版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.若反比例函數(shù)y=的圖象經過點(2,﹣1),則k的值為()A.﹣2 B.2 C.﹣ D.2.為了比較甲乙兩足球隊的身高誰更整齊,分別量出每人身高,發(fā)現(xiàn)兩隊的平均身高一樣,甲、乙兩隊的方差分別是1.7、2.4,則下列說法正確的是()A.甲、乙兩隊身高一樣整齊 B.甲隊身高更整齊C.乙隊身高更整齊 D.無法確定甲、乙兩隊身高誰更整齊3.如圖,在正方形ABCD中,點E是CD的中點,點F是BC上的一點,且BF=3CF,連接AE、AF、EF,下列結論:①∠DAE=30°,②△ADE∽△ECF,③AE⊥EF,④AE2=AD?AF,其中正確結論的個數(shù)是()A.1個 B.2個 C.3個 D.4個4.某同學在解關于x的方程ax2+bx+c=0時,只抄對了a=1,b=﹣8,解出其中一個根是x=﹣1.他核對時發(fā)現(xiàn)所抄的c是原方程的c的相反數(shù),則原方程的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.有一個根是x=1 D.不存在實數(shù)根5.關于x的一元二次方程有兩個不相等的實數(shù)根,則a的取值范圍是()A.a>-1 B. C. D.a>-1且6.已知點P(a,m),Q(b,n)都在反比例函數(shù)y=的圖象上,且a<0<b,則下列結論一定正確的是()A.m+n<0 B.m+n>0 C.m<n D.m>n7.某射擊運動員在訓練中射擊了10次,成績如圖所示:下列結論不正確的是()A.眾數(shù)是8 B.中位數(shù)是8 C.平均數(shù)是8.2 D.方差是1.28.如圖,保持△ABC的三個頂點的橫坐標不變,縱坐標都乘﹣1,畫出坐標變化后的三角形,則所得三角形與原三角形的關系是()A.關于x軸對稱B.關于y軸對稱C.將原圖形沿x軸的負方向平移了1個單位D.將原圖形沿y軸的負方向平移了1個單位9.如圖,是坐標原點,菱形頂點的坐標為,頂點在軸的負半軸上,反比例函數(shù)的圖象經過頂點,則的值為()A. B. C. D.10.如圖,正方形ABCD中,BE=FC,CF=2FD,AE、BF交于點G,連接AF,給出下列結論:①AE⊥BF;②AE=BF;③BG=GE;④S四邊形CEGF=S△ABG,其中正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個二、填空題(每小題3分,共24分)11.如圖,已知AD∥EF∥BC,如果AE=2EB,DF=6,那么CD的長為_____.12.若點P(m,-2)與點Q(3,n)關于原點對稱,則=______.13.菱形的兩條對角線分別是,,則菱形的邊長為________,面積為________.14.如圖,在平行四邊形ABCD中,添加一個條件________使平行四邊形ABCD是矩形.15.超市經銷一種水果,每千克盈利10元,每天銷售500千克,經市場調查,若每千克漲價1元,日銷售量減少20千克,現(xiàn)超市要保證每天盈利6000元,每千克應漲價為______元.16.如圖,AB、AC都是圓O的弦,OM⊥AB,ON⊥AC,垂足分別為M、N,如果MN=,那么BC=____________.17.點A(m,n﹣2)與點B(﹣2,n)關于原點對稱,則點A的坐標為_____.18.點在線段上,且.設,則__________.三、解答題(共66分)19.(10分)如圖,從一塊長80厘米,寬60厘米的鐵片中間截去一個小長方形,使截去小長方形的面積是原來鐵片面積的一半,并且剩下的長方框四周的寬度一樣,求這個寬度.20.(6分)為紀念建國70周年,某校舉行班級歌詠比賽,歌曲有:《我愛你,中國》,《歌唱祖國》,《我和我的祖國》(分別用字母A,B,C依次表示這三首歌曲).比賽時,將A,B,C這三個字母分別寫在3張無差別不透明的卡片正面上,洗勻后正面向下放在桌面上,九(1)班班長先從中隨機抽取一張卡片,放回后洗勻,再由九(2)班班長從中隨機抽取一張卡片,進行歌詠比賽.試用畫樹狀圖或列表的方法表示所有可能的結果,并求出九(1)班和九(2)班抽中不同歌曲的概率.21.(6分)不透明袋子中裝有紅、綠小球各一個,除顏色外無其他差別,隨機摸出一個小球后,放回并搖勻,再隨機摸出一個,求下列事件的概率.(1)兩次都摸到紅球;(2)第一次摸到紅球,第二次摸到綠球.22.(8分)如圖,點D,E分別是不等邊△ABC(即AB,BC,AC互不相等)的邊AB,AC的中點.點O是△ABC所在平面上的動點,連接OB,OC,點G,F(xiàn)分別是OB,OC的中點,順次連接點D,G,F(xiàn),E.(1)如圖,當點O在△ABC的內部時,求證:四邊形DGFE是平行四邊形;(2)若四邊形DGFE是菱形,則OA與BC應滿足怎樣的數(shù)量關系?(直接寫出答案,不需要說明理由)23.(8分)如圖,⊙O的直徑AB為10cm,弦BC為6cm,D,E分別是∠ACB的平分線與⊙O,直徑AB的交點,P為AB延長線上一點,且PC=PE.(1)求AC、AD的長;(2)試判斷直線PC與⊙O的位置關系,并說明理由.24.(8分)如圖,在Rt△ABC中,∠C=90°,BC=8,tanB=,點D在BC上,且BD=AD.求AC的長和cos∠ADC的值.25.(10分)游樂園新建的一種新型水上滑道如圖,其中線段表示距離水面(x軸)高度為5m的平臺(點P在y軸上).滑道可以看作反比例函數(shù)圖象的一部分,滑道可以看作是二次函數(shù)圖象的一部分,兩滑道的連接點B為二次函數(shù)的頂點,且點B到水面的距離,點B到y(tǒng)軸的距離是5m.當小明從上而下滑到點C時,與水面的距離,與點B的水平距離.(1)求反比例函數(shù)的關系式及其自變量的取值范圍;(2)求整條滑道的水平距離;(3)若小明站在平臺上相距y軸的點M處,用水槍朝正前方向下“掃射”,水槍出水口N距離平臺,噴出的水流成拋物線形,設這條拋物線的二次項系數(shù)為p,若水流最終落在滑道上(包括B、D兩點),直接寫出p的取值范圍.26.(10分)請回答下列問題.(1)計算:(2)解方程:
參考答案一、選擇題(每小題3分,共30分)1、A【解析】把點(1,-1)代入解析式得-1=,
解得k=-1.
故選A.2、B【解析】根據(jù)方差的意義可作出判斷,方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.【詳解】∵S甲=1.7,S乙=2.4,∴S甲<S乙,∴甲隊成員身高更整齊;故選B.【點睛】此題考查方差,掌握波動越小,數(shù)據(jù)越穩(wěn)定是解題關鍵3、C【分析】根據(jù)題意可得tan∠DAE的值,進而可判斷①;設正方形的邊長為4a,根據(jù)題意用a表示出FC,BF,CE,DE,然后根據(jù)相似三角形的判定方法即可對②進行判斷;在②的基礎上利用相似三角形的性質即得∠DAE=∠FEC,進一步利用正方形的性質即可得到∠DEA+∠FEC=90°,進而可判斷③;利用相似三角形的性質即可判斷④.【詳解】解:∵四邊形ABCD是正方形,E為CD中點,∴CE=ED=DC=AD,∴tan∠DAE=,∴∠DAE≠30°,故①錯誤;設正方形的邊長為4a,則FC=a,BF=3a,CE=DE=2a,∴,∴,又∠D=∠C=90°,∴△ADE∽△ECF,故②正確;∵△ADE∽△ECF,∴∠DAE=∠FEC,∵∠DAE+∠DEA=90°∴∠DEA+∠FEC=90°,∴AE⊥EF.故③正確;∵△ADE∽△ECF,∴,∴AE2=AD?AF,故④正確.綜上,正確的個數(shù)有3個,故選:C.【點睛】本題考查了正方形的性質、銳角三角函數(shù)、相似三角形的判定和性質等知識,屬于??碱}型,熟練掌握正方形的性質和相似三角形的判定和性質是解題的關鍵.4、A【分析】直接把已知數(shù)據(jù)代入進而得出c的值,再解方程根據(jù)根的判別式分析即可.【詳解】∵x=﹣1為方程x2﹣8x﹣c=0的根,1+8﹣c=0,解得c=9,∴原方程為x2-8x+9=0,∵=(﹣8)2-4×9>0,∴方程有兩個不相等的實數(shù)根.故選:A.【點睛】本題考查一元二次方程的解、一元二次方程根的判別式,解題的關鍵是掌握一元二次方程根的判別式,對于一元二次方程,根的情況由來判別,當>0時,方程有兩個不相等的實數(shù)根,當=0時,方程有兩個相等的實數(shù)根,當<0時,方程沒有實數(shù)根.5、D【解析】利用一元二次方程的定義及根的判別式列不等式a≠1且△=22﹣4a×(﹣1)>1,從而求解.【詳解】解:根據(jù)題意得:a≠1且△=22﹣4a×(﹣1)>1,解得:a>﹣1且a≠1.故選D.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=1(a≠1)的根與△=b2﹣4ac有如下關系:當△>1時,方程有兩個不相等的兩個實數(shù)根;當△=1時,方程有兩個相等的兩個實數(shù)根;當△<1時,方程無實數(shù)根.6、D【解析】根據(jù)反比例函數(shù)的性質,可得答案.【詳解】∵y=?的k=-2<1,圖象位于二四象限,a<1,∴P(a,m)在第二象限,∴m>1;∵b>1,∴Q(b,n)在第四象限,∴n<1.∴n<1<m,即m>n,故D正確;故選D.【點睛】本題考查了反比例函數(shù)的性質,利用反比例函數(shù)的性質:k<1時,圖象位于二四象限是解題關鍵.7、D【分析】首先根據(jù)圖形數(shù)出各環(huán)數(shù)出現(xiàn)的次數(shù),在進行計算眾數(shù)、中位數(shù)、平均數(shù)、方差.【詳解】根據(jù)圖表可得10環(huán)的2次,9環(huán)的2次,8環(huán)的3次,7環(huán)的2次,6環(huán)的1次.所以可得眾數(shù)是8,中位數(shù)是8,平均數(shù)是方差是故選D【點睛】本題主要考查統(tǒng)計的基本知識,關鍵在于眾數(shù)、中位數(shù)、平均數(shù)和方差的概念.特別是方差的公式.8、A【分析】根據(jù)“關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù)”,可知所得的三角形與原三角形關于x軸對稱.【詳解】解:∵縱坐標乘以﹣1,∴變化前后縱坐標互為相反數(shù),又∵橫坐標不變,∴所得三角形與原三角形關于x軸對稱.故選:A.【點睛】本題考查平面直角坐標系中對稱點的規(guī)律.解題關鍵是掌握好對稱點的坐標規(guī)律:(1)關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù);(2)關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù);(3)關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).9、C【分析】根據(jù)點C的坐標以及菱形的性質求出點B的坐標,然后利用待定系數(shù)法求出k的值即可.【詳解】∵,
∴,∵四邊形OABC是菱形,
∴AO=CB=OC=AB=5,
則點B的橫坐標為,
故B的坐標為:,
將點B的坐標代入得,,
解得:.
故選:C.【點睛】本題考查了菱形的性質以及利用待定系數(shù)法求反比例函數(shù)解析式,解答本題的關鍵是根據(jù)菱形的性質求出點B的坐標.10、C【分析】根據(jù)正方形的性質證明△ABE≌△BCF,可證得①AE⊥BF;
②AE=BF正確;證明△BGE∽△ABE,可得==,故③不正確;由S△ABE=S△BFC可得S四邊形CEGF=S△ABG,故④正確.【詳解】解:在正方形ABCD中,AB=BC,∠ABE=∠C=90,
又∵BE=CF,
∴△ABE≌△BCF(SAS),
∴AE=BF,∠BAE=∠CBF,
∴∠FBC+∠BEG=∠BAE+∠BEG=90°,
∴∠BGE=90°,
∴AE⊥BF,故①,②正確;
∵CF=2FD,BE=CF,AB=CD,
∴=,
∵∠EBG+∠ABG=∠ABG+∠BAG=90°,
∴∠EBG=∠BAE,
∵∠EGB=∠ABE=90°,
∴△BGE∽△ABE,
∴==,即BG=GE,故③不正確,
∵△ABE≌△BCF,
∴S△ABE=S△BFC,
∴S△ABE?S△BEG=S△BFC?S△BEG,
∴S四邊形CEGF=S△ABG,故④正確.
故選:C.【點睛】本題主要考查了正方形的性質、全等三角形的判定和性質、相似三角形的判定和性質等知識點,解決問題的關鍵是熟練掌握正方形的性質.二、填空題(每小題3分,共24分)11、9【解析】∵AD∥EF∥BC,,∴DF=6,∴FC=3,DC=DF+FC=9,故答案為9.12、-1【分析】根據(jù)坐標的對稱性求出m,n的值,故可求解.【詳解】依題意得m=-3,n=2∴=故填:-1.【點睛】此題主要考查代數(shù)式求值,解題的關鍵是熟知直角坐標系的坐標特點.13、【分析】根據(jù)菱形的對角線互相垂直平分求出兩對角線的一半,然后利用勾股定理求出菱形的邊長,再根據(jù)菱形的面積等于對角線乘積的一半求菱形的面積即可.【詳解】∵菱形的兩條對角線長分別為6cm,8cm,∴對角線的一半分別為3cm,4cm,∴根據(jù)勾股定理可得菱形的邊長為:=5cm,∴面積S=×6×8=14cm1.故答案為5;14.【點睛】本題考查了菱形的性質及勾股定理的應用,熟記菱形的性質是解決本題的關鍵.14、AC=BD或∠ABC=90°【分析】根據(jù)矩形的判定方法即可解決問題;【詳解】若使平行四邊形ABCD變?yōu)榫匦危商砑拥臈l件是:
AC=BD(對角線相等的平行四邊形是矩形);∠ABC=90°(有一個角是直角的平行四邊形是矩形)等,任意寫出一個正確答案即可,如:AC=BD或∠ABC=90°.
故答案為:AC=BD或∠ABC=90°【點睛】本題主要考查了平行四邊形的性質與矩形的判定,熟練掌握矩形是特殊的平行四邊形是解題關鍵.15、5或1【分析】設每千克水果應漲價x元,得出日銷售量將減少20x千克,再由盈利額=每千克盈利×日銷售量,依題意得方程求解即可.【詳解】解:設每千克水果應漲價x元,依題意得方程:(500-20x)(1+x)=6000,整理,得x2-15x+50=0,解這個方程,得x1=5,x2=1.答:每千克水果應漲價5元或1元.故答案為:5或1.【點睛】本題考查了一元二次方程的應用,解答本題的關鍵是讀懂題意,設出未知數(shù),找出合適的等量關系,列方程.16、2【分析】根據(jù)垂徑定理得出AN=CN,AM=BM,根據(jù)三角形的中位線性質得出BC=2MN,即可得出答案.【詳解】解:∵OM⊥AB,ON⊥AC,OM過O,ON過O,
∴AN=CN,AM=BM,
∴BC=2MN,
∵MN=,∴BC=2,故答案為:2.【點睛】本題考查了垂徑定理和三角形的中位線性質,能熟記知識點的內容是解此題的關鍵,注意:垂直于弦的直徑平分弦.17、(2,﹣1).【解析】關于原點對稱的兩個坐標點,其對應橫縱坐標互為相反數(shù).【詳解】解:由題意得m=2,n-2=-n,解得n=1,故A點坐標為(2,﹣1).【點睛】本題考查了關于原點中心對稱的兩個坐標點的特點.18、【分析】根據(jù)題意,將問題轉化為解一元二次方程的求解問題即可得出答案.【詳解】解:設BP=x,則AP=4-x,根據(jù)題意可得,,整理為:,利用求根公式解方程得:,∴,(舍去).故答案為:.【點睛】本題考查的知識點是由實際問題抽化出來的一元二次方程問題,將問題轉化為一元二次方程求解問題,熟記一元二次方程的求根公式是解此題的關鍵.三、解答題(共66分)19、長方框的寬度為10厘米【分析】設長方框的寬度為x厘米,則減去小長方形的長為(80﹣2x)厘米,寬為(60﹣2x)厘米,根據(jù)長方形的面積公式結合截去小長方形的面積是原來鐵片面積的一半,即可得出關于x的一元二次方程,解之取其較小值即可得出結論.【詳解】解:設長方框的寬度為x厘米,則減去小長方形的長為(80﹣2x)厘米,寬為(60﹣2x)厘米,依題意,得:(80﹣2x)(60﹣2x)=×80×60,整理,得:x2﹣70x+600=0,解得:x1=10,x2=60(不合題意,舍去).答:長方框的寬度為10厘米.【點睛】本題考查了一元二次方程的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.20、九(1)班和九(2)班抽中不同歌曲的概率為.【分析】畫樹狀圖得出所有等可能結果,再從中找到符合條件的結果數(shù),利用概率公式計算可得.【詳解】用樹狀圖法列出所有可能結果,利用公式得,九(1)班和九(2)班抽中不同歌曲的概率為【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.21、(1);(2).【分析】(1)列表得出所有等可能的情況數(shù),找出兩次摸到紅球的情況數(shù),即可確定出所求的概率;(2)列表得出所有等可能的情況數(shù),找出第一次摸到紅球,第二次摸到綠球的情況數(shù),即可確定出所求的概率.【詳解】(1)列表如下:紅綠紅(紅,紅)(綠,紅)綠(紅,綠)(綠,綠)所有等可能的情況有4種,所以第一次摸到紅球,第二次摸到綠球的概率=;(2)由(1)得第一次摸到紅球,第二次摸到綠球只有一種,故其概率為.【點睛】本題考查概率的求法與運用,一般方法為:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.22、(1)見詳解;(2)點O的位置滿足兩個要求:AO=BC,且點O不在射線CD、射線BE上.理由見詳解【分析】(1)根據(jù)三角形的中位線定理可證得DE∥GF,DE=GF,即可證得結論;(2)根據(jù)三角形的中位線定理結合菱形的判定方法分析即可.【詳解】(1)∵D、E分別是邊AB、AC的中點.∴DE∥BC,DE=BC.同理,GF∥BC,GF=BC.∴DE∥GF,DE=GF.∴四邊形DEFG是平行四邊形;(2)點O的位置滿足兩個要求:AO=BC,且點O不在射線CD、射線BE上.連接AO,由(1)得四邊形DEFG是平行四邊形,∵點D,G,F(xiàn)分別是AB,OB,OC的中點,∴,,當AO=BC時,GF=DF,∴四邊形DGFE是菱形.【點睛】本題主要考查三角形的中位線定理,平行四邊形、菱形的判定,平行四邊形的判定和性質是初中數(shù)學的重點,貫穿于整個初中數(shù)學的學習,是中考中比較常見的知識點,一般難度不大,需熟練掌握.23、(1)AC=8cm;AD=cm;(2)PC與圓⊙O相切,理由見解析【分析】(1)連結BD,如圖,根據(jù)圓周角定理由AB為直徑得∠ACB=90°,則可利用勾股定理計算出AC=8;由DC平分∠ACB得∠ACD=∠BCD=45°,根據(jù)圓周角定理得∠DAB=∠DBA=45°,則△ADB為等腰直角三角形,由勾股定理即可得出AD的長;
(2)連結OC,由PC=PE得∠PCE=∠PEC,利用三角形外角性質得∠PEC=∠EAC+∠ACE=∠EAC+45°,加上∠CAB=90°﹣∠ABC,∠ABC=∠OCB,于是可得到∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,則∠OCE+∠PCE=90°,于是根據(jù)切線的判定定理可得PC為⊙O的切線.【詳解】(1)連結BD,如圖1所示,
∵AB為直徑,∴∠ACB=90°,在Rt△ACB中,AB=10cm,BC=6cm,∴AC==8(cm);∵DC平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°∴△ADB為等腰直角三角形,∴AD=AB=(cm);(2)PC與圓⊙O相切.理由如下:連結OC,如圖2所示:
∵PC=PE,∴∠PCE=∠PEC,∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠CAB=90°﹣∠ABC,∠ABC=∠OCB,∴∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC為⊙O的切線.【點睛】本題考查了切線的性質和判定,切線長定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 27728.3-2024濕巾及類似用途產品第3部分:消毒濕巾專用要求
- 大學生兼職勞動合同書2
- 聯(lián)機手環(huán)測量儀器項目運營指導方案
- 電動鋸商業(yè)機會挖掘與戰(zhàn)略布局策略研究報告
- 沖床金屬加工用產品供應鏈分析
- 電動指甲刀商業(yè)機會挖掘與戰(zhàn)略布局策略研究報告
- 眉刷商業(yè)機會挖掘與戰(zhàn)略布局策略研究報告
- 自動電話交換機商業(yè)機會挖掘與戰(zhàn)略布局策略研究報告
- 粉餅盒用粉芯項目運營指導方案
- 空手道用護腿板項目運營指導方案
- 移動通信網絡運行維護管理規(guī)程
- 龍頭股戰(zhàn)法優(yōu)質獲獎課件
- 小班幼兒語言活動教案100篇
- 中廣國際總公司-CR2010衛(wèi)星接收解碼器
- 社會保險業(yè)務申報表(填表說明)
- 簡單電路實驗報告單
- 02S701磚砌化糞池標準圖集
- 醫(yī)療設備售后服務方案
- 三重一大決策管理細則
- 問題研究 能否淡化海水解決環(huán)渤海地區(qū)淡水短缺問題
- GB/T 3354-1999定向纖維增強塑料拉伸性能試驗方法
評論
0/150
提交評論