




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列各數中比﹣1小的數是()A.﹣2 B.﹣1 C.0 D.12.如圖,直線AB∥CD,∠A=70°,∠C=40°,則∠E等于()A.30° B.40°C.60° D.70°3.如圖,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分別以點A,B為圓心,大于線段AB長度的一半為半徑作弧,相交于點E,F,過點E,F作直線EF,交AB于點D,連接CD,則△ACD的周長為()A.13 B.17 C.18 D.254.下列天氣預報中的圖標,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.5.如圖,平面直角坐標系xOy中,四邊形OABC的邊OA在x軸正半軸上,BC∥x軸,∠OAB=90°,點C(3,2),連接OC.以OC為對稱軸將OA翻折到OA′,反比例函數y=的圖象恰好經過點A′、B,則k的值是()A.9 B. C. D.36.下列運算不正確的是A.a5+C.2a27.下列運算正確的是(
)A.a2·a3﹦a6
B.a3+a3﹦a6
C.|-a2|﹦a2
D.(-a2)3﹦a68.在快速計算法中,法國的“小九九”從“一一得一”到“五五二十五”和我國的“小九九”算法是完全一樣的,而后面“六到九”的運算就改用手勢了.如計算8×9時,左手伸出3根手指,右手伸出4根手指,兩只手伸出手指數的和為7,未伸出手指數的積為2,則8×9=10×7+2=1.那么在計算6×7時,左、右手伸出的手指數應該分別為()A.1,2 B.1,3C.4,2 D.4,39.如圖,在平面直角坐標系xOy中,點A(1,0),B(2,0),正六邊形ABCDEF沿x軸正方向無滑動滾動,每旋轉60°為滾動1次,那么當正六邊形ABCDEF滾動2017次時,點F的坐標是()A.(2017,0) B.(2017,)C.(2018,) D.(2018,0)10.在剛剛結束的中考英語聽力、口語測試中,某班口語成績情況如圖所示,則下列說法正確的是()A.中位數是9 B.眾數為16 C.平均分為7.78 D.方差為211.在同一直角坐標系中,二次函數y=x2與反比例函數y=1x(x>0)的圖象如圖所示,若兩個函數圖象上有三個不同的點A(x1,m),B(x2,m),C(x3,m),其中m為常數,令ω=x1+x2+x3A.1B.mC.m2D.112.將2001×1999變形正確的是()A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+1二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知AB∥CD,=____________14.若關于x的方程x2-mx+m=0有兩個相等實數根,則代數式2m2-8m+3的值為__________.15.某班有54名學生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新學期準備調整座位,設某個學生原來的座位為(m,n),如果調整后的座位為(i,j),則稱該生作了平移[a,b]=[m-i,n-j],并稱a+b為該生的位置數.若某生的位置數為10,則當m+n取最小值時,m?n的最大值為_____________.16.如圖,△ABC三邊的中線AD,BE,CF的公共點G,若,則圖中陰影部分面積是.17.如圖,矩形紙片ABCD中,AB=3,AD=5,點P是邊BC上的動點,現將紙片折疊使點A與點P重合,折痕與矩形邊的交點分別為E,F,要使折痕始終與邊AB,AD有交點,BP的取值范圍是_____.18.如圖,AB是半徑為2的⊙O的弦,將沿著弦AB折疊,正好經過圓心O,點C是折疊后的上一動點,連接并延長BC交⊙O于點D,點E是CD的中點,連接AC,AD,EO.則下列結論:①∠ACB=120°,②△ACD是等邊三角形,③EO的最小值為1,其中正確的是_____.(請將正確答案的序號填在橫線上)三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知:,,,求證:.20.(6分)學習了正多邊形之后,小馬同學發(fā)現利用對稱、旋轉等方法可以計算等分正多邊形面積的方案.(1)請聰明的你將下面圖①、圖②、圖③的等邊三角形分別割成2個、3個、4個全等三角形;(2)如圖④,等邊△ABC邊長AB=4,點O為它的外心,點M、N分別為邊AB、BC上的動點(不與端點重合),且∠MON=120°,若四邊形BMON的面積為s,它的周長記為l,求最小值;(3)如圖⑤,等邊△ABC的邊長AB=4,點P為邊CA延長線上一點,點Q為邊AB延長線上一點,點D為BC邊中點,且∠PDQ=120°,若PA=x,請用含x的代數式表示△BDQ的面積S△BDQ.21.(6分)如圖,在△ABC中,BD平分∠ABC,AE⊥BD于點O,交BC于點E,AD∥BC,連接CD.(1)求證:AO=EO;(2)若AE是△ABC的中線,則四邊形AECD是什么特殊四邊形?證明你的結論.22.(8分)解方程:23.(8分)如圖所示,點C為線段OB的中點,D為線段OA上一點.連結AC、BD交于點P.(問題引入)(1)如圖1,若點P為AC的中點,求的值.溫馨提示:過點C作CE∥AO交BD于點E.(探索研究)(2)如圖2,點D為OA上的任意一點(不與點A、O重合),求證:.(問題解決)(3)如圖2,若AO=BO,AO⊥BO,,求tan∠BPC的值.24.(10分)某中學九(1)班為了了解全班學生喜歡球類活動的情況,采取全面調查的方法,從足球、乒乓球、籃球、排球等四個方面調查了全班學生的興趣愛好,根據調查的結果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統計圖(如圖①,②,要求每位學生只能選擇一種自己喜歡的球類),請你根據圖中提供的信息解答下列問題:(1)九(1)班的學生人數為,并把條形統計圖補充完整;(2)扇形統計圖中m=,n=,表示“足球”的扇形的圓心角是度;(3)排球興趣小組4名學生中有3男1女,現在打算從中隨機選出2名學生參加學校的排球隊,請用列表或畫樹狀圖的方法求選出的2名學生恰好是1男1女的概率.25.(10分)如圖,BD⊥AC于點D,CE⊥AB于點E,AD=AE.求證:BE=CD.26.(12分)如圖,某地方政府決定在相距50km的A、B兩站之間的公路旁E點,修建一個土特產加工基地,且使C、D兩村到E點的距離相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E應建在離A站多少千米的地方?27.(12分)已知,在平面直角坐標系xOy中,拋物線L:y=x2-4x+3與x軸交于A,B兩點(點A在點B的左側),頂點為C.(1)求點C和點A的坐標.(2)定義“L雙拋圖形”:直線x=t將拋物線L分成兩部分,首先去掉其不含頂點的部分,然后作出拋物線剩余部分關于直線x=t的對稱圖形,得到的整個圖形稱為拋物線L關于直線x=t的“L雙拋圖形”(特別地,當直線x=t恰好是拋物線的對稱軸時,得到的“L雙拋圖形”不變),①當t=0時,拋物線L關于直找x=0的“L雙拋圖形”如圖所示,直線y=3與“L雙拋圖形”有______個交點;②若拋物線L關于直線x=t的“L雙拋圖形”與直線y=3恰好有兩個交點,結合圖象,直接寫出t的取值范圍:______;③當直線x=t經過點A時,“L雙拋圖形”如圖所示,現將線段AC所在直線沿水平(x軸)方向左右平移,交“L雙拋圖形”于點P,交x軸于點Q,滿足PQ=AC時,求點P的坐標.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
根據兩個負數比較大小,絕對值大的負數反而小,可得答案.【詳解】解:A、﹣2<﹣1,故A正確;B、﹣1=﹣1,故B錯誤;C、0>﹣1,故C錯誤;D、1>﹣1,故D錯誤;故選:A.【點睛】本題考查了有理數大小比較,利用了正數大于0,0大于負數,注意兩個負數比較大小,絕對值大的負數反而?。?、A【解析】
∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故選A.3、C【解析】在Rt△ABC中,∠ACB=90°,BC=12,AC=5,根據勾股定理求得AB=13.根據題意可知,EF為線段AB的垂直平分線,在Rt△ABC中,根據直角三角形斜邊的中線等于斜邊的一半可得CD=AD=AB,所以△ACD的周長為AC+CD+AD=AC+AB=5+13=18.故選C.4、A【解析】
根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,也是中心對稱圖形,符合題意;B、是軸對稱圖形,不是中心對稱圖形,不合題意;C、不是軸對稱圖形,也不是中心對稱圖形,不合題意;D、不是軸對稱圖形,不是中心對稱圖形,不合題意.故選:A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.5、C【解析】
設B(,2),由翻折知OC垂直平分AA′,A′G=2EF,AG=2AF,由勾股定理得OC=,根據相似三角形或銳角三角函數可求得A′(,),根據反比例函數性質k=xy建立方程求k.【詳解】如圖,過點C作CD⊥x軸于D,過點A′作A′G⊥x軸于G,連接AA′交射線OC于E,過E作EF⊥x軸于F,設B(,2),在Rt△OCD中,OD=3,CD=2,∠ODC=90°,∴OC==,由翻折得,AA′⊥OC,A′E=AE,∴sin∠COD=,∴AE=,∵∠OAE+∠AOE=90°,∠OCD+∠AOE=90°,∴∠OAE=∠OCD,∴sin∠OAE==sin∠OCD,∴EF=,∵cos∠OAE==cos∠OCD,∴,∵EF⊥x軸,A′G⊥x軸,∴EF∥A′G,∴,∴,,∴,∴A′(,),∴,∵k≠0,∴,故選C.【點睛】本題是反比例函數綜合題,常作為考試題中選擇題壓軸題,考查了反比例函數點的坐標特征、相似三角形、翻折等,解題關鍵是通過設點B的坐標,表示出點A′的坐標.6、B【解析】(-2a7、C【解析】
根據同底數冪相乘,底數不變指數相加;合并同類項,只把系數相加減,字母與字母的次數不變;同底數冪相除,底數不變指數相減,對各選項計算后利用排除法求解.【詳解】a2·a3﹦a5,故A項錯誤;a3+a3﹦2a3,故B項錯誤;a3+a3﹦-a6,故D項錯誤,選C.【點睛】本題考查同底數冪加減乘除及乘方,解題的關鍵是清楚運算法則.8、A【解析】試題分析:通過猜想得出數據,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和為3×10=30,30+4×3=42,故選A.點評:此題是定義新運算題型.通過閱讀規(guī)則,得出一般結論.解題關鍵是對號入座不要找錯對應關系.9、C【解析】
本題是規(guī)律型:點的坐標;坐標與圖形變化-旋轉,正六邊形ABCDEF一共有6條邊,即6次一循環(huán);因為2017÷6=336余1,點F滾動1次時的橫坐標為2,縱坐標為,點F滾動7次時的橫坐標為8,縱坐標為,所以點F滾動2107次時的縱坐標與相同,橫坐標的次數加1,由此即可解決問題.【詳解】.解:∵正六邊形ABCDEF一共有6條邊,即6次一循環(huán);∴2017÷6=336余1,∴點F滾動1次時的橫坐標為2,縱坐標為,點F滾動7次時的橫坐標為8,縱坐標為,∴點F滾動2107次時的縱坐標與相同,橫坐標的次數加1,∴點F滾動2107次時的橫坐標為2017+1=2018,縱坐標為,∴點F滾動2107次時的坐標為(2018,),故選C.【點睛】本題考查坐標與圖形的變化,規(guī)律型:點的坐標,解題關鍵是學會從特殊到一般的探究方法,是中考??碱}型.10、A【解析】
根據中位數,眾數,平均數,方差等知識即可判斷;【詳解】觀察圖象可知,共有50個學生,從低到高排列后,中位數是25位與26位的平均數,即為1.故選A.【點睛】本題考查中位數,眾數,平均數,方差的定義,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.11、D【解析】
本題主要考察二次函數與反比例函數的圖像和性質.【詳解】令二次函數中y=m.即x2=m,解得x=m或x=-m.令反比例函數中y=m,即1x=m,解得x=1m,將x的三個值相加得到ω=m+(-m)+【點睛】巧妙借助三點縱坐標相同的條件建立起兩個函數之間的聯系,從而解答.12、A【解析】
原式變形后,利用平方差公式計算即可得出答案.【詳解】解:原式=(2000+1)×(2000-1)=20002-1,故選A.【點睛】此題考查了平方差公式,熟練掌握平方差公式是解本題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、85°.【解析】如圖,過F作EF∥AB,而AB∥CD,∴AB∥CD∥EF,∴∠ABF+∠BFE=180°,∠EFC=∠C,∴∠α=180°?∠ABF+∠C=180°?120°+25°=85°故答案為85°.14、1.【解析】
根據方程的系數結合根的判別式即可得出△=m2﹣4m=0,將其代入2m2﹣8m+1中即可得出結論.【詳解】∵關于x的方程x2﹣mx+m=0有兩個相等實數根,∴△=(﹣m)2﹣4m=m2﹣4m=0,∴2m2﹣8m+1=2(m2﹣4m)+1=1.故答案為1.【點睛】本題考查了根的判別式,熟練掌握“當△=0時,方程有兩個相等的兩個實數根”是解題的關鍵.15、36【解析】
10=a+b=(m-i)+(n-j)=(m+n)-(i+j)所以:m+n=10+i+j當(m+n)取最小值時,(i+j)也必須最小,所以i和j都是2,這樣才能(i+j)才能最小,因此:m+n=10+2=12也就是:當m+n=12時,m·n最大是多少?這就容易了:m·n<=36所以m·n的最大值就是3616、4【解析】試題分析:由中線性質,可得AG=2GD,則,∴陰影部分的面積為4;其實圖中各個單獨小三角形面積都相等本題雖然超綱,但學生容易蒙對的.考點:中線的性質.17、1≤x≤1【解析】
此題需要運用極端原理求解;①BP最小時,F、D重合,由折疊的性質知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的長,進而可求得BP的值,即BP的最小值;②BP最大時,E、B重合,根據折疊的性質即可得到AB=BP=1,即BP的最大值為1;【詳解】解:如圖:①當F、D重合時,BP的值最?。桓鶕郫B的性質知:AF=PF=5;在Rt△PFC中,PF=5,FC=1,則PC=4;∴BP=xmin=1;②當E、B重合時,BP的值最大;由折疊的性質可得BP=AB=1.所以BP的取值范圍是:1≤x≤1.故答案為:1≤x≤1.【點睛】此題主要考查的是圖形的翻折變換,正確的判斷出x的兩種極值下F、E點的位置,是解決此題的關鍵.18、①②【解析】
根據折疊的性質可知,結合垂徑定理、三角形的性質、同圓或等圓中圓周角與圓心的性質等可以判斷①②是否正確,EO的最小值問題是個難點,這是一個動點問題,只要把握住E在什么軌跡上運動,便可解決問題.【詳解】如圖1,連接OA和OB,作OF⊥AB.
由題知:沿著弦AB折疊,正好經過圓心O
∴OF=OA=OB
∴∠AOF=∠BOF=60°
∴∠AOB=120°
∴∠ACB=120°(同弧所對圓周角相等)
∠D=∠AOB=60°(同弧所對的圓周角是圓心角的一半)
∴∠ACD=180°-∠ACB=60°
∴△ACD是等邊三角形(有兩個角是60°的三角形是等邊三角形)
故,①②正確
下面研究問題EO的最小值是否是1
如圖2,連接AE和EF
∵△ACD是等邊三角形,E是CD中點
∴AE⊥BD(三線合一)
又∵OF⊥AB
∴F是AB中點
即,EF是△ABE斜邊中線
∴AF=EF=BF
即,E點在以AB為直徑的圓上運動.
所以,如圖3,當E、O、F在同一直線時,OE長度最小
此時,AE=EF,AE⊥EF
∵⊙O的半徑是2,即OA=2,OF=1
∴AF=(勾股定理)
∴OE=EF-OF=AF-OF=-1
所以,③不正確
綜上所述:①②正確,③不正確.
故答案是:①②.【點睛】考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.也考查了垂徑定理.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、證明見解析;【解析】
根據HL定理證明Rt△ABC≌Rt△DEF,根據全等三角形的性質證明即可.【詳解】,BE為公共線段,∴CE+BE=BF+BE,即又,在與中,≌∴AC=DF.【點睛】本題考查的是全等三角形的判定和性質,掌握全等三角形的判定定理和性質定理是解題的關鍵.20、(1)詳見解析;(2)2+2;(3)S△BDQx+.【解析】
(1)根據要求利用全等三角形的判定和性質畫出圖形即可.(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.證明△OEM≌△OFN(ASA),推出EM=FN,ON=OM,S△EOM=S△NOF,推出S四邊形BMON=S四邊形BEOF=定值,證明Rt△OBE≌Rt△OBF(HL),推出BM+BN=BE+EM+BF﹣FN=2BE=定值,推出欲求最小值,只要求出l的最小值,因為l=BM+BN+ON+OM=定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因為OM=ON,根據垂線段最短可知,當OM與OE重合時,OM定值最小,由此即可解決問題.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.證明△PDF≌△QDE(ASA),即可解決問題.【詳解】解:(1)如圖1,作一邊上的中線可分割成2個全等三角形,如圖2,連接外心和各頂點的線段可分割成3個全等三角形,如圖3,連接各邊的中點可分割成4個全等三角形,(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.∵△ABC是等邊三角形,O是外心,∴OB平分∠ABC,∠ABC=60°∵OE⊥AB,OF⊥BC,∴OE=OF,∵∠OEB=∠OFB=90°,∴∠EOF+∠EBF=180°,∴∠EOF=∠NOM=120°,∴∠EOM=∠FON,∴△OEM≌△OFN(ASA),∴EM=FN,ON=OM,S△EOM=S△NOF,∴S四邊形BMON=S四邊形BEOF=定值,∵OB=OB,OE=OF,∠OEB=∠OFB=90°,∴Rt△OBE≌Rt△OBF(HL),∴BE=BF,∴BM+BN=BE+EM+BF﹣FN=2BE=定值,∴欲求最小值,只要求出l的最小值,∵l=BM+BN+ON+OM=定值+ON+OM,欲求最小值,只要求出ON+OM的最小值,∵OM=ON,根據垂線段最短可知,當OM與OE重合時,OM定值最小,此時定值最小,s=×2×=,l=2+2++=4+,∴的最小值==2+2.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.∵△ABC是等邊三角形,BD=DC,∴AD平分∠BAC,∵DE⊥AB,DF⊥AC,∴DE=DF,∵∠DEA=∠DEQ=∠AFD=90°,∴∠EAF+∠EDF=180°,∵∠EAF=60°,∴∠EDF=∠PDQ=120°,∴∠PDF=∠QDE,∴△PDF≌△QDE(ASA),∴PF=EQ,在Rt△DCF中,∵DC=2,∠C=60°,∠DFC=90°,∴CF=CD=1,DF=,同法可得:BE=1,DE=DF=,∵AF=AC﹣CF=4﹣1=3,PA=x,∴PF=EQ=3+x,∴BQ=EQ﹣BE=2+x,∴S△BDQ=?BQ?DE=×(2+x)×=x+.【點睛】本題主要考查多邊形的綜合題,主要涉及的知識點:全等三角形的判定和性質、多邊形內角和、角平分線的性質、等量代換、三角形的面積等,牢記并熟練運用這些知識點是解此類綜合題的關鍵。21、(1)詳見解析;(2)平行四邊形.【解析】
(1)由“三線合一”定理即可得到結論;
(2)由AD∥BC,BD平分∠ABC,得到∠ADB=∠ABD,由等腰三角形的判定得到AD=AB,根據垂直平分線的性質有AB=BE,于是AD=BE,進而得到AD=EC,根據平行四邊形的判定即可得到結論.【詳解】證明:(1)∵BD平分∠ABC,AE⊥BD,∴AO=EO;(2)平行四邊形,證明:∵AD∥BC,∴∠ADB=∠ABD,∴AD=AB,∵OA=OE,OB⊥AE,∴AB=BE,∴AD=BE,∵BE=CE,∴AD=EC,∴四邊形AECD是平行四邊形.【點睛】考查等腰直角三角形的性質以及平行四邊形的判定,掌握平行四邊形的判定方法是解題的關鍵.22、x=-4是方程的解【解析】
分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經檢驗即可得到分式方程的解.【詳解】∴x=-4,當x=-4時,∴x=-4是方程的解【點睛】本題考查了分式方程的解法,(1)解分式方程的基本思想是“轉化思想”,把分式方程轉化為整式方程求解.(2)解分式方程一定注意要驗根.23、(1);(2)見解析;(3)【解析】
(1)過點C作CE∥OA交BD于點E,即可得△BCE∽△BOD,根據相似三角形的性質可得,再證明△ECP≌△DAP,由此即可求得的值;(2)過點D作DF∥BO交AC于點F,即可得,,由點C為OB的中點可得BC=OC,即可證得;(3)由(2)可知=,設AD=t,則BO=AO=4t,OD=3t,根據勾股定理求得BD=5t,即可得PD=t,PB=4t,所以PD=AD,從而得∠A=∠APD=∠BPC,所以tan∠BPC=tan∠A=.【詳解】(1)如圖1,過點C作CE∥OA交BD于點E,∴△BCE∽△BOD,∴=,又BC=BO,∴CE=DO.∵CE∥OA,∴∠ECP=∠DAP,又∠EPC=∠DPA,PA=PC,∴△ECP≌△DAP,∴AD=CE=DO,即=;(2)如圖2,過點D作DF∥BO交AC于點F,則=,=.∵點C為OB的中點,∴BC=OC,∴=;(3)如圖2,∵=,由(2)可知==.設AD=t,則BO=AO=4t,OD=3t,∵AO⊥BO,即∠AOB=90°,∴BD==5t,∴PD=t,PB=4t,∴PD=AD,∴∠A=∠APD=∠BPC,則tan∠BPC=tan∠A==.【點睛】本題考查了相似三角形的判定與性質,準確作出輔助線,構造相似三角形是解決本題的關鍵,也是求解的難點.24、(1)4,補全統計圖見詳解.(2)10;20;72.(3)見詳解.【解析】
(1)根據喜歡籃球的人數與所占的百分比列式計算即可求出學生的總人數,再求出喜歡足球的人數,然后補全統計圖即可;
(2)分別求出喜歡排球、喜歡足球的百分比即可得到m、n的值,用喜歡足球的人數所占的百分比乘以360°即可;
(3)畫出樹狀圖,然后根據概率公式列式計算即可得解.【詳解】解:(1)九(1)班的學生人數為:12÷30%=40(人),喜歡足球的人數為:40?4?12?16=40?32=8(人),補全統計圖如圖所示;(2)∵×100%=10%,×100%=20%,∴m=10,n=20,表示“足球”的扇形的圓心角是20%×360°=72°;故答案為(1)40;(2)10;20;72;(3)根據題意畫出樹狀圖如下:一共有12種情況,恰好是1男1女的情況有6種,∴P(恰好是1男1女)==.25、證明過程見解析【解析】
要證明BE=CD,只要證明AB=AC即可,由條件可以求得△AEC和△ADB全等,從而可以證得結論.【詳解】∵BD⊥AC于點D,CE⊥AB于點E,∴∠ADB=∠AEC=90°,在△ADB和△AEC中,∴△ADB≌△AEC(ASA)∴AB=AC,又∵AD=AE,∴BE=CD.考點:全等三角形的判定與性質.26、20千米【解析】
由勾股定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 怎樣講解電教課件
- 2025年度二次供水設備維護保養(yǎng)合同協議書
- 護理安全生產培訓
- 旅游者與導游
- 2024年春七年級語文下冊 第5單元 17 紫藤蘿瀑布教學設計 新人教版
- 文明禮儀主題教育
- 形容聲音管理會計
- 防擴散出口管制清單調整論證評估管理制度 -@-1
- 心肺復蘇急救預案
- 心理學認知心理學測試卷詳解
- 分供方準入資格預審表(勞務、專業(yè)分包商)
- XX化工有限責任公司維保方案
- 基礎會計課件(完整版)
- 品質異常處罰細則及獎罰制度
- 二年級下冊心理健康教案-第二十四課 幫爸爸媽媽分擔 媽媽謝謝您|北師大版
- CT圖像偽影及處理
- 診所備案申請表格(衛(wèi)健委備案)
- 人教PEP版五年級英語下冊-《課時學練測》全冊含答案
- 鍋爐水冷壁安裝作業(yè)指導書
- 《雷鋒叔叔_你在哪里》說課稿
- 贊美詩歌400首全集
評論
0/150
提交評論