版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
知識點考綱下載任意角與弧度制、任意角的三角函數(shù)1.了解任意角的概念、弧度的意義;能正確地進行弧度與角度的換算.2.理解任意角的正弦、余弦、正切的定義.了解余切、正割、余割的定義.同角三角函數(shù)的基本關系式與誘導公式掌握同角三角函數(shù)的基本關系式.掌握正弦、余弦的誘導公式.兩角和與差的公式1.掌握兩角和與兩角差的正弦、余弦、正切公式.掌握二倍角的正弦、余弦、正切公式.2.能正確運用三角公式,進行簡單三角函數(shù)式的化簡、求值和恒等式證明.三角函數(shù)的圖象與性質(zhì)1.了解周期函數(shù)與最小正周期的意義2.理解正弦函數(shù)、余弦函數(shù)、正切函數(shù)的圖象和性質(zhì),會用“五點法”畫正弦函數(shù)、余弦函數(shù)和函數(shù)y=Asin(ωx+φ)的簡圖.函數(shù)y=Asin(ωx+φ)的圖象理解A、ω、φ的物理意義.掌握y=Asin(ωx+φ)(A>0,ω>0)的圖象及性質(zhì).第1課時角的概念及任意角的三角函數(shù)1.角的有關概念(1)從運動的角度看,角可分為
、
和
.(2)從終邊位置來看,可分為
和軸線角.(3)若α與β是終邊相同的角,則β可用α表示為β=α+k·360°,k∈Z(或α+k·2π,k∈Z).正角零角象限角負角2.弧度與角度的互化(1)1弧度的角長度等于
的弧所對的圓心角叫做1弧度的角,用符號
表示.(2)角α的弧度數(shù)半徑長rad1.終邊與坐標軸重合的角α的集合為(
)A.{α|α=k·360°,k∈Z}B.{α|α=k·180°,k∈Z}C.{α|α=k·90°,k∈Z}D.{α|α=k·180°+90°,k∈Z}解析:當角α的終邊在x軸上時,可表示為k·180°,k∈Z.當角α的終邊在y軸上時,可表示為k·180°+90°,k∈Z.∴當角α的終邊在坐標軸上時,可表示為k·90°,k∈Z.答案:
C答案:
B5.若α=k·180°°+45°,k∈Z,則α為第________象限角.解析:當k=2n時,α=n·360°°+45°,當k=(2n+1)時,α=n·360°°+225°,∴α為第一或第三三象限角.答案:一或三[變式訓練]1.已知角θ的終邊上有一一點P(x,-1)(x≠0),且tanθ=-x,求sinθ,cosθ.涉及弧長和扇扇形面積的計計算,可用的的公式有角度度和弧度兩種種表示,其中中弧度表示的的公式結(jié)構(gòu)簡簡單易記好用用.弧長和扇扇形面積的核核心公式是圓圓周長公式C=2πr和圓面積公式式S=πr2,當用圓心角角的弧度數(shù)α代替2π時,即可得到到一般弧長和和扇形面積公公式l=|α|r,S=|α|r2.已知一扇形的的圓心角是α,半徑為R,弧長l.(1)若α=60°,R=10cm,求扇形的弧弧長l.(2)若扇形周長為為20cm,當扇形的圓圓心角α為多少弧度時時,這個扇形形的面積最大大?[變式訓練]2.解答下列各題題:(1)已知扇形的周周長為10cm,面積為4cm2,求扇形圓心心角的弧度數(shù)數(shù);(2)已知一扇形的的圓心角是72°,半徑等于20cm,求扇形的面面積.1.利用終邊相相同的角的集集合S={β|β=2kπ+α,k∈Z}判斷一個角β所在的象限時時,只需把這這個角寫成[0,2π)范圍內(nèi)的一角角α與2π的整數(shù)倍,然然后判斷角α的象限.2.可根據(jù)三角角函數(shù)定義討討論角α在各個象限三三角函數(shù)值的的符號;其記記憶口訣為::一全正,二二正弦,三兩兩切,四余弦弦.3.可利用角α的三角函數(shù)值值在各個象限限的符號記憶憶誘導公式,,使用平方關關系進行三角角函數(shù)求值..(1)若θ=168°,求在[0°,360°)內(nèi)終邊與角角的終終邊相同的角角.(2)若sinθ··cosθθ>0,且tanθ··cosθθ<0,則角θ的終邊落在()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限(2)因為sinθcosθ>0,所以角θ在第一象限或或第三象限,,又tanθcosθ<0,則角θ在第三或第四四象限,故角角θ的終邊落在第第三象限.答案:C[變式訓練]3.(1)點P(tan2007°°,cos2007°)位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限(2)如果α是第三象限的的角,那么--α,2α的終邊落在何何處?解析:(1)∵2007°=360°×6-153°,∴2007°°與-153°的終邊相同,,∴2007°°是第三象限角角,∴tan2007°>0,cos2007°<0.∴P點在第四象限限,故選D.答案:D1.常見的終邊邊相同的角的的表示2.三角函數(shù)線的的應用三角函數(shù)線是是三角函數(shù)的的一種幾何表表示,三角函函數(shù)線體現(xiàn)了了數(shù)形結(jié)合的的思想.例如如,借助三三角角函函數(shù)數(shù)線線可可以以直直接接得得到到sinαα與cosαα的大大小小關關系系..在在直直角角坐坐標標系系內(nèi)內(nèi)作作直直線線y=x(如圖圖所所示示),則則有有::(1)當角角α的終終邊邊落落在在直直線線y=x上時時,,sinαα=cosαα;(2)當角角α的終終邊邊落落在在直直線線y=x的上上方方時時,,sinαα>cosαα;(3)當角角α的終終邊邊落落在在直直線線y=x的下下方方時時,,sinαα<cosαα.通過過對對近近三三年年高高考考試試題題的的統(tǒng)統(tǒng)計計分分析析可可以以看看出出以以下下的的命命題題規(guī)規(guī)律律::1.考考查查熱熱點點::三三角角函函數(shù)數(shù)的的定定義義..2.考考查查形形式式::選選擇擇題題、、填填空空題題和和解解答答題題均均可可能能出出現(xiàn)現(xiàn),,但但以以客客觀觀題題為為主主,,屬屬于于低低中中檔檔題題目目..3.考考查查角角度度::一是是以以三三角角函函數(shù)數(shù)的的定定義義為為載載體體,,求求三三角角函函數(shù)數(shù)的的值值..二是是三三角角函函數(shù)數(shù)值值符符號號的的判判定定,,主主要要體體現(xiàn)現(xiàn)在在求求函函數(shù)數(shù)值值中中..4.命命題題趨趨勢勢::在在三三角角綜綜合合題題中中對對本本節(jié)節(jié)知知識識可可能能有有所所涉涉及及..答案案::C[閱后后報報告告]本題題出出題題角角度度新新穎穎,,考考查查了了三三角角函函數(shù)數(shù)的的定定義義及及函函數(shù)數(shù)的的圖圖象象,,試試題題的的難難點點是是不不能能把把P點到到x軸距距離離d表示示為為t的函函數(shù)數(shù)..答案案::A2.(2009··全國國卷卷Ⅱ)若sinαα<0且tanαα>0,則則α是()A.第第一一象象限限角角B.第第二二象象限限角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年伊犁辦理客運從業(yè)資格證模擬考試
- 2024年貴州客運從業(yè)資格證摸擬題
- 2024年東營A1客運從業(yè)資格證
- 2024年呼和浩特道路客運從業(yè)資格證考試
- 2024年河北客運資格證考試題庫app
- 2024年咸陽煙臺客運上崗證考試題
- 2024年萍鄉(xiāng)客運從業(yè)資格證報名考試題目
- 2024年湖南客運從業(yè)資格證培訓考試資料
- 2024年建筑資金借出合同
- 建筑工程概預算編制對工程造價的影響與策略探究
- 大象版一年級科學上冊全冊教案
- 5000字論文范文(推薦十篇)
- 教案評分標準
- 中藥飲片處方點評表
- 《節(jié)能監(jiān)察的概念及其作用》
- 綜合布線系統(tǒng)竣工驗收表
- 蔬菜會員卡策劃營銷推廣方案多篇
- 導管滑脫應急預案及處理流程
- (精選word)三對三籃球比賽記錄表
- 大型火力發(fā)電廠專業(yè)詞匯中英文翻譯大全
- 火電廠生產(chǎn)崗位技術問答1000問(電力檢修)
評論
0/150
提交評論