河北省邢臺(tái)巿南和一中2021-2022學(xué)年高考數(shù)學(xué)一模試卷含解析_第1頁
河北省邢臺(tái)巿南和一中2021-2022學(xué)年高考數(shù)學(xué)一模試卷含解析_第2頁
河北省邢臺(tái)巿南和一中2021-2022學(xué)年高考數(shù)學(xué)一模試卷含解析_第3頁
河北省邢臺(tái)巿南和一中2021-2022學(xué)年高考數(shù)學(xué)一模試卷含解析_第4頁
河北省邢臺(tái)巿南和一中2021-2022學(xué)年高考數(shù)學(xué)一模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,是兩條不重合的直線,是一個(gè)平面,則下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則2.已知是虛數(shù)單位,若,,則實(shí)數(shù)()A.或 B.-1或1 C.1 D.3.已知向量與的夾角為,定義為與的“向量積”,且是一個(gè)向量,它的長度,若,,則()A. B.C.6 D.4.已知變量x,y間存在線性相關(guān)關(guān)系,其數(shù)據(jù)如下表,回歸直線方程為,則表中數(shù)據(jù)m的值為()變量x0123變量y35.57A.0.9 B.0.85 C.0.75 D.0.55.在正方體中,E是棱的中點(diǎn),F(xiàn)是側(cè)面內(nèi)的動(dòng)點(diǎn),且與平面的垂線垂直,如圖所示,下列說法不正確的是()A.點(diǎn)F的軌跡是一條線段 B.與BE是異面直線C.與不可能平行 D.三棱錐的體積為定值6.已知函數(shù)(e為自然對(duì)數(shù)底數(shù)),若關(guān)于x的不等式有且只有一個(gè)正整數(shù)解,則實(shí)數(shù)m的最大值為()A. B. C. D.7.如圖所示點(diǎn)是拋物線的焦點(diǎn),點(diǎn)、分別在拋物線及圓的實(shí)線部分上運(yùn)動(dòng),且總是平行于軸,則的周長的取值范圍是()A. B. C. D.8.設(shè)函數(shù)(,為自然對(duì)數(shù)的底數(shù)),定義在上的函數(shù)滿足,且當(dāng)時(shí),.若存在,且為函數(shù)的一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.9.在長方體中,,則直線與平面所成角的余弦值為()A. B. C. D.10.已知拋物線,F(xiàn)為拋物線的焦點(diǎn)且MN為過焦點(diǎn)的弦,若,,則的面積為()A. B. C. D.11.在中,,則()A. B. C. D.12.執(zhí)行如圖所示的程序框圖,則輸出的()A.2 B.3 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.展開式中的系數(shù)為_______________.14.已知內(nèi)角的對(duì)邊分別為外接圓的面積為,則的面積為_________.15.對(duì)定義在上的函數(shù),如果同時(shí)滿足以下兩個(gè)條件:(1)對(duì)任意的總有;(2)當(dāng),,時(shí),總有成立.則稱函數(shù)稱為G函數(shù).若是定義在上G函數(shù),則實(shí)數(shù)a的取值范圍為________.16.某班有學(xué)生52人,現(xiàn)將所有學(xué)生隨機(jī)編號(hào),用系統(tǒng)抽樣方法,抽取一個(gè)容量為4的樣本,已知5號(hào)、31號(hào)、44號(hào)學(xué)生在樣本中,則樣本中還有一個(gè)學(xué)生的編號(hào)是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某工廠為提高生產(chǎn)效率,需引進(jìn)一條新的生產(chǎn)線投入生產(chǎn),現(xiàn)有兩條生產(chǎn)線可供選擇,生產(chǎn)線①:有A,B兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.02,0.03.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本為15萬元;若A工序出現(xiàn)故障,則生產(chǎn)成本增加2萬元;若B工序出現(xiàn)故障,則生產(chǎn)成本增加3萬元;若A,B兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加5萬元.生產(chǎn)線②:有a,b兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.04,0.01.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本為14萬元;若a工序出現(xiàn)故障,則生產(chǎn)成本增加8萬元;若b工序出現(xiàn)故障,則生產(chǎn)成本增加5萬元;若a,b兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加13萬元.(1)若選擇生產(chǎn)線①,求生產(chǎn)成本恰好為18萬元的概率;(2)為最大限度節(jié)約生產(chǎn)成本,你會(huì)給工廠建議選擇哪條生產(chǎn)線?請(qǐng)說明理由.18.(12分)已知函數(shù),設(shè)的最小值為m.(1)求m的值;(2)是否存在實(shí)數(shù)a,b,使得,?并說明理由.19.(12分)已知函數(shù),.(1)證明:函數(shù)的極小值點(diǎn)為1;(2)若函數(shù)在有兩個(gè)零點(diǎn),證明:.20.(12分)在三棱柱中,四邊形是菱形,,,,,點(diǎn)M、N分別是、的中點(diǎn),且.(1)求證:平面平面;(2)求四棱錐的體積.21.(12分)某校為了解校園安全教育系列活動(dòng)的成效,對(duì)全校學(xué)生進(jìn)行一次安全意識(shí)測(cè)試,根據(jù)測(cè)試成績(jī)?cè)u(píng)定“合格”、“不合格”兩個(gè)等級(jí),同時(shí)對(duì)相應(yīng)等級(jí)進(jìn)行量化:“合格”記分,“不合格”記分.現(xiàn)隨機(jī)抽取部分學(xué)生的成績(jī),統(tǒng)計(jì)結(jié)果及對(duì)應(yīng)的頻率分布直方圖如下所示:等級(jí)不合格合格得分頻數(shù)624(Ⅰ)若測(cè)試的同學(xué)中,分?jǐn)?shù)段內(nèi)女生的人數(shù)分別為,完成列聯(lián)表,并判斷:是否有以上的把握認(rèn)為性別與安全意識(shí)有關(guān)?是否合格性別不合格合格總計(jì)男生女生總計(jì)(Ⅱ)用分層抽樣的方法,從評(píng)定等級(jí)為“合格”和“不合格”的學(xué)生中,共選取人進(jìn)行座談,現(xiàn)再從這人中任選人,記所選人的量化總分為,求的分布列及數(shù)學(xué)期望;(Ⅲ)某評(píng)估機(jī)構(gòu)以指標(biāo)(,其中表示的方差)來評(píng)估該校安全教育活動(dòng)的成效,若,則認(rèn)定教育活動(dòng)是有效的;否則認(rèn)定教育活動(dòng)無效,應(yīng)調(diào)整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應(yīng)調(diào)整安全教育方案?附表及公式:,其中.22.(10分)已知橢圓的離心率為,且以原點(diǎn)O為圓心,橢圓C的長半軸長為半徑的圓與直線相切.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知?jiǎng)又本€l過右焦點(diǎn)F,且與橢圓C交于A、B兩點(diǎn),已知Q點(diǎn)坐標(biāo)為,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】

利用空間位置關(guān)系的判斷及性質(zhì)定理進(jìn)行判斷.【詳解】解:選項(xiàng)A中直線,還可能相交或異面,選項(xiàng)B中,還可能異面,選項(xiàng)C,由條件可得或.故選:D.【點(diǎn)睛】本題主要考查直線與平面平行、垂直的性質(zhì)與判定等基礎(chǔ)知識(shí);考查空間想象能力、推理論證能力,屬于基礎(chǔ)題.2.B【解析】

由題意得,,然后求解即可【詳解】∵,∴.又∵,∴,∴.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算,屬于基礎(chǔ)題3.D【解析】

先根據(jù)向量坐標(biāo)運(yùn)算求出和,進(jìn)而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.【點(diǎn)睛】此題考查向量的坐標(biāo)運(yùn)算,引入新定義,屬于簡(jiǎn)單題目.4.A【解析】

計(jì)算,代入回歸方程可得.【詳解】由題意,,∴,解得.故選:A.【點(diǎn)睛】本題考查線性回歸直線方程,解題關(guān)鍵是掌握性質(zhì):線性回歸直線一定過中心點(diǎn).5.C【解析】

分別根據(jù)線面平行的性質(zhì)定理以及異面直線的定義,體積公式分別進(jìn)行判斷.【詳解】對(duì)于,設(shè)平面與直線交于點(diǎn),連接、,則為的中點(diǎn)分別取、的中點(diǎn)、,連接、、,,平面,平面,平面.同理可得平面,、是平面內(nèi)的相交直線平面平面,由此結(jié)合平面,可得直線平面,即點(diǎn)是線段上上的動(dòng)點(diǎn).正確.對(duì)于,平面平面,和平面相交,與是異面直線,正確.對(duì)于,由知,平面平面,與不可能平行,錯(cuò)誤.對(duì)于,因?yàn)?,則到平面的距離是定值,三棱錐的體積為定值,所以正確;故選:.【點(diǎn)睛】本題考查了正方形的性質(zhì)、空間位置關(guān)系、空間角、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.6.A【解析】

若不等式有且只有一個(gè)正整數(shù)解,則的圖象在圖象的上方只有一個(gè)正整數(shù)值,利用導(dǎo)數(shù)求出的最小值,分別畫出與的圖象,結(jié)合圖象可得.【詳解】解:,∴,設(shè),∴,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,∴,當(dāng)時(shí),,當(dāng),,函數(shù)恒過點(diǎn),分別畫出與的圖象,如圖所示,,若不等式有且只有一個(gè)正整數(shù)解,則的圖象在圖象的上方只有一個(gè)正整數(shù)值,∴且,即,且∴,故實(shí)數(shù)m的最大值為,故選:A【點(diǎn)睛】本題考查考查了不等式恒有一正整數(shù)解問題,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了數(shù)形結(jié)合思想,考查了數(shù)學(xué)運(yùn)算能力.7.B【解析】

根據(jù)拋物線方程求得焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,結(jié)合定義表示出;根據(jù)拋物線與圓的位置關(guān)系和特點(diǎn),求得點(diǎn)橫坐標(biāo)的取值范圍,即可由的周長求得其范圍.【詳解】拋物線,則焦點(diǎn),準(zhǔn)線方程為,根據(jù)拋物線定義可得,圓,圓心為,半徑為,點(diǎn)、分別在拋物線及圓的實(shí)線部分上運(yùn)動(dòng),解得交點(diǎn)橫坐標(biāo)為2.點(diǎn)、分別在兩個(gè)曲線上,總是平行于軸,因而兩點(diǎn)不能重合,不能在軸上,則由圓心和半徑可知,則的周長為,所以,故選:B.【點(diǎn)睛】本題考查了拋物線定義、方程及幾何性質(zhì)的簡(jiǎn)單應(yīng)用,圓的幾何性質(zhì)應(yīng)用,屬于中檔題.8.D【解析】

先構(gòu)造函數(shù),由題意判斷出函數(shù)的奇偶性,再對(duì)函數(shù)求導(dǎo),判斷其單調(diào)性,進(jìn)而可求出結(jié)果.【詳解】構(gòu)造函數(shù),因?yàn)?,所以,所以為奇函?shù),當(dāng)時(shí),,所以在上單調(diào)遞減,所以在R上單調(diào)遞減.因?yàn)榇嬖?,所以,所以,化?jiǎn)得,所以,即令,因?yàn)闉楹瘮?shù)的一個(gè)零點(diǎn),所以在時(shí)有一個(gè)零點(diǎn)因?yàn)楫?dāng)時(shí),,所以函數(shù)在時(shí)單調(diào)遞減,由選項(xiàng)知,,又因?yàn)?,所以要使在時(shí)有一個(gè)零點(diǎn),只需使,解得,所以a的取值范圍為,故選D.【點(diǎn)睛】本題主要考查函數(shù)與方程的綜合問題,難度較大.9.C【解析】

在長方體中,得與平面交于,過做于,可證平面,可得為所求解的角,解,即可求出結(jié)論.【詳解】在長方體中,平面即為平面,過做于,平面,平面,平面,為與平面所成角,在,,直線與平面所成角的余弦值為.故選:C.【點(diǎn)睛】本題考查直線與平面所成的角,定義法求空間角要體現(xiàn)“做”“證”“算”,三步驟缺一不可,屬于基礎(chǔ)題.10.A【解析】

根據(jù)可知,再利用拋物線的焦半徑公式以及三角形面積公式求解即可.【詳解】由題意可知拋物線方程為,設(shè)點(diǎn)點(diǎn),則由拋物線定義知,,則.由得,則.又MN為過焦點(diǎn)的弦,所以,則,所以.故選:A【點(diǎn)睛】本題考查拋物線的方程應(yīng)用,同時(shí)也考查了焦半徑公式等.屬于中檔題.11.A【解析】

先根據(jù)得到為的重心,從而,故可得,利用可得,故可計(jì)算的值.【詳解】因?yàn)樗詾榈闹匦?,所?所以,所以,因?yàn)?,所以,故選A.【點(diǎn)睛】對(duì)于,一般地,如果為的重心,那么,反之,如果為平面上一點(diǎn),且滿足,那么為的重心.12.B【解析】

運(yùn)行程序,依次進(jìn)行循環(huán),結(jié)合判斷框,可得輸出值.【詳解】起始階段有,,第一次循環(huán)后,,第二次循環(huán)后,,第三次循環(huán)后,,第四次循環(huán)后,,所有后面的循環(huán)具有周期性,周期為3,當(dāng)時(shí),再次循環(huán)輸出的,,此時(shí),循環(huán)結(jié)束,輸出,故選:B【點(diǎn)睛】本題主要考查程序框圖的相關(guān)知識(shí),經(jīng)過幾次循環(huán)找出規(guī)律是關(guān)鍵,屬于基礎(chǔ)題型.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

把按照二項(xiàng)式定理展開,可得的展開式中的系數(shù).【詳解】解:,故它的展開式中的系數(shù)為,故答案為:.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.14.【解析】

由外接圓面積,求出外接圓半徑,然后由正弦定理可求得三角形的內(nèi)角,從而有,于是可得三角形邊長,可得面積.【詳解】設(shè)外接圓半徑為,則,由正弦定理,得,∴,,.故答案為:.【點(diǎn)睛】本題考查正弦定理,利用正弦定理求出三角形的內(nèi)角,然后可得邊長,從而得面積,掌握正弦定理是解題關(guān)鍵.15.【解析】

由不等式恒成立問題采用分離變量最值法:對(duì)任意的恒成立,解得,又在,恒成立,即,所以,從而可得.【詳解】因?yàn)槭嵌x在上G函數(shù),所以對(duì)任意的總有,則對(duì)任意的恒成立,解得,當(dāng)時(shí),又因?yàn)?,,時(shí),總有成立,即恒成立,即恒成立,又此時(shí)的最小值為,即恒成立,又因?yàn)榻獾?故答案為:【點(diǎn)睛】本題是一道函數(shù)新定義題目,考查了不等式恒成立求參數(shù)的取值范圍,考查了學(xué)生分析理解能力,屬于中檔題.16.18【解析】

根據(jù)系統(tǒng)抽樣的定義和方法,所抽取的4個(gè)個(gè)體的編號(hào)成等差數(shù)列,故可根據(jù)其中三個(gè)個(gè)體的編號(hào)求出另一個(gè)個(gè)體的編號(hào).【詳解】解:根據(jù)系統(tǒng)抽樣的定義和方法,所抽取的4個(gè)個(gè)體的編號(hào)成等差數(shù)列,已知其中三個(gè)個(gè)體的編號(hào)為5,31,44,故還有一個(gè)抽取的個(gè)體的編號(hào)為18,故答案為:18【點(diǎn)睛】本題主要考查系統(tǒng)抽樣的定義和方法,屬于簡(jiǎn)單題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)0.0294.(2)應(yīng)選生產(chǎn)線②.見解析【解析】

(1)由題意轉(zhuǎn)化條件得A工序不出現(xiàn)故障B工序出現(xiàn)故障,利用相互獨(dú)立事件的概率公式即可得解;(2)分別算出兩個(gè)生產(chǎn)線增加的生產(chǎn)成本的期望,進(jìn)而求出兩個(gè)生產(chǎn)線的生產(chǎn)成本期望值,比較期望值即可得解.【詳解】(1)若選擇生產(chǎn)線①,生產(chǎn)成本恰好為18萬元,即A工序不出現(xiàn)故障B工序出現(xiàn)故障,故所求的概率為.(2)若選擇生產(chǎn)線①,設(shè)增加的生產(chǎn)成本為(萬元),則的可能取值為0,2,3,5.,,,,所以萬元;故選生產(chǎn)線①的生產(chǎn)成本期望值為(萬元).若選生產(chǎn)線②,設(shè)增加的生產(chǎn)成本為(萬元),則的可能取值為0,8,5,13.,,,,所以,故選生產(chǎn)線②的生產(chǎn)成本期望值為(萬元),故應(yīng)選生產(chǎn)線②.【點(diǎn)睛】本題考查了相互獨(dú)立事件的概率,考查了離散型隨機(jī)變量期望的應(yīng)用,屬于中檔題.18.(1)(2)不存在;詳見解析【解析】

(1)將函數(shù)去絕對(duì)值化為分段函數(shù)的形式,從而可求得函數(shù)的最小值,進(jìn)而可得m.(2)由,利用基本不等式即可求出.【詳解】(1);(2),若,同號(hào),,不成立;或,異號(hào),,不成立;故不存在實(shí)數(shù),,使得,.【點(diǎn)睛】本題考查了分段函數(shù)的最值、基本不等式的應(yīng)用,屬于基礎(chǔ)題.19.(1)見解析(2)見解析【解析】

(1)利用導(dǎo)函數(shù)的正負(fù)確定函數(shù)的增減.(2)函數(shù)在有兩個(gè)零點(diǎn),即方程在區(qū)間有兩解,令通過二次求導(dǎo)確定函數(shù)單調(diào)性證明參數(shù)范圍.【詳解】解:(1)證明:因?yàn)?,?dāng)時(shí),,,所以在區(qū)間遞減;當(dāng)時(shí),,所以,所以在區(qū)間遞增;且,所以函數(shù)的極小值點(diǎn)為1(2)函數(shù)在有兩個(gè)零點(diǎn),即方程在區(qū)間有兩解,令,則令,則,所以在單調(diào)遞增,又,故存在唯一的,使得,即,所以在單調(diào)遞減,在區(qū)間單調(diào)遞增,且,又因?yàn)?,所以,方程關(guān)于的方程在有兩個(gè)零點(diǎn),由的圖象可知,,即.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,確定函數(shù)的極值,利用二次求導(dǎo),零點(diǎn)存在性定理確定參數(shù)范圍,屬于難題.20.(1)證明見解析;(2).【解析】

(1)要證面面垂直需要先證明線面垂直,即證明出平面即可;(2)求出點(diǎn)A到平面的距離,然后根據(jù)棱錐的體積公式即可求出四棱錐的體積.【詳解】(1)連接,由是平行四邊形及N是的中點(diǎn),得N也是的中點(diǎn),因?yàn)辄c(diǎn)M是的中點(diǎn),所以,因?yàn)?,所以,又,,所以平面,又平面,所以平面平面;?)過A作交于點(diǎn)O,因?yàn)槠矫嫫矫?,平面平面,所以平面,由是菱形及,得為三角形,則,由平面,得,從而側(cè)面為矩形,所以.【點(diǎn)睛】本題主要考查了面面垂直的證明,求四棱錐的體積,屬于一般題.21.(Ⅰ)詳見解析;(Ⅱ)詳見解析;(Ⅲ)不需要調(diào)整安全教育方案.【解析】

(I)根據(jù)題目所給數(shù)據(jù)填寫好列聯(lián)表,計(jì)算出的值,由此判斷出在犯錯(cuò)誤概率不超過的前提下,不能認(rèn)為性別與安全測(cè)試是否合格有關(guān).(II)利用超幾何分布的計(jì)算公式,計(jì)算出的分布列并求得數(shù)學(xué)期望.(III)由(II)中數(shù)據(jù),計(jì)算出,進(jìn)而求得的值,從而得出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論