半圓內(nèi)一點,O為圓心,直徑AB長為1cm,∠BOC=60°,∠BCO=90°,將△BOC繞圓心O逆時針旋轉(zhuǎn)至△B′OC′,點C′在OA上,則邊BC掃過區(qū)域(圖中陰影部分)的面積為_________cm1.14.已知反比例函數(shù),當時,隨的增大而增大,則的取值范圍為_______.15.已知:,則的值是_______.16.如圖,中,,且,,則___________17.如圖,直線:()與,軸分別交于,兩點,以為邊在直線的上方作正方形,反比例函數(shù)和的圖象分別過點和點.若,則的值為______.18.已知﹣3是一元二次方程x2﹣4x+c=0的一個根,則方程的另一個根是_____三、解答題(共66分)19.(10分)如圖,平行四邊形ABCD的頂點A在y軸上,點B、C在x軸上;OA、OB長是關于x的一元二次方程x2﹣7x+12=0的兩個根,且OA>OB,BC=6;(1)寫出點D的坐標;(2)若點E為x軸上一點,且S△AOE=,①求點E的坐標;②判斷△AOE與△AOD是否相似并說明理由;(3)若點M是坐標系內(nèi)一點,在直線AB上是否存在點F,使以A、C、F、M為頂點的四邊形為菱形?若存在,請直接寫出F點的坐標;若不存在,請說明理由.20.(6分)從三角形一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.(1)如圖1,在△ABC中,∠A=40°,∠B=60°,當∠BCD=40°時,證明:CD為△ABC的完美分割線.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割線,且△ACD是以AC為底邊的等腰三角形,求∠ACB的度數(shù).(3)如圖2,在△ABC中,AC=2,BC=2,CD是△ABC的完美分割線,△ACD是以CD為底邊的等腰三角形,求CD的長.21.(6分)如圖,,是的兩條弦,點分別在,上,且,是的中點.求證:(1).(2)過作于點.當,時,求的半徑.22.(8分)如圖,的內(nèi)接四邊形兩組對邊的延長線分別相交于點、.(1)若時,求證:;(2)若時,求的度數(shù).23.(8分)在“書香校園”活動中,某校為了解學生家庭藏書情況,隨機抽取本校部分學生進行調(diào)查,并繪制成部分統(tǒng)計圖表如下:類別家庭藏書m本學生人數(shù)A0≤m≤2520B26≤m≤50aC51≤m≤7550Dm≥7666根據(jù)以上信息,解答下列問題:(1)該調(diào)查的樣本容量為,a=;(2)隨機抽取一位學生進行調(diào)查,剛好抽到A類學生的概率是;(3)若該校有2000名學生,請估計全校學生中家庭藏書不少于76本的人數(shù).24.(8分)[閱讀理解]對于任意正實數(shù)、,∵,∴,∴(只有當時,).即當時,取值最小值,且最小值為.根據(jù)上述內(nèi)容,回答下列問題:問題1:若,當______時,有最小值為______;問題2:若函數(shù),則當______時,函數(shù)有最小值為______.25.(10分)已知等邊△ABC的邊長為2,(1)如圖1,在邊BC上有一個動點P,在邊AC上有一個動點D,滿足∠APD=60°,求證:△ABP~△PCD(2)如圖2,若點P在射線BC上運動,點D在直線AC上,滿足∠APD=120°,當PC=1時,求AD的長(3)在(2)的條件下,將點D繞點C逆時針旋轉(zhuǎn)120°到點D',如圖3,求△D′AP的面積.26.(10分)如圖,在中,是邊上的一點,若,求證:.
參考答案一、選擇題(每小題3分,共30分)1、C【解析】找到從正面看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在主視圖中.【詳解】解:從正面看易得是1個大正方形,大正方形左上角有個小正方形.故答案選:C.【點睛】本題主要考查了三視圖的知識,主視圖是從物體的正面看得到的視圖,難度適中.2、C【分析】如圖,延長FH交AB于點M,由BE=2AE,DF=2FC,G、H分別是AC的三等分點,證明EG//BC,F(xiàn)H//AD,進而證明△AEG∽△ABC,△CFH∽△CAD,進而證明四邊形EHFG為平行四邊形,再根據(jù)平行四邊形的面積公式求解即可.【詳解】如圖,延長FH交AB于點M,∵BE=2AE,DF=2FC,AB=AE+BE,CD=CF+DF,∴AE:AB=1:3,CF:CD=1:3,又∵G、H分別是AC的三等分點,∴AG:AC=CH:AC=1:3,∴AE:AB=AG:AC,CF:CD=CH:CA,∴EG//BC,F(xiàn)H//AD,∴△AEG∽△ABC,△CFH∽△CDA,BM:AB=CF:CD=1:3,∠EMH=∠B,∴EG:BC=AE:AB=1:3,HF:AD=CF:CD=1:3,∵四邊形ABCD是矩形,AB=3,BC=6,∴CD=AB=3,AD=BC=6,∠B=90°,∴AE=1,EG=2,CF=1,HF=2,BM=1,∴EM=3-1-1=1,EG=FH,∴EGFH,∴四邊形EHFG為平行四邊形,∴S四邊形EHFG=2×1=2,故選C.【點睛】本題考查了矩形的性質(zhì),相似三角形的判定與性質(zhì),平行四邊形的判定與性質(zhì),熟練掌握和靈活運用相關內(nèi)容是解題的關鍵.3、A【分析】求出方程的解x1=11,x2=1,分為兩種情況:①當x=11時,此時不符合三角形的三邊關系定理;②當x=1時,此時符合三角形的三邊關系定理,即可得出答案.【詳解】解:x2-16x+11=0,
(x-11)(x-1)=0,
x-11=0,x-1=0,
解得:x1=11,x2=1,
①當x=11時,
∵4+7=11,
∴此時不符合三角形的三邊關系定理,
∴11不是三角形的第三邊;
②當x=1時,三角形的三邊是4、7、1,
∵此時符合三角形的三邊關系定理,
∴第三邊長是1.
故選:A.【點睛】本題考查了解一元二次方程和三角形的三邊關系定理的應用,注意:求出的第三邊的長,一定要看看是否符合三角形的三邊關系定理,即a+b>c,b+c>a,a+c>b,題型較好,但是一道比較容易出錯的題目.4、B【分析】利用根與系數(shù)的關系,,由一個根為2,以及a,c的值求出另一根即可.【詳解】解:∵關于x的方程有一個根是2,∴,即∴,故選:B.【點睛】此題主要考查了根與系數(shù)的關系,熟練地運用根與系數(shù)的關系可以大大降低計算量.5、C【分析】根據(jù)完美點的概念令ax2+4x+c=x,即ax2+3x+c=0,由題意方程有兩個相等的實數(shù)根,求得4ac=9,再根據(jù)方程的根為=,從而求得a=-1,c=-,所以函數(shù)y=ax2+4x+c-=-x2+4x-3,根據(jù)函數(shù)解析式求得頂點坐標與縱坐標的交點坐標,根據(jù)y的取值,即可確定x的取值范圍.【詳解】解:令ax2+4x+c=x,即ax2+3x+c=0,
由題意,△=32-4ac=0,即4ac=9,
又方程的根為=,
解得a=-1,c=-,
故函數(shù)y=ax2+4x+c-=-x2+4x-3,
如圖,該函數(shù)圖象頂點為(2,1),與y軸交點為(0,-3),由對稱性,該函數(shù)圖象也經(jīng)過點(4,-3).由于函數(shù)圖象在對稱軸x=2左側(cè)y隨x的增大而增大,在對稱軸右側(cè)y隨x的增大而減小,且當0≤x≤m時,函數(shù)y=-x2+4x-3的最小值為-3,最大值為1,
∴2≤m≤4,
故選:C.【點睛】本題是二次函數(shù)的綜合題,考查了二次函數(shù)圖象上點的坐標特征,二次函數(shù)的性質(zhì)以及根的判別式等知識,利用分類討論以及數(shù)形結(jié)合的數(shù)學思想得出是解題關鍵.6、C【分析】根據(jù)反比例函數(shù)的性質(zhì),由于圖象在第一三象限,所以k-1>0,解不等式求解即可.【詳解】解:∵函數(shù)圖象在第一、三象限,∴k﹣1>0,解得k>1.故選:C.【點睛】本題考查了反比例函數(shù)的性質(zhì),對于反比例函數(shù)y=(k≠0),(1)k>0,反比例函數(shù)圖象在一、三象限;(2)k<0,反比例函數(shù)圖象在第二、四象限內(nèi).7、B【分析】由條件可知BC垂直平分AD,可證△ABC≌△DBC,可得∠BAC=∠BDC=90°故∠BAC+∠BDC=180°則A、B、D、C四點共圓,即可得結(jié)論.【詳解】解:如圖:設AD、BC交于M∵AC=CD,AD⊥BC∴M為AD中點∴BC垂直平分AD∴AB=DB∵BC=BC,AC=CD∴△ABC≌△DBC∴∠BAC=∠BDC=90°∴∠BAC+∠BDC=180°∴A、B、D、C四點共圓∴優(yōu)弧CAD經(jīng)過B,但不一定經(jīng)過E故選B【點睛】本題考查了四點共圓,掌握四點共圓的判定是解題的關鍵.8、A【解析】試題解析:∵cosA=,tanB=,∴∠A=45°,∠B=60°.∴∠C=180°-45°-60°=75°.∴△ABC為銳角三角形.故選A.9、B【解析】根據(jù)左視圖的定義“在側(cè)面內(nèi),從左往右觀察物體得到的視圖”判斷即可.【詳解】根據(jù)左視圖的定義,從左往右觀察,兩個正方體得到的視圖是一個正方形,圓錐得到的視圖是一個三角形,由此只有B符合故選:B.【點睛】本題考查了三視圖中的左視圖的定義,熟記定義是解題關鍵.另外,主視圖和俯視圖的定義也是??键c.10、D【解析】根據(jù)相似三角形的判定和性質(zhì)定理和線段中點的定義即可得到結(jié)論.【詳解】解:∵∠ADC=∠BAC,∠C=∠C,
∴△BAC∽△ADC,
∴,
∵D是BC的中點,BC=6,
∴CD=3,
∴AC2=6×3=18,
∴AC=,
故選:D.【點睛】本題考查相似三角形的判定和性質(zhì),線段中點的定義,熟練掌握相似三角形的判定和性質(zhì)是解題的關鍵.二、填空題(每小題3分,共24分)11、【分析】△ABF和△ABE等高,先判斷出,進而算出,△ABF和△AFD等高,得,由,即可解出.【詳解】解:∵四邊形ABCD為平行四邊形,∴AD∥BC,AD=BC,又∵E是?ABCD的BC邊的中點,∴,∵△ABE和△ABF同高,∴,∴S△ABE=S△ABF,設?ABCD中,BC邊上的高為h,∵S△ABE=×BE×h,S?ABCD=BC×h=2×BE×h,∴S?ABCD=4S△ABE=4×S△ABF=6S△ABF,∵△ABF與△ADF等高,∴,∴S△ADF=2S△ABF,∴S四邊形ECDF=S?ABCD﹣S△ABE﹣S△ADF=S△ABF,∴,故答案為:.【點睛】本題考查了相似三角的面積類題型,運用了線段成比例求面積之間的比值,靈活運用線段比是解決本題的關鍵.12、【分析】根據(jù)比例的基本性質(zhì)知道,在比例里兩個外項的積等于兩個內(nèi)項的積.【詳解】因為,在比例里兩個外項的積等于兩個內(nèi)項的積,所以,6x=3×3,x=9÷6,x=,故答案為:.【點睛】本題考查了比例中項的概念,熟練掌握概念是解題的關鍵.13、【分析】根據(jù)直角三角形的性質(zhì)求出OC、BC,根據(jù)扇形面積公式計算即可.【詳解】解:∵∠BOC=60°,∠BCO=90°,∴∠OBC=30°,∴OC=OB=1則邊BC掃過區(qū)域的面積為:故答案為.【點睛】考核知識點:扇形面積計算.熟記公式是關鍵.14、m>1【分析】根據(jù)反比例函數(shù),如果當x>0時,y隨自變量x的增大而增大,可以得到1-m<0,從而可以解答本題.【詳解】解:∵反比例函數(shù),當x>0時,y隨x的增大而增大,∴1-m<0,
解得,m>1,
故答案為:m>1.【點睛】本題考查反比例函數(shù)的性質(zhì),解答本題的關鍵是明確題意,利用反比例函數(shù)的性質(zhì)解答.15、【分析】根據(jù)已知等式設a=2k,b=3k,代入式子可求出答案.【詳解】解:由,可設a=2k,b=3k,(k≠0),故:,故答案:.【點睛】此題主要考查比例的性質(zhì),a、b都用k表示是解題的關鍵.16、1【分析】由及,得,再證△ADE∽△ABC,推出,代入值,即可求出BC.【詳解】解:∵,,
∴∵DE∥BC,
∴△ADE∽△ABC,
∴,
∵,
∴,則BC=1,
故答案為:1.【點睛】本題考查了相似三角形的性質(zhì)和判定的應用,注意:相似三角形的對應邊的比相等.17、-1【分析】作CH⊥y軸于點H,證明△BAO≌△CBH,可得OA=BH=-3b,OB=CH=-b,可得點C的坐標為(-b,-2b),點D的坐標為(2b,-3b),代入反比例函數(shù)的解析式,即可得出k2的值.【詳解】解:如圖,作CH⊥y軸于點H,
∵四邊形ABCD為正方形,
∴AB=BC,∠AOB=∠BHC=10°,∠ABC=10°
∴∠BAO=10°-∠OBA=∠CBH,
∴△BAO≌△CBH(AAS),
∴OA=BH,OB=CH,
∵直線l:(b<0)與x,y軸分別交于A,B兩點,
∴A(3b,0),B(0,b),
∵b<0,
∴BH=-3b,CH=-b,
∴點C的坐標為(-b,-2b),
同理,點D的坐標為(2b,-3b),
∵k1=3,
∴(-b)×(-2b)=3,即2b2=3,
∴k2=2b×(-3b)=-6b2=-1.
故答案為:-1.【點睛】本題考查反比例函數(shù)圖象上點的坐標的特征,直線與坐標軸的交點,正方形的性質(zhì),全等三角形的判定和性質(zhì).解題的關鍵是用b來表示出點C,D的坐標.18、2.【解析】設另一個根為t,根據(jù)根與系數(shù)的關系得到3+t=4,然后解一次方程即可.【詳解】設另一個根為t,根據(jù)題意得3+t=4,解得t=2,則方程的另一個根為2.故答案為2.【點睛】本題考查了根與系數(shù)的關系:若x2,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x2+x2=-,x2x2=.三、解答題(共66分)19、(1)(6,4);(2)①點E坐標或;②△AOE與△AOD相似,理由見解析;(3)存在,F(xiàn)1(﹣3,0);F2(3,8);;【分析】(1)求出方程x2﹣7x+12=0的兩個根,OA=4,OB=3,可求點A坐標,即可求點D坐標;(2)①設點E(x,0),由三角形面積公式可求解;②由兩組對邊對應成比例,且夾角相等的兩個三角形相似,可證△AOE∽△DAO;(3)根據(jù)菱形的性質(zhì),分AC與AF是鄰邊并且點F在射線AB上與射線BA上兩種情況,以及AC與AF分別是對角線的情況分別進行求解計算.【詳解】解:(1)∵OA、OB長是關于x的一元二次方程x2﹣7x+12=0的兩個根,∴OA=4,OB=3,∴點B(﹣3,0),點A(0,4),且AD∥BC,AD=BC=6,∴點D(6,4)故答案為:(6,4);(2)①設點E(x,0),∵,∴∴∴點E坐標或②△AOE與△AOD相似,理由如下:在△AOE與△DAO中,,,∴.且∠DAO=∠AOE=90°,∴△AOE∽△DAO;(3)存在,∵OA=4,OB=3,BC=6,∴,OB=OC=3,且OA⊥BO,∴AB=AC=5,且AO⊥BO,∴AO平分∠BAC,①AC、AF是鄰邊,點F在射線AB上時,AF=AC=5,所以點F與B重合,即F(﹣3,0),②AC、AF是鄰邊,點F在射線BA上時,M應在直線AD上,且FC垂直平分AM,點F(3,8).③AC是對角線時,做AC垂直平分線L,AC解析式為,直線L過(,2),且k值為(平面內(nèi)互相垂直的兩條直線k值乘積為﹣1),L解析式為y=x+,聯(lián)立直線L與直線AB求交點,∴F(﹣,﹣),④AF是對角線時,過C做AB垂線,垂足為N,根據(jù)等積法求,勾股定理得出,,做A關于N的對稱點即為F,,過F做y軸垂線,垂足為G,,∴F(﹣,).綜上所述:F1(﹣3,0);F2(3,8);;.【點睛】本題是相似形綜合題,考查了解一元二次方程,相似三角形的性質(zhì)與判定,待定系數(shù)法求函數(shù)解析式,綜合性較強,(3)求點F要根據(jù)AC與AF是鄰邊與對角線的情況進行討論,不要漏解.20、(1)證明見解析;(2)∠ACB=96°;(3)CD的長為-1.【分析】(1)根據(jù)三角形內(nèi)角和定理可求出∠ACB=80°,進而可得∠ACD=40°,即可證明AD=CD,由∠BCD=∠A=40°,∠B為公共角可證明三角形BCD∽△BAC,即可得結(jié)論;(2)根據(jù)等腰三角形的性質(zhì)可得∠ACD=∠A=48°,根據(jù)相似三角形的性質(zhì)可得∠BCD=∠A=48°,進而可得∠ACB的度數(shù);(3)由相似三角形的性質(zhì)可得∠BCD=∠A,由AC=BC=2可得∠A=∠B,即可證明∠BCD=∠B,可得BD=CD,根據(jù)相似三角形的性質(zhì)列方程求出CD的長即可.【詳解】(1)∵∠A=40°,∠B=60°,∴∠ACB=180°-40°-60°=80°,∵∠BCD=40°,∴∠ACD=∠ACB-∠BCD=40°,∴∠ACD=∠A,∴AD=CD,即△ACD是等腰三角形,∵∠BCD=∠A=40°,∠B為公共角,∴△BCD∽△BAC,∴CD為△ABC的完美分割線.(2)∵△ACD是以AC為底邊的等腰三角形,∴AD=CD,∴∠ACD=∠A=48°,∵CD是△ABC的完美分割線,∴△BCD∽△BAC,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.(3)∵△ACD是以CD為底邊的等腰三角形,∴AD=AC=2,∵CD是△ABC的完美分割線,∴△BCD∽△BAC,∴∠BCD=∠A,,∵AC=BC=2,∴∠A=∠B,∴∠BCD=∠B,∴BD=CD,∴,即,解得:CD=-1或CD=--1(舍去),∴CD的長為-1.【點睛】本題考查相似三角形的判定和性質(zhì)、等腰三角形的性質(zhì)等知識,正確理解完美分割線的定義并熟練掌握相似三角形的性質(zhì)是解題關鍵.21、(1)見解析;(2)【分析】(1)根據(jù)圓心角、弧和弦之間的關系定理證明即可解決問題.
(2)連接OM,利用垂徑定理得出,再根據(jù)勾股定理解決問題即可.【詳解】解:(1)∵為的中點∴,∵,∴∴,∴∴(2)連接OM,∵,∴,∵根據(jù)勾股定理得:∴半徑為【點睛】本題考查圓心角,弧,弦之間的關系,垂徑定理,勾股定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.22、(1)證明見解析;(2)48°.【分析】(1)根據(jù)對頂角與三角形的外角定理即可求解;(2)根據(jù)圓內(nèi)接四邊形得到,再根據(jù)三角形的內(nèi)角和及外角定理即可求解.【詳解】,,,;(2),,.,且,,,.【點睛】此題主要考查圓內(nèi)的角度求解,解題的關鍵是熟知三角形的內(nèi)角和及圓內(nèi)接四邊形的性質(zhì).23、(1)200,64;(2)0.1;(3)全校學生中家庭藏書不少于76本的人數(shù)為660人.【分析】(1)根據(jù)類別C的人數(shù)和所占的百分比即可求出樣本容量,用樣本容量減去A,C,D所對應的人數(shù)即可求出a的值;(2)用類別A所對應的人數(shù)除以樣本容量即可求出抽到A類學生的概率;(3)用2000乘以藏書不少于76本的概率即可得出答案.【詳解】(1)調(diào)查的樣本容量為50÷25%=200(人),a=200﹣20﹣50﹣66=64(人),故答案為200,64;(2)剛好抽到A類學生的概率是20÷200=0.1,故答案為0.1;(3)全校學生中家庭藏書不少于76本的人數(shù):2000×=660(人).答:全校學生中家庭藏書不少于76本的人數(shù)為660人.【點睛】本題主要考查隨機事件的概率,用樣本估計總體等,能夠?qū)y(tǒng)計表和扇形統(tǒng)計圖結(jié)合是解題的關鍵.24、(1)2,4;(2)4,1【分析】(1)根據(jù)題目給的公式去計算最小值和m的取值;(2)先將函數(shù)寫成,對用上面的公式算出最小值,和取最小值時a的值,從而得到函數(shù)的最小值.【詳解】解:(1),當,即(舍負)時,取最小值4,故答案是:2,4;(2),,當,,,(舍去)時,取最小值6,則函數(shù)的最小值是1,故答案是:4,1.【點睛】本題考查實數(shù)的運算,解題的關鍵是根據(jù)題目給的公式進行最值的計算.25、(1)見解析;(2);(3)【分析】(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO/TR 24332:2025 EN Information and documentation - Blockchain and distributed ledger technology (DLT) in relation to authoritative records,records systems and records man
- 《工傷事故管理辦法》課件
- 《服裝品牌設計策劃》課件
- 單位管理制度集合大合集【職工管理篇】
- 單位管理制度集粹匯編【員工管理篇】十篇
- 《學前兒童的注意》課件
- 單位管理制度合并匯編職工管理篇十篇
- 單位管理制度分享合集人力資源管理十篇
- 單位管理制度范文大合集人事管理十篇
- 單位管理制度范例合集【職員管理】
- 機電樣板實施施工方法及工藝要求
- 人音版音樂七年級下冊 4.2.3凱皮拉的小火車 教案教案1000字
- 建設工程工程量清單計價規(guī)范有表格
- 2023版學前教育專業(yè)人才需求調(diào)研報告及人培方案(普招)
- 酒店客房部獎懲制度
- DB43-T 2927-2024 中醫(yī)護理門診建設與管理規(guī)范
- 北師大版九下《直角三角形邊角關系》
- 2024年浙江杭州西湖文化旅游投資集團有限公司招聘筆試參考題庫含答案解析
- 圍手術(shù)期血糖管理指南
- 國際經(jīng)濟學中文版(克魯格曼教材)課件
- 管理方案日間照料中心
評論
0/150
提交評論