結構動力學大連理工土木水利學院_第1頁
結構動力學大連理工土木水利學院_第2頁
結構動力學大連理工土木水利學院_第3頁
結構動力學大連理工土木水利學院_第4頁
結構動力學大連理工土木水利學院_第5頁
已閱讀5頁,還剩82頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

院DalianUniversityof第I單自由第2-3工程抗震InstituteofEarthquakeEngineering院§2-1基本動力體系的kcmkcmkcmDaliankcmDalianUniversityof工程抗震InstituteofEarthquakeEngineering

2014-12-01 院DalianUniversityofmcc工程抗震InstituteofEarthquakeEngineering

2014-12-01 院體系質量 彈性特性(剛度或柔度)k能量耗散機制或阻 DalianUniversityof每個特性都假設集結于DalianUniversityof研究單自由度體系的自由振動重要性在塔、單層廠房1、它代表了許多實際塔、單層廠房InstituteofEarthquakeEngineering2014-12- 2、它是分析多自由度InstituteofEarthquakeEngineering2014-12- 工程抗院v(t院v(tkmp(tcv(t受力Fsmp(tv(t受力Fsmp(tF(tdDalianUniversityof

2014-12-01 院

FsFdDalianUniversityof粘滯(或粘性)阻尼(ViscousDalianUniversityofRcdv(t)外力(External

InstituteofEarthquakeInstituteofEarthquakeEngineering2014-12- 院FFsFdp(t)kv(t)cv(t)p(t)DalianDalianUniversityof單自由度系統(tǒng)的運動方程(Equationof工程抗震InstituteofEarthquakeEngineering

2014-12-01 院DalianUniversityDalianUniversityof由于δv的任意性,且不等工程抗震InstituteofEarthquakeEngineering

2014-12-01 院DalianUniversityofFFs(t)Fs(t)vv(t)v(t)工程抗震InstituteofEarthquakeEngineering

2014-12-01 院

Fs(t)kv(t)kst動力平衡DalianUniversityofcv(t)kv(t)kstp(tDalianUniversityof去掉靜力平衡Δst與時間無工程抗震InstituteofEarthquakeEngineering

2014-12-01 院院DalianUniversityDalianUniversityofInstituteofEarthquakeEngineering2014-12- 性、彈性、InstituteofEarthquakeEngineering2014-12- 性、彈性、小變形的情工程抗院k2ck2f(t)v(t)v(t)vtgItfs(t)/

fD

fs(t)/DalianUniversityoffI(tDalianUniversityof

(t)

(t)阻尼力和彈性力只與相對

構破壞的原因質越大,慣性力越InstituteofEarthquakeEngineering2014-12- InstituteofEarthquakeEngineering2014-12- 工程抗院gvt(t)v(t)vg

DalianUniversityof DalianUniversityof地面運動一般測量的是加速度,此時需要 加速度積分得地面運動的速度和位InstituteofEarthquakeInstituteofEarthquakeEngineering2014-12- 院§院DalianUniversityDalianUniversityof

自由Particular自由振

Free!=0強迫復復

v(t)齊線性方程,通解取工程抗震InstituteofEarthquakeEngineering

2014-12-01 院

RealGGRG

θ為幅DalianUniversityofGGcosiGsin(ei)DalianUniversityof(ei)

eicosisineicosisincos[eiei]/sini[eiei]/工程抗震InstituteofEarthquakeEngineering

2014-12-01 院院kcsms2k/m2

DalianUniversityof方DalianUniversityof相對于k和m的

2

css2m

運動方程的

s1v(t)G1

c2G2工程抗震InstituteofEarthquakeEngineering

2014-12-01 v(t)GeitG12v(t)(G1v(t)GeitG12院(G2RiG2I)(cos院v(t)(G1RG2R)cost(G1IG2I)sinti[(G1IG2I)cost(G1RG2R)sint]自由振動必須是實的,虛部項必DalianUniversityofG1RG2RGRG1IG2DalianUniversityofA2GR;B

v(t)2GRcost2GIsint2Gcos(tAcostBsinv(t) iG)eit iG 常微分方程中有如下定G

G2;

如果方程有復值解,則它的共數(shù)、復值解的實部和虛部也都InstituteofInstituteofEarthquakeEngineering2014-12-

相位

程的解 院Dalian院DalianUniversityof

v(t)2GRcost2GIsint2Gcos(tAcostB iGI

iGI v(0)A2G;v(0)B v(t)v(0)costv(0)sin

v(t)cos(tv(0)2v(0)2[tan1BA

工程抗震InstituteofEarthquakeEngineering

2014-12-01 院

v(t)cos(t[

tan1DalianUniversityoff;T2 自振周期或固有周期(NaturalPeriodof工程抗震InstituteofEarthquakeEngineering

2014-12-01 院院2css2m

sc(c(c)22臨界c2m

低阻

阻尼cc c cDalianUniversityofs阻1DalianUniversityofs阻

c/cc2222

超阻

11D工程抗震InstituteofEarthquakeEngineering

2014-12-01 院c2mccs1s2c2mccs1s2初始條件v(0)

個相同的實

G1和G2均為實G2v(0)DalianUniversityofDalianUniversityof

G v(t)[v(0)(v(0)

2mω是系統(tǒng)不出現(xiàn)振蕩的最工程抗震InstituteofEarthquakeEngineering

2014-12-01 超臨界院DalianUniversityof

c/cc2s22

工程抗震InstituteofEarthquakeEngineering

2014-12-01 院v(t)c c

v(t)(G GeiwDtc cs

為使反應是實的,G1和G2必須為共軛D1阻尼體系的自D1阻尼體系的自振頻采用三角函數(shù) v(t)(AcoswtBsinw DalianUniversityofv(t)(w AsinwtwBcoswt)et(AcoswtBsinwt)et DalianUniversityofv(0)

Bv(0)Dv(t)(v(0)coswtv(0)v(0)sinw D工程抗震InstituteofEarthquakeEngineering

2014-12-01 院v(t)(v(0)coswtv(0)v(0)sinw Dv(t)cos(t D

[[]2D ;

具有不變的振動周期具有不變的振動周期工程抗InstituteofEarthquakeEngineering2014-12- DalianUniversityof院通常的工程結構,阻尼比ξ的值一般在1%~10%之間。故近似地認為ωD=ξξDalianUniversityof工程抗震InstituteofEarthquakeDalianUniversityof

2014-12-01 院t,tt,t2/v(t)cos(Dt)e相鄰兩個正波峰的比:

/

e2DalianUniversityofDalianUniversityof11

ln

/

2小阻尼情況近 Taylor

vn/

12

2!取前兩

由此可見,對于粘滯阻尼自

動,任意相鄰兩振幅之間的是一個常工程抗震InstituteofEarthquakeEngineering

2014-12-01 院阻尼院1lnvn/ 1近似

DalianUniversityof這種測定阻尼系數(shù)的方法稱為自振衰減法(FreeDalianUniversityof工程抗震InstituteofEarthquakeEngineering

2014-12-01 院

例p=20kips;v=0.20in

無阻尼振動頻f1/T1/1.402f1 v=0.16in;1

阻尼特DalianUniversityofDalianUniversityofT2 1.40

阻尼系

ln(0.20/0.16)/2cccW 0.0496386

阻尼頻11

0.9991/2

0.0355219201.548kips

6周后振

(v/v)6 工程抗震InstituteofEarthquakeEngineering

2014-12-01 院m求自振頻m

DalianDalianUniversityof

m k

KK3EI工程抗震InstituteofEarthquakeEngineering

2014-12-01 院kkalDalianUniversityofml2kaDalianUniversityofm工程抗震InstituteofEarthquakeEngineering

2014-12-01 院1DalianUniversityofU DalianUniversityof2

T2

T1(mM)v2工程抗震InstituteofEarthquakeEngineering

2014-12-01 院2-DalianUniversityDalianUniversityof

第2工程抗震InstituteofEarthquakeEngineering

2014-12-01 院無阻尼自由振動v(t2GRcost2GIsint2Gcos(tAcostBsinDalianUniversityofDalianUniversityof臨界阻

v(t)(GRiGI k/m2c2m

iGI

c c 超阻

11

低阻 v(t)(AcoswtBsinw 工程抗震InstituteofEarthquakeEngineering

2014-12-01 院

v(t 0 0

m

p0sin(tDalianDalianUniversityof

vc(t)AcostBsintvp(t)Csint0m2CsintkCsint0

sin確定常數(shù)

Cp0

;頻率k12 頻率 v(t)AcostBsintCsin工程抗震InstituteofEarthquakeEngineering

2014-12-01 院 v(t)AcostBsintCsin系數(shù)A和B通過初始條件確定。對于由靜止開始的運動

Cp0 112;Cp0 112; 12 DalianDalianUniversityof

v(t)p0

(sintsin

R(t)v(t)

12R(t) (sin 12

p0/

12 工程抗震InstituteofEarthquakeEngineering

2014-12-01 院v(t) 1院v(t) 112(sintDalianUniversityofDalianUniversityof工程抗震InstituteofEarthquakeEngineering

2014-12-01 院p(t)院Cp0 1 2Cp0 1 2v(t)v0sintvcost

costcost

22/2/DalianUniversityof工程抗震InstituteofEarthquakeEngineering

2014-12-01 院院22/2/DalianUniversityof工程抗震InstituteofEarthquakeDalianUniversityof

2014-12-01 院v(院v(t)v0sintvcost0costcost 非常小,但不等于

ε為一非常小的v(t)

m(22

costcostDalianUniversityof 20 sin()tsin()t DalianUniversityofm(22

sintsin因為最后一個等式中的ε非常小,所以函數(shù)sinεt變化緩慢,它的周期等于2π/ε,該值很大。因此,上式可以視為周期為2π/?,可變振幅等于p0/(2mε?)sinεt的振動,這種振動按下圖所工程抗震InstituteofEarthquakeEngineering

2014-12-01 院v院v(t)v0sintvcost0costcost率sintsinDalianUniversityof因為最后一個等式中的ε非常小,所以函數(shù)sinεt變化緩慢,它的周期等于2π/ε,該值很大。因此,上式可以視為周期為2π/?,可變振幅等于p0/(2mε?)sinεt的振動,這種振動按下圖所DalianUniversityof工程抗震InstituteofEarthquakeEngineering

2014-12-01 院v(院v(t)sintvcostP 0 m(22costcost 20

t tv(t)0sintvcostlim

mInstituteofEarthquakeEngineering2014-12- 0L’Hospital上下求導隨著時間線性增長,這種InstituteofEarthquakeEngineering2014-12- 0L’Hospital上下求導隨著時間線性增長,這種稱為 DalianUniversityof工程抗院InstituteofEarthquakeInstituteofEarthquakeEngineering2014-12- DalianUniversityof動力放大系數(shù)DynamicMagnification院v(t)院v(t)p0 112(sintsinD

D11β1DalianUniversityof工程抗震InstituteofEarthquakeDalianUniversityof

2014-12-01 院DalianUniversityof工程抗震InstituteofEarthquakeEngineeringDalianUniversityof

2014-12-01 院DalianUniversityof工程抗院DalianUniversityof

2014-12-01 11Dalian11DalianUniversityof

152.32/院工程抗震院

2014-12-01 D D院DalianUniversityof院DalianUniversityof

2014-12-01 院0 0m

用待定系數(shù)法求該微分方程DalianUniversityofvp(t)A1costA2DalianUniversityof (t)A2costA2sin A2costA2sint2AsintAcost

AcostAsint

工程抗震InstituteofEarthquakeEngineering

2014-12-01 ((21A2A)21t(A221A)sin22t0msin院DalianUniversityofDalianUniversityof

22A2A A22A2

m2224222

P0 k(12)2(2AP0(22A

1 m2224222

k(12)2(2工程抗震InstituteofEarthquakeEngineering

2014-12-01 院vp(t)sintA212A212 DalianUniversityof相位tg相位

2 1工程抗震InstituteofEarthquakeEngineering

2014-12-01 院方院方程的通

sin

t

tsint v(t)

BsintB

tAcostAsin 代入初始

v(0) 可DalianUniversityofDalianUniversityofv(t) 0 0sintvcos

初始條件的自由振瞬態(tài)反應很快 eesinsinDtsin sin tD伴生的自由振瞬態(tài)反應很快純強迫振穩(wěn)態(tài)諧振反工程抗震InstituteofEarthquakeEngineering

2014-12-01 院v(t)sint(12)2(2

[(12)sint2DalianUniversityofDalianUniversityofk

[(1

2

]1/

tg

1 k(12

sin

p0/工程抗震InstituteofEarthquakeEngineering

2014-12-01 院D [(12)2(2)2]1/2p0/DalianUniversityof工程抗震InstituteofEarthquakeDalianUniversityof

2014-12-01 院tg

1 DalianUniversityof工程抗震InstituteofEarthquakeEngineeringDalianUniversityof

2014-12- 院P0[(1院P0[(12)2(2)2ktg1DalianUniversityof

2014-12-01 院DalianUniversityof工程抗院DalianUniversityof

2014-12-01 Determine院

2DalianUniversityofThuswiththedataofDalianUniversityoftg(22)tg15(27.92162)

227.9Thesameresult(withinengineeringaccuracy)isgivenbythedataofthesecondtestInstituteofEarthquakeEngineering2014-12- ThesameresultsInstituteofEarthquakeEngineering2014-12- 工程抗院

D [(12)2(2)2]1/2R(t)

1

(sintsin

p0/ 無阻尼時,外載的頻率等于DalianUniversityofDalianUniversityof對阻尼

D11/動力放大系dDd

12峰βDmax峰

21

DDInstituteofEarthquakeInstituteofEarthquakeEngineering2014-12- 院DalianUniversityof工程抗震InstituteofEarthquakeEngineering

2014-12- 院DalianUniversityof工程抗震院DalianUniversityof

2014-12-01 院DalianUniversityof院DalianUniversityof

2014-12-01 院§院?InstituteofEarthquakeEngineering2014-12-InstituteofEarthquakeEngineering2014-12- DalianUniversityof工程抗院

輸(t)輸(t)ggAP0 1k(12)2(2P1

k(12)2(2DD [(12)2(2)2]1/2p0/DDalianUniversityDalianUniversityofInstituteofEarthquakeInstituteofEarthquakeEngineering2014-12-

在β<0.6,ξ=0.7時,放倍數(shù)接近常量。儀器反應入幅值成正比。這種儀器作為低頻加速度院

vg(t)vg02 t)2 g0D2v g0DalianUniversityofDalianUniversityof工程抗震InstituteofEarthquakeEngineering

2014-12-01 院這里只介紹簡單的DalianUniversityofDalianUniversityof基礎產(chǎn)生的InstituteofEarthquakeInstituteofEarthquakeEngineering2014-12- 院m p(t)p0DalianUniversityDalianUniversityof

彈性

穩(wěn)態(tài)相對位v(t)p0DsintkfS(t)kv(t)p0DsintfD(t)cv(t)

p0Dcostk

2p0Dcost總反力幅

(t)[f2

p1(2)21(2)21(2)2支撐系統(tǒng)的傳導比 TRfmax(t)/1(2)2工程抗震InstituteofEarthquakeEngineering

2014-12-01 k2ck2代入基底的運動vg0k 2p0單自由度隔振體系(支座擾動vg(t)vg0

運動方院院DalianUniversityofpDalianUniversityof

kvg

穩(wěn)態(tài)響g)2gg)2g1(22

vt(t)

m2

傳導比TR

g(t)/ g1(21(2 工程抗震InstituteofEarthquakeEngineering

2014-12-01 院Dalian院DalianUniversityof當頻率較高時,傳導比要較低頻時低很多,因此,使系高頻運動是有利的工程抗震InstituteofEarthquakeEngineering

2014-12-01 院隔振率 IE1 If

TRTRD1(2D[(12)2(2)2

Ifβ=

隔振體系只有在β>21/2時才有DalianUniversityof對于小阻尼情 DalianUniversityofIE22/2 22IE/1IE2 2/22m/k2W/kg / 21 21工程抗震InstituteofEarthquakeEngineering

2014-12-01 院院 21

隔振體系越柔越 DalianUniversityof工程抗震InstituteofEarthquakeDalianUniversityof

2014-12-01 例題3-例題3-院DalianUniversityofDeflectionssometimesdevelopinconcretebridgegirdersduetocreep,andifthebridgeconsistsofalongseriesofidenticalspans,thesedeformationswillcauseaharmonicexcitationinavehicletravelingoverthebridgeatconstantspeed.院DalianUniversityofInstituteofEarthquakeEngineering2014-12- is40percentofFigureE31showsahighlyidealizedmodelofthistypeofsystem,inwhichthevehicleweightis4000lb[1814kg]anditsspringstiffnessisdefinedbyatestwhichshowedthatadding100lb[45.36kg]causedadeflectionof0.08in[0.203cm].Thebridgeprofileisrepresentedbyasinecurvehavingawavelength(girderspan)of40ft[12.2m]anda(single)amplitudeof1.2in[3.05cm].FromthesedataitisdesiredtopredictthesteadystateverticalmotionsinthecarInstituteofEarthquakeEngineering2014-12- is40percentof工程抗院穩(wěn)態(tài)響vt(t)院穩(wěn)態(tài)響vt(t)vg12Dsint2DalianUniversityof

2014-12-01 院傳導隔振率TR80/500IE10.16f彈簧剛kW/4stDalianUniversityof工程抗震InstituteofEarthquakeDalianUniversityof

2014-12-01 院第2章曾用自由振動衰減法計算結構的阻取自然對

lnvn/

m對數(shù)衰減 DalianUniversityDalianUniversityof放半功率每 能量損失InstituteofEarthquakeInstituteofEarthquakeEngineering2014-12- 院D [(12)2(2)2]1/2p0/dD 12d DalianDalianUniversityofDmax

21DmaxD11/max/0D0/需 使用諧振荷載的幅值InstituteofEarthquakeInstituteofEarthquakeEngineering2014-12- 院v(t)sintkp0[(12)2(2)2k反應幅值由阻尼控阻尼比由反應幅值降到峰2DalianUniversityof1/ 水平時的2DalianUniversityof

2

阻尼耗

2/20

)dtm2與22 成正工

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論