版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是A.y與x具有正的線性相關(guān)關(guān)系B.回歸直線過樣本點的中心(,)C.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kgD.若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg2.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細(xì)算相還.”意思為有一個人要走378里路,第一天健步行走,從第二天起腳痛,每天走的路程為前一天的一半,走了六天恰好到達(dá)目的地,請問第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里3.音樂,是用聲音來展現(xiàn)美,給人以聽覺上的享受,熔鑄人們的美學(xué)趣味.著名數(shù)學(xué)家傅立葉研究了樂聲的本質(zhì),他證明了所有的樂聲都能用數(shù)學(xué)表達(dá)式來描述,它們是一些形如的簡單正弦函數(shù)的和,其中頻率最低的一項是基本音,其余的為泛音.由樂聲的數(shù)學(xué)表達(dá)式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波.下列函數(shù)中不能與函數(shù)構(gòu)成樂音的是()A. B. C. D.4.設(shè),,是非零向量.若,則()A. B. C. D.5.已知函數(shù)的圖象如圖所示,則可以為()A. B. C. D.6.已知,是橢圓與雙曲線的公共焦點,是它們的一個公共點,且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為()A. B. C.8 D.67.已知集合,,,則的子集共有()A.個 B.個 C.個 D.個8.已知,若,則等于()A.3 B.4 C.5 D.69.若x,y滿足約束條件則z=的取值范圍為()A.[] B.[,3] C.[,2] D.[,2]10.將函數(shù)的圖像向左平移個單位長度后,得到的圖像關(guān)于坐標(biāo)原點對稱,則的最小值為()A. B. C. D.11.已知定義在上的函數(shù)在區(qū)間上單調(diào)遞增,且的圖象關(guān)于對稱,若實數(shù)滿足,則的取值范圍是()A. B. C. D.12.下列與函數(shù)定義域和單調(diào)性都相同的函數(shù)是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某班星期一共八節(jié)課(上午、下午各四節(jié),其中下午最后兩節(jié)為社團(tuán)活動),排課要求為:語文、數(shù)學(xué)、外語、物理、化學(xué)各排一節(jié),從生物、歷史、地理、政治四科中選排一節(jié).若數(shù)學(xué)必須安排在上午且與外語不相鄰(上午第四節(jié)和下午第一節(jié)不算相鄰),則不同的排法有__________種.14.一個空間幾何體的三視圖及部分?jǐn)?shù)據(jù)如圖所示,則這個幾何體的體積是___________15.若復(fù)數(shù)(是虛數(shù)單位),則________16.設(shè)平面向量與的夾角為,且,,則的取值范圍為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)是自然對數(shù)的底數(shù).(1)若,討論的單調(diào)性;(2)若有兩個極值點,求的取值范圍,并證明:.18.(12分)設(shè)橢圓:的右焦點為,右頂點為,已知橢圓離心率為,過點且與軸垂直的直線被橢圓截得的線段長為3.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)過點的直線與橢圓交于點(不在軸上),垂直于的直線與交于點,與軸交于點,若,且,求直線斜率的取值范圍.19.(12分)如圖,在等腰梯形中,AD∥BC,,,,,分別為,,的中點,以為折痕將折起,使點到達(dá)點位置(平面).(1)若為直線上任意一點,證明:MH∥平面;(2)若直線與直線所成角為,求二面角的余弦值.20.(12分)如圖,三棱臺中,側(cè)面與側(cè)面是全等的梯形,若,且.(Ⅰ)若,,證明:∥平面;(Ⅱ)若二面角為,求平面與平面所成的銳二面角的余弦值.21.(12分)為了實現(xiàn)中華民族偉大復(fù)興之夢,把我國建設(shè)成為富強(qiáng)民主文明和諧美麗的社會主義現(xiàn)代化強(qiáng)國,黨和國家為勞動者開拓了寬廣的創(chuàng)造性勞動的舞臺.借此“東風(fēng)”,某大型現(xiàn)代化農(nóng)場在種植某種大棚有機(jī)無公害的蔬菜時,為創(chuàng)造更大價值,提高畝產(chǎn)量,積極開展技術(shù)創(chuàng)新活動.該農(nóng)場采用了延長光照時間和降低夜間溫度兩種不同方案.為比較兩種方案下產(chǎn)量的區(qū)別,該農(nóng)場選取了40間大棚(每間一畝),分成兩組,每組20間進(jìn)行試點.第一組采用延長光照時間的方案,第二組采用降低夜間溫度的方案.同時種植該蔬菜一季,得到各間大棚產(chǎn)量數(shù)據(jù)信息如下圖:(1)如果你是該農(nóng)場的負(fù)責(zé)人,在只考慮畝產(chǎn)量的情況下,請根據(jù)圖中的數(shù)據(jù)信息,對于下一季大棚蔬菜的種植,說出你的決策方案并說明理由;(2)已知種植該蔬菜每年固定的成本為6千元/畝.若采用延長光照時間的方案,光照設(shè)備每年的成本為0.22千元/畝;若采用夜間降溫的方案,降溫設(shè)備的每年成本為0.2千元/畝.已知該農(nóng)場共有大棚100間(每間1畝),農(nóng)場種植的該蔬菜每年產(chǎn)出兩次,且該蔬菜市場的收購均價為1千元/千斤.根據(jù)題中所給數(shù)據(jù),用樣本估計總體,請計算在兩種不同的方案下,種植該蔬菜一年的平均利潤;(3)農(nóng)場根據(jù)以往該蔬菜的種植經(jīng)驗,認(rèn)為一間大棚畝產(chǎn)量超過5.25千斤為增產(chǎn)明顯.在進(jìn)行夜間降溫試點的20間大棚中隨機(jī)抽取3間,記增產(chǎn)明顯的大棚間數(shù)為,求的分布列及期望.22.(10分)的內(nèi)角A,B,C的對邊分別為a,b,c,已知,.求C;若,求,的面積
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關(guān)關(guān)系,A正確;回歸直線過樣本點的中心(),B正確;該大學(xué)某女生身高增加1cm,預(yù)測其體重約增加0.85kg,C正確;該大學(xué)某女生身高為170cm,預(yù)測其體重約為0.85×170﹣85.71=58.79kg,D錯誤.故選D.2.B【解析】
人每天走的路程構(gòu)成公比為的等比數(shù)列,設(shè)此人第一天走的路程為,計算,代入得到答案.【詳解】由題意可知此人每天走的路程構(gòu)成公比為的等比數(shù)列,設(shè)此人第一天走的路程為,則,解得,從而可得,故.故選:.【點睛】本題考查了等比數(shù)列的應(yīng)用,意在考查學(xué)生的計算能力和應(yīng)用能力.3.C【解析】
由基本音的諧波的定義可得,利用可得,即可判斷選項.【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點睛】本題考查三角函數(shù)的周期與頻率,考查理解分析能力.4.D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點:平面向量數(shù)量積.【思路點睛】幾何圖形中向量的數(shù)量積問題是近幾年高考的又一熱點,作為一類既能考查向量的線性運算、坐標(biāo)運算、數(shù)量積及平面幾何知識,又能考查學(xué)生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問題,實有其合理之處.解決此類問題的常用方法是:①利用已知條件,結(jié)合平面幾何知識及向量數(shù)量積的基本概念直接求解(較易);②將條件通過向量的線性運算進(jìn)行轉(zhuǎn)化,再利用①求解(較難);③建系,借助向量的坐標(biāo)運算,此法對解含垂直關(guān)系的問題往往有很好效果.5.A【解析】
根據(jù)圖象可知,函數(shù)為奇函數(shù),以及函數(shù)在上單調(diào)遞增,且有一個零點,即可對選項逐個驗證即可得出.【詳解】首先對4個選項進(jìn)行奇偶性判斷,可知,為偶函數(shù),不符合題意,排除B;其次,在剩下的3個選項,對其在上的零點個數(shù)進(jìn)行判斷,在上無零點,不符合題意,排除D;然后,對剩下的2個選項,進(jìn)行單調(diào)性判斷,在上單調(diào)遞減,不符合題意,排除C.故選:A.【點睛】本題主要考查圖象的識別和函數(shù)性質(zhì)的判斷,意在考查學(xué)生的直觀想象能力和邏輯推理能力,屬于容易題.6.C【解析】
由橢圓的定義以及雙曲線的定義、離心率公式化簡,結(jié)合基本不等式即可求解.【詳解】設(shè)橢圓的長半軸長為,雙曲線的半實軸長為,半焦距為,則,,設(shè)由橢圓的定義以及雙曲線的定義可得:,則當(dāng)且僅當(dāng)時,取等號.故選:C.【點睛】本題主要考查了橢圓的定義以及雙曲線的定義、離心率公式,屬于中等題.7.B【解析】
根據(jù)集合中的元素,可得集合,然后根據(jù)交集的概念,可得,最后根據(jù)子集的概念,利用計算,可得結(jié)果.【詳解】由題可知:,當(dāng)時,當(dāng)時,當(dāng)時,當(dāng)時,所以集合則所以的子集共有故選:B【點睛】本題考查集合的運算以及集合子集個數(shù)的計算,當(dāng)集合中有元素時,集合子集的個數(shù)為,真子集個數(shù)為,非空子集為,非空真子集為,屬基礎(chǔ)題.8.C【解析】
先求出,再由,利用向量數(shù)量積等于0,從而求得.【詳解】由題可知,因為,所以有,得,故選:C.【點睛】該題考查的是有關(guān)向量的問題,涉及到的知識點有向量的減法坐標(biāo)運算公式,向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題目.9.D【解析】
由題意作出可行域,轉(zhuǎn)化目標(biāo)函數(shù)為連接點和可行域內(nèi)的點的直線斜率的倒數(shù),數(shù)形結(jié)合即可得解.【詳解】由題意作出可行域,如圖,目標(biāo)函數(shù)可表示連接點和可行域內(nèi)的點的直線斜率的倒數(shù),由圖可知,直線的斜率最小,直線的斜率最大,由可得,由可得,所以,,所以.故選:D.【點睛】本題考查了非線性規(guī)劃的應(yīng)用,屬于基礎(chǔ)題.10.B【解析】
由余弦的二倍角公式化簡函數(shù)為,要想在括號內(nèi)構(gòu)造變?yōu)檎液瘮?shù),至少需要向左平移個單位長度,即為答案.【詳解】由題可知,對其向左平移個單位長度后,,其圖像關(guān)于坐標(biāo)原點對稱故的最小值為故選:B【點睛】本題考查三角函數(shù)圖象性質(zhì)與平移變換,還考查了余弦的二倍角公式逆運用,屬于簡單題.11.C【解析】
根據(jù)題意,由函數(shù)的圖象變換分析可得函數(shù)為偶函數(shù),又由函數(shù)在區(qū)間上單調(diào)遞增,分析可得,解可得的取值范圍,即可得答案.【詳解】將函數(shù)的圖象向左平移個單位長度可得函數(shù)的圖象,由于函數(shù)的圖象關(guān)于直線對稱,則函數(shù)的圖象關(guān)于軸對稱,即函數(shù)為偶函數(shù),由,得,函數(shù)在區(qū)間上單調(diào)遞增,則,得,解得.因此,實數(shù)的取值范圍是.故選:C.【點睛】本題考查利用函數(shù)的單調(diào)性與奇偶性解不等式,注意分析函數(shù)的奇偶性,屬于中等題.12.C【解析】
分析函數(shù)的定義域和單調(diào)性,然后對選項逐一分析函數(shù)的定義域、單調(diào)性,由此確定正確選項.【詳解】函數(shù)的定義域為,在上為減函數(shù).A選項,的定義域為,在上為增函數(shù),不符合.B選項,的定義域為,不符合.C選項,的定義域為,在上為減函數(shù),符合.D選項,的定義域為,不符合.故選:C【點睛】本小題主要考查函數(shù)的定義域和單調(diào)性,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.1344【解析】
分四種情況討論即可【詳解】解:數(shù)學(xué)排在第一節(jié)時有:數(shù)學(xué)排在第二節(jié)時有:數(shù)學(xué)排在第三節(jié)時有:數(shù)學(xué)排在第四節(jié)時有:所以共有1344種故答案為:1344【點睛】考查排列、組合的應(yīng)用,注意分類討論,做到不重不漏;基礎(chǔ)題.14.【解析】
先還原幾何體,再根據(jù)柱體體積公式求解【詳解】空間幾何體為一個棱柱,如圖,底面為邊長為的直角三角形,高為的棱柱,所以體積為【點睛】本題考查三視圖以及柱體體積公式,考查基本分析求解能力,屬基礎(chǔ)題15.【解析】
直接根據(jù)復(fù)數(shù)的代數(shù)形式四則運算法則計算即可.【詳解】,.【點睛】本題主要考查復(fù)數(shù)的代數(shù)形式四則運算法則的應(yīng)用.16.【解析】
根據(jù)已知條件計算出,結(jié)合得出,利用基本不等式可得出的取值范圍,利用平面向量的數(shù)量積公式可求得的取值范圍,進(jìn)而可得出的取值范圍.【詳解】,,,由得,,由基本不等式可得,,,,,因此,的取值范圍為.故答案為:.【點睛】本題考查利用向量的模求解平面向量夾角的取值范圍,考查計算能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)減區(qū)間是,增區(qū)間是;(2),證明見解析.【解析】
(1)當(dāng)時,求得函數(shù)的導(dǎo)函數(shù)以及二階導(dǎo)函數(shù),由此求得的單調(diào)區(qū)間.(2)令求得,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的單調(diào)區(qū)間、極值和最值,結(jié)合有兩個極值點,求得的取值范圍.將代入列方程組,由證得.【詳解】(1),,又,所以在單增,從而當(dāng)時,遞減,當(dāng)時,遞增.(2).令,令,則故在遞增,在遞減,所以.注意到當(dāng)時,所以當(dāng)時,有一個極值點,當(dāng)時,有兩個極值點,當(dāng)時,沒有極值點,綜上因為是的兩個極值點,所以不妨設(shè),得,因為在遞減,且,所以又所以【點睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間,考查利用導(dǎo)數(shù)研究函數(shù)的極值點,考查利用導(dǎo)數(shù)證明不等式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.18.(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由題意可得,,,解得即可求出橢圓的C的方程;(Ⅱ)由已知設(shè)直線l的方程為y=k(x-2),(k≠0),聯(lián)立直線方程和橢圓方程,化為關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系求得B的坐標(biāo),再寫出MH所在直線方程,求出H的坐標(biāo),由BF⊥HF,解得.由方程組消去y,解得,由,得到,轉(zhuǎn)化為關(guān)于k的不等式,求得k的范圍.【詳解】(Ⅰ)因為過焦點且垂直于長軸的直線被橢圓截得的線段長為3,所以,因為橢圓離心率為,所以,又,解得,,,所以橢圓的方程為;(Ⅱ)設(shè)直線的斜率為,則,設(shè),由得,解得,或,由題意得,從而,由(Ⅰ)知,,設(shè),所以,,因為,所以,所以,解得,所以直線的方程為,設(shè),由消去,解得,在中,,即,所以,即,解得,或.所以直線的斜率的取值范圍為.【點睛】本題考查在直線與橢圓的位置關(guān)系中由已知條件求直線的斜率取值范圍問題,還考查了由離心率求橢圓的標(biāo)準(zhǔn)方程,屬于難題.19.(1)見解析(2)【解析】
(1)根據(jù)中位線證明平面平面,即可證明MH∥平面;(2)以,,為,,軸建立空間直角坐標(biāo)系,找到點的坐標(biāo)代入公式即可計算二面角的余弦值.【詳解】(1)證明:連接,∵,,分別為,,的中點,∴,又∵平面,平面,∴平面,同理,平面,∵平面,平面,,∴平面平面,∵平面,∴平面.(2)連接,在和中,由余弦定理可得,,由與互補,,,可解得,于是,∴,,∵,直線與直線所成角為,∴,又,∴,即,∴平面,∴平面平面,∵為中點,,∴平面,如圖所示,分別以,,為,,軸建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量為,∴,即.令,則,,可得平面的一個法向量為.又平面的一個法向量為,∴,∴二面角的余弦值為.【點睛】此題考查線面平行,建系通過坐標(biāo)求二面角等知識點,屬于一般性題目.20.(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接,由比例可得∥,進(jìn)而得線面平行;(Ⅱ)過點作的垂線,建立空間直角坐標(biāo)系,不妨設(shè),則求得平面的法向量為,設(shè)平面的法向量為,由求二面角余弦即可.試題解析:(Ⅰ)證明:連接,梯形,,易知:;又,則∥;平面,平面,可得:∥平面;(Ⅱ)側(cè)面是梯形,,,,則為二面角的平面角,;均為正三角形,在平面內(nèi),過點作的垂線,如圖建立空間直角坐標(biāo)系,不妨設(shè),則,故點,;設(shè)平面的法向量為,則有:;設(shè)平面的法向量為,則有:;,故平面與平面所成的銳二面角的余弦值為.21.(1)見解析;(2)(i)該農(nóng)場若采用延長光照時間的方法,預(yù)計每年的利潤為426千元;(ii)若采用降低夜間溫度的方法,預(yù)計每年的利潤為424千元;(3)分布列見解析,.【解析】
(1)估計第一組數(shù)據(jù)平均數(shù)和第二組數(shù)據(jù)平均數(shù)來選
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 帝爾婚慶服務(wù)合同中的合同變更條件3篇
- 旅游品質(zhì)控制勞動合同模板3篇
- 安心變更保險合同修改承諾書3篇
- 安裝合同格式安裝3篇
- 擋水墻施工合同書3篇
- 旅游小鎮(zhèn)建設(shè)合同2篇
- 常用授權(quán)委托書模板律所適用3篇
- 布線施工合同3篇
- 教育機(jī)構(gòu)建筑改造協(xié)議3篇
- 工程委托書范本3篇
- 2024年汽車抵押貸款提前還款合同范例3篇
- 《項目溝通管理培訓(xùn)》課件
- GB/T 44916-2024船舶和海上技術(shù)船用超低溫閘閥設(shè)計與試驗要求
- 《BL急性腎盂腎炎》課件
- 夢想在路上 高二上學(xué)期期中家長會
- 【MOOC】中國文化概論-華南師范大學(xué) 中國大學(xué)慕課MOOC答案
- 2025年蛇年年會匯報年終總結(jié)大會模板
- 新編蘇教版一年級科學(xué)上冊實驗報告冊(典藏版)
- 微機(jī)原理與應(yīng)用智慧樹知到期末考試答案章節(jié)答案2024年山東大學(xué)
- 思想意識形態(tài)滲透-就在你我身邊
- 實際問題與反比例函數(shù)(1)
評論
0/150
提交評論