2021-2022學(xué)年天津市紅橋區(qū)普通中學(xué)中考數(shù)學(xué)四模試卷含解析_第1頁
2021-2022學(xué)年天津市紅橋區(qū)普通中學(xué)中考數(shù)學(xué)四模試卷含解析_第2頁
2021-2022學(xué)年天津市紅橋區(qū)普通中學(xué)中考數(shù)學(xué)四模試卷含解析_第3頁
2021-2022學(xué)年天津市紅橋區(qū)普通中學(xué)中考數(shù)學(xué)四模試卷含解析_第4頁
2021-2022學(xué)年天津市紅橋區(qū)普通中學(xué)中考數(shù)學(xué)四模試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022中考數(shù)學(xué)模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.在Rt△ABC中∠C=90°,∠A、∠B、∠C的對邊分別為a、b、c,c=3a,tanA的值為()A. B. C. D.32.如圖圖形中,是中心對稱圖形的是()A. B. C. D.3.計算的結(jié)果為()A.2 B.1 C.0 D.﹣14.要組織一次排球邀請賽,參賽的每個隊之間都要比賽一場,根據(jù)場地和時間等條件,賽程計劃7天,每天安排4場比賽.設(shè)比賽組織者應(yīng)邀請個隊參賽,則滿足的關(guān)系式為()A. B. C. D.5.如圖,下列條件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD?AC D.6.計算(﹣ab2)3的結(jié)果是()A.﹣3ab2 B.a(chǎn)3b6 C.﹣a3b5 D.﹣a3b67.如圖是由若干個相同的小正方體搭成的一個幾何體的主視圖和俯視圖,則所需的小正方體的個數(shù)最少是()A. B. C. D.8.如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規(guī)律進行下去,A11B11C11D11E11F11的邊長為()A. B. C. D.9.如圖,在邊長為3的等邊三角形ABC中,過點C垂直于BC的直線交∠ABC的平分線于點P,則點P到邊AB所在直線的距離為()A.33 B.32 C.10.如圖,將△ABC繞點B順時針旋轉(zhuǎn)60°得△DBE,點C的對應(yīng)點E恰好落在AB延長線上,連接AD.下列結(jié)論一定正確的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC二、填空題(本大題共6個小題,每小題3分,共18分)11.將一張長方形紙片按如圖所示的方式折疊,BD、BE為折痕,若∠ABE=20°,則∠DBC為_____度.12.如圖,直線y=k1x+b與雙曲線交于A、B兩點,其橫坐標(biāo)分別為1和5,則不等式k1x<+b的解集是▲.13.如圖,四邊形ABCD是菱形,☉O經(jīng)過點A,C,D,與BC相交于點E,連接AC,AE,若∠D=78°,則∠EAC=________°.14.如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=1DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=1.其中正確結(jié)論的是_____.15.如圖,等邊△ABC的邊長為1cm,D、E分別是AB、AC邊上的點,將△ADE沿直線DE折疊,點A落在點處,且點在△ABC的外部,則陰影部分圖形的周長為_____cm.16.關(guān)于x的不等式組有2個整數(shù)解,則a的取值范圍是____________.三、解答題(共8題,共72分)17.(8分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=m求反比例函數(shù)和一次函數(shù)的解析式;直接寫出當(dāng)x>0時,kx+b<m18.(8分)拋一枚質(zhì)地均勻六面分別刻有1、2、3、4、5、6點的正方體骰子兩次,若記第一次出現(xiàn)的點數(shù)為a,第二次出現(xiàn)的點數(shù)為b,則以方程組的解為坐標(biāo)的點在第四象限的概率為_____.19.(8分)先化簡,再求代數(shù)式()÷的值,其中a=2sin45°+tan45°.20.(8分)我們知道中,如果,,那么當(dāng)時,的面積最大為6;(1)若四邊形中,,且,直接寫出滿足什么位置關(guān)系時四邊形面積最大?并直接寫出最大面積.(2)已知四邊形中,,求為多少時,四邊形面積最大?并求出最大面積是多少?21.(8分)從廣州去某市,可乘坐普通列車或高鐵,已知高鐵的行駛路程是400千米,普通列車的行駛路程是高鐵的行駛路程的1.3倍.求普通列車的行駛路程;若高鐵的平均速度(千米/時)是普通列車平均速度(千米/時)的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間縮短3小時,求高鐵的平均速度.22.(10分)現(xiàn)有四張分別標(biāo)有數(shù)字1、2、2、3的卡片,他們除數(shù)字外完全相同.把卡片背面朝上洗勻,從中隨機抽出一張后放回,再背朝上洗勻,從中隨機抽出一張,則兩次抽出的卡片所標(biāo)數(shù)字不同的概率()A. B. C. D.23.(12分)如圖,在平行四邊形ABCD中,AB<BC.利用尺規(guī)作圖,在AD邊上確定點E,使點E到邊AB,BC的距離相等(不寫作法,保留作圖痕跡);若BC=8,CD=5,則CE=.24.元旦放假期間,小明和小華準(zhǔn)備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點被選中的可能性相同.(1)求小明選擇去白鹿原游玩的概率;(2)用樹狀圖或列表的方法求小明和小華都選擇去秦嶺國家植物園游玩的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據(jù)勾股定理和三角函數(shù)即可解答.【詳解】解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的對邊分別為a、b、c,c=3a,設(shè)a=x,則c=3x,b==2x.即tanA==.故選B.【點睛】本題考查勾股定理和三角函數(shù),熟悉掌握是解題關(guān)鍵.2、D【解析】

根據(jù)中心對稱圖形的概念和識別.【詳解】根據(jù)中心對稱圖形的概念和識別,可知D是中心對稱圖形,A、C是軸對稱圖形,D既不是中心對稱圖形,也不是軸對稱圖形.故選D.【點睛】本題考查中心對稱圖形,掌握中心對稱圖形的概念,會判斷一個圖形是否是中心對稱圖形.3、B【解析】

按照分式運算規(guī)則運算即可,注意結(jié)果的化簡.【詳解】解:原式=,故選擇B.【點睛】本題考查了分式的運算規(guī)則.4、A【解析】

根據(jù)應(yīng)用題的題目條件建立方程即可.【詳解】解:由題可得:即:故答案是:A.【點睛】本題主要考察一元二次方程的應(yīng)用題,正確理解題意是解題的關(guān)鍵.5、D【解析】

根據(jù)有兩個角對應(yīng)相等的三角形相似,以及根據(jù)兩邊對應(yīng)成比例且夾角相等的兩個三角形相似,分別判斷得出即可.【詳解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此選項不合題意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此選項不合題意;C、∵AB2=AD?AC,∴,∠A=∠A,△ABC∽△ADB,故此選項不合題意;D、=不能判定△ADB∽△ABC,故此選項符合題意.故選D.【點睛】點評:本題考查了相似三角形的判定,利用了有兩個角對應(yīng)相等的三角形相似,兩邊對應(yīng)成比例且夾角相等的兩個三角形相似.6、D【解析】

根據(jù)積的乘方與冪的乘方計算可得.【詳解】解:(﹣ab2)3=﹣a3b6,故選D.【點睛】本題主要考查冪的乘方與積的乘方,解題的關(guān)鍵是掌握積的乘方與冪的乘方的運算法則.7、B【解析】

主視圖、俯視圖是分別從物體正面、上面看,所得到的圖形.【詳解】綜合主視圖和俯視圖,底層最少有個小立方體,第二層最少有個小立方體,因此搭成這個幾何體的小正方體的個數(shù)最少是個.故選:B.【點睛】此題考查由三視圖判斷幾何體,解題關(guān)鍵在于識別圖形8、A【解析】分析:連接OE1,OD1,OD2,如圖,根據(jù)正六邊形的性質(zhì)得∠E1OD1=60°,則△E1OD1為等邊三角形,再根據(jù)切線的性質(zhì)得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六邊形的邊長等于它的半徑得到正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,依此規(guī)律可得正六邊形A11B11C11D11E11F11的邊長=()10×2,然后化簡即可.詳解:連接OE1,OD1,OD2,如圖,∵六邊形A1B1C1D1E1F1為正六邊形,∴∠E1OD1=60°,∴△E1OD1為等邊三角形,∵正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,則正六邊形A11B11C11D11E11F11的邊長=()10×2=.故選A.點睛:本題考查了正多邊形與圓的關(guān)系:把一個圓分成n(n是大于2的自然數(shù))等份,依次連接各分點所得的多邊形是這個圓的內(nèi)接正多邊形,這個圓叫做這個正多邊形的外接圓.記住正六邊形的邊長等于它的半徑.9、D【解析】試題分析:∵△ABC為等邊三角形,BP平分∠ABC,∴∠PBC=12∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC?tan∠PBC=3考點:1.角平分線的性質(zhì);2.等邊三角形的性質(zhì);3.含30度角的直角三角形;4.勾股定理.10、C【解析】根據(jù)旋轉(zhuǎn)的性質(zhì)得,∠ABD=∠CBE=60°,∠E=∠C,則△ABD為等邊三角形,即AD=AB=BD,得∠ADB=60°因為∠ABD=∠CBE=60°,則∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】解:根據(jù)翻折的性質(zhì)可知,∠ABE=∠A′BE,∠DBC=∠DBC′.又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°.又∵∠ABE=20°,∴∠DBC=1°.故答案為1.點睛:本題考查了角的計算,根據(jù)翻折變換的性質(zhì),得出三角形折疊以后的圖形和原圖形全等,對應(yīng)的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解題的關(guān)鍵.12、-2<x<-1或x>1.【解析】不等式的圖象解法,平移的性質(zhì),反比例函數(shù)與一次函數(shù)的交點問題,對稱的性質(zhì).不等式k1x<+b的解集即k1x-b<的解集,根據(jù)不等式與直線和雙曲線解析式的關(guān)系,可以理解為直線y=k1x-b在雙曲線下方的自變量x的取值范圍即可.而直線y=k1x-b的圖象可以由y=k1x+b向下平移2b個單位得到,如圖所示.根據(jù)函數(shù)圖象的對稱性可得:直線y=k1x-b和y=k1x+b與雙曲線的交點坐標(biāo)關(guān)于原點對稱.由關(guān)于原點對稱的坐標(biāo)點性質(zhì),直線y=k1x-b圖象與雙曲線圖象交點A′、B′的橫坐標(biāo)為A、B兩點橫坐標(biāo)的相反數(shù),即為-1,-2.∴由圖知,當(dāng)-2<x<-1或x>1時,直線y=k1x-b圖象在雙曲線圖象下方.∴不等式k1x<+b的解集是-2<x<-1或x>1.13、1.【解析】

解:∵四邊形ABCD是菱形,∠D=78°,∴∠ACB=(180°-∠D)=51°,又∵四邊形AECD是圓內(nèi)接四邊形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB-∠ACB=1°.故答案為:1°14、①②③【解析】

根據(jù)翻折變換的性質(zhì)和正方形的性質(zhì)可證Rt△ABG≌Rt△AFG;在直角△ECG中,根據(jù)勾股定理可證BG=GC;通過證明∠AGB=∠AGF=∠GFC=∠GCF,由平行線的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面積比較即可.【詳解】①正確.

理由:

∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正確.理由:EF=DE=CD=2,設(shè)BG=FG=x,則CG=6-x.在直角△ECG中,根據(jù)勾股定理,得(6-x)2+42=(x+2)2,解得x=1.∴BG=1=6-1=GC;③正確.理由:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG;∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°-∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④錯誤.理由:∵S△GCE=GC?CE=×1×4=6

∵GF=1,EF=2,△GFC和△FCE等高,

∴S△GFC:S△FCE=1:2,

∴S△GFC=×6=≠1.

故④不正確.

∴正確的個數(shù)有1個:①②③.故答案為①②③【點睛】本題綜合性較強,考查了翻折變換的性質(zhì)和正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,平行線的判定,三角形的面積計算,有一定的難度.15、3【解析】

由折疊前后圖形全等,可將陰影部分圖形的周長轉(zhuǎn)化為三角形周長.【詳解】∵△A'DE與△ADE關(guān)于直線DE對稱,∴AD=A'D,AE=A'E,C陰影=BC+A'D+A'E+BD+EC=BC+AD+AE+BD+EC=BC+AB+AC=3cm.故答案為3.【點睛】由圖形軸對稱可以得到對應(yīng)的邊相等、角相等.16、8?a<13;【解析】

首先確定不等式組的解集,先利用含a的式子表示,根據(jù)整數(shù)解的個數(shù)就可以確定有哪些整數(shù)解,根據(jù)解的情況可以得到關(guān)于a的不等式,從而求出a的范圍.【詳解】解不等式3x?5>1,得:x>2,解不等式5x?a?12,得:x?,∵不等式組有2個整數(shù)解,∴其整數(shù)解為3和4,則4?<5,解得:8?a<13,故答案為:8?a<13【點睛】此題考查一元一次不等式組的整數(shù)解,掌握運算法則是解題關(guān)鍵三、解答題(共8題,共72分)17、(1)y=4x,y=﹣x+5;(2)0<x<1或x>4;(3)P的坐標(biāo)為(【解析】

(1)把A(1,4)代入y=mx,求出m=4,把B(4,n)代入y=4(2)根據(jù)圖像解答即可;(3)作B關(guān)于x軸的對稱點B′,連接AB′,交x軸于P,此時PA+PB=AB′最小,然后用待定系數(shù)法求出直線AB′的解析式即可.【詳解】解:(1)把A(1,4)代入y=mx∴反比例函數(shù)的解析式為y=4x把B(4,n)代入y=4x∴B(4,1),把A(1,4)、(4,1)代入y=kx+b,得:k+b=44k+b=1解得:k=-1∴一次函數(shù)的解析式為y=﹣x+5;(2)根據(jù)圖象得當(dāng)0<x<1或x>4,一次函數(shù)y=﹣x+5的圖象在反比例函數(shù)y=4x∴當(dāng)x>0時,kx+b<mx(3)如圖,作B關(guān)于x軸的對稱點B′,連接AB′,交x軸于P,此時PA+PB=AB′最小,∵B(4,1),∴B′(4,﹣1),設(shè)直線AB′的解析式為y=px+q,∴p+q=44p+q=-1解得p=-5∴直線AB′的解析式為y=-5令y=0,得-5解得x=175∴點P的坐標(biāo)為(175【點睛】本題考查了待定系數(shù)法求反比例函數(shù)及一次函數(shù)解析式,利用圖像解不等式,軸對稱最短等知識.熟練掌握待定系數(shù)法是解(1)的關(guān)鍵,正確識圖是解(2)的關(guān)鍵,根據(jù)軸對稱的性質(zhì)確定出點P的位置是解答(3)的關(guān)鍵.18、【解析】

解方程組,根據(jù)條件確定a、b的范圍,從而確定滿足該條件的結(jié)果個數(shù),利用古典概率的概率公式求出方程組只有一個解的概率.【詳解】∵,得若b>2a,即a=2,3,4,5,6

b=4,5,6符合條件的數(shù)組有(2,5)(2,6)共有2個,若b<2a,符合條件的數(shù)組有(1,1)共有1個,∴概率p=.故答案為:.【點睛】本題主要考查了古典概率及其概率計算公式的應(yīng)用.19、,.【解析】

先把小括號內(nèi)的通分,按照分式的減法和分式除法法則進行化簡,再把字母的值代入運算即可.【詳解】解:原式當(dāng)時原式【點睛】考查分式的混合運算,掌握運算順序是解題的關(guān)鍵.20、(1)當(dāng),時有最大值1;(2)當(dāng)時,面積有最大值32.【解析】

(1)由題意當(dāng)AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,由此即可解決問題.

(2)設(shè)BD=x,由題意:當(dāng)AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題.【詳解】(1)由題意當(dāng)AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,

最大面積為×6×(16-6)=1.故當(dāng),時有最大值1;(2)當(dāng),時有最大值,設(shè),由題意:當(dāng)AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,∴拋物線開口向下∴當(dāng)時,面積有最大值32.【點睛】本題考查三角形的面積,二次函數(shù)的應(yīng)用等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建二次函數(shù)解決問題.21、(1)520千米;(2)300千米/時.【解析】試題分析:(1)根據(jù)普通列車的行駛路程=高鐵的行駛路程×1.3得出答案;(2)首先設(shè)普通列車的平均速度為x千米/時,則高鐵平均速度為2.5x千米/時,根據(jù)題意列出分式方程求出未知數(shù)x的值.試題解析:(1)依題意可得,普通列車的行駛路程為400×1.3=520(千米)(2)設(shè)普通列車的平均速度為x千米/時,則高鐵平均速度為2.5x千米/時依題意有:=3解得:x=120經(jīng)檢驗:x=120分式方程的解且符合題意高鐵平均速度:2.5×120=300千米/時答:高鐵平均速度為2.5×120=300千米/時.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論