版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.二次函數(shù)的圖象如圖所示,則下列各式中錯誤的是()A.a(chǎn)bc>0 B.a(chǎn)+b+c>0 C.a(chǎn)+c>b D.2a+b=02.如圖,在菱形ABCD中,AB=BD,點E、F分別是AB、AD上任意的點(不與端點重合),且AE=DF,連接BF與DE相交于點G,連接CG與BD相交于點H.給出如下幾個結(jié)論:①△AED≌△DFB;②S四邊形BCDG=32其中正確的結(jié)論個數(shù)為()A.4 B.3 C.2 D.13.方程的解是A.3 B.2 C.1 D.04.如圖是由5個相同的正方體搭成的幾何體,其左視圖是()A. B.C. D.5.如圖,在熱氣球C處測得地面A、B兩點的俯角分別為30°、45°,熱氣球C的高度CD為100米,點A、D、B在同一直線上,則AB兩點的距離是()A.200米 B.200米 C.220米 D.100米6.如圖,已知垂直于的平分線于點,交于點,,若的面積為1,則的面積是()A. B. C. D.7.-2的絕對值是()A.2 B.-2 C.±2 D.8.某單位若干名職工參加普法知識競賽,將成績制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖,根據(jù)圖中提供的信息,這些職工成績的中位數(shù)和平均數(shù)分別是()A.94分,96分 B.96分,96分C.94分,96.4分 D.96分,96.4分9.如圖,AB是⊙O的直徑,C,D是⊙O上位于AB異側(cè)的兩點.下列四個角中,一定與∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD10.按一定規(guī)律排列的一列數(shù)依次為:﹣,1,﹣,、﹣、…,按此規(guī)律,這列數(shù)中的第100個數(shù)是()A.﹣ B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.若圓錐的地面半徑為,側(cè)面積為,則圓錐的母線是__________.12.如圖,正方形ABCD中,E是BC邊上一點,以E為圓心,EC為半徑的半圓與以A為圓心,AB為半徑的圓弧外切,則sin∠EAB的值為.13.如圖①,四邊形ABCD中,AB∥CD,∠ADC=90°,P從A點出發(fā),以每秒1個單位長度的速度,按A→B→C→D的順序在邊上勻速運動,設(shè)P點的運動時間為t秒,△PAD的面積為S,S關(guān)于t的函數(shù)圖象如圖②所示,當(dāng)P運動到BC中點時,△PAD的面積為______.14.函數(shù)中,自變量x的取值范圍是.15.如圖,一根直立于水平地面的木桿AB在燈光下形成影子AC(AC>AB),當(dāng)木桿繞點A按逆時針方向旋轉(zhuǎn),直至到達(dá)地面時,影子的長度發(fā)生變化.已知AE=5m,在旋轉(zhuǎn)過程中,影長的最大值為5m,最小值3m,且影長最大時,木桿與光線垂直,則路燈EF的高度為_____m.16.若a:b=1:3,b:c=2:5,則a:c=_____.17.已知一個斜坡的坡度,那么該斜坡的坡角的度數(shù)是______.三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,AD、AE分別為△ABC的中線和角平分線.過點C作CH⊥AE于點H,并延長交AB于點F,連接DH,求證:DH=BF.19.(5分)為落實“綠水青山就是金山銀山”的發(fā)展理念,某市政部門招標(biāo)一工程隊負(fù)責(zé)在山腳下修建一座水庫的土方施工任務(wù).該工程隊有兩種型號的挖掘機,已知3臺型和5臺型挖掘機同時施工一小時挖土165立方米;4臺型和7臺型挖掘機同時施工一小時挖土225立方米.每臺型挖掘機一小時的施工費用為300元,每臺型挖掘機一小時的施工費用為180元.分別求每臺型,型挖掘機一小時挖土多少立方米?若不同數(shù)量的型和型挖掘機共12臺同時施工4小時,至少完成1080立方米的挖土量,且總費用不超過12960元.問施工時有哪幾種調(diào)配方案,并指出哪種調(diào)配方案的施工費用最低,最低費用是多少元?20.(8分)如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+m與雙曲線y=﹣相交于點A(m,2).(1)求直線y=kx+m的表達(dá)式;(2)直線y=kx+m與雙曲線y=﹣的另一個交點為B,點P為x軸上一點,若AB=BP,直接寫出P點坐標(biāo).21.(10分)小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,并測得B、C兩點的俯角分別為45°、35°.已知大橋BC與地面在同一水平面上,其長度為100m,求熱氣球離地面的高度.(結(jié)果保留整數(shù))(參考數(shù)據(jù):sin35°=0.57,cos35°=0.82,tan35°=0.70)22.(10分)如圖,在三角形ABC中,AB=6,AC=BC=5,以BC為直徑作⊙O交AB于點D,交AC于點G,直線DF是⊙O的切線,D為切點,交CB的延長線于點E.(1)求證:DF⊥AC;(2)求tan∠E的值.23.(12分)先化簡,然后從-2≤x≤2的范圍內(nèi)選取一個合適的整數(shù)作為x的值代入求值.24.(14分)如圖,拋物線(a≠0)交x軸于A、B兩點,A點坐標(biāo)為(3,0),與y軸交于點C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點G.求拋物線的解析式;拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標(biāo)為m,請用含m的代數(shù)式表示PM的長;在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
根據(jù)二次函數(shù)的圖象與性質(zhì)逐一判斷即可.【詳解】解:由圖象可知拋物線開口向上,∴,∵對稱軸為,∴,∴,∴,故D正確,又∵拋物線與y軸交于y軸的負(fù)半軸,∴,∴,故A正確;當(dāng)x=1時,,即,故B錯誤;當(dāng)x=-1時,即,∴,故C正確,故答案為:B.【點睛】本題考查了二次函數(shù)圖象與系數(shù)之間的關(guān)系,解題的關(guān)鍵是熟練掌握二次函數(shù)各系數(shù)的意義以及二次函數(shù)的圖象與性質(zhì).2、B【解析】試題分析:①∵ABCD為菱形,∴AB=AD,∵AB=BD,∴△ABD為等邊三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本選項正確;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴點B、C、D、G四點共圓,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,過點C作CM⊥GB于M,CN⊥GD于N(如圖1),則△CBM≌△CDN(AAS),∴S四邊形BCDG=S四邊形CMGN,S四邊形CMGN=2S△CMG,∵∠CGM=60°,∴GM=12CG,CM=32CG,∴S四邊形CMGN=2S△CMG=2×12×12CG×③過點F作FP∥AE于P點(如圖2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:12④當(dāng)點E,F(xiàn)分別是AB,AD中點時(如圖3),由(1)知,△ABD,△BDC為等邊三角形,∵點E,F(xiàn)分別是AB,AD中點,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC與△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本選項錯誤;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,為定值,故本選項正確;綜上所述,正確的結(jié)論有①③⑤,共3個,故選B.考點:四邊形綜合題.3、A【解析】試題分析:分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解:去分母得:2x=3x﹣3,解得:x=3,經(jīng)檢驗x=3是分式方程的解.故選A.4、A【解析】
根據(jù)三視圖的定義即可判斷.【詳解】根據(jù)立體圖可知該左視圖是底層有2個小正方形,第二層左邊有1個小正方形.故選A.【點睛】本題考查三視圖,解題的關(guān)鍵是根據(jù)立體圖的形狀作出三視圖,本題屬于基礎(chǔ)題型.5、D【解析】
在熱氣球C處測得地面B點的俯角分別為45°,BD=CD=100米,再在Rt△ACD中求出AD的長,據(jù)此即可求出AB的長.【詳解】∵在熱氣球C處測得地面B點的俯角分別為45°,∴BD=CD=100米,∵在熱氣球C處測得地面A點的俯角分別為30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故選D.【點睛】本題考查了解直角三角形的應(yīng)用--仰角、俯角問題,要求學(xué)生能借助仰角構(gòu)造直角三角形并解直角三角形.6、B【解析】
先證明△ABD≌△EBD,從而可得AD=DE,然后先求得△AEC的面積,繼而可得到△CDE的面積.【詳解】∵BD平分∠ABC,∴∠ABD=∠EBD,∵AE⊥BD,∴∠ADB=∠EDB=90°,又∵BD=BD,∴△ABD≌△EBD,∴AD=ED,∵,的面積為1,∴S△AEC=S△ABC=,又∵AD=ED,∴S△CDE=S△AEC=,故選B.【點睛】本題考查了全等三角形的判定,掌握等高的兩個三角形的面積之比等于底邊長度之比是解題的關(guān)鍵.7、A【解析】
根據(jù)絕對值的性質(zhì)進(jìn)行解答即可【詳解】解:﹣1的絕對值是:1.故選:A.【點睛】此題考查絕對值,難度不大8、D【解析】
解:總?cè)藬?shù)為6÷10%=60(人),則91分的有60×20%=12(人),98分的有60-6-12-15-9=18(人),第30與31個數(shù)據(jù)都是96分,這些職工成績的中位數(shù)是(96+96)÷2=96;這些職工成績的平均數(shù)是(92×6+91×12+96×15+98×18+100×9)÷60=(552+1128+1110+1761+900)÷60=5781÷60=96.1.故選D.【點睛】本題考查1.中位數(shù);2.扇形統(tǒng)計圖;3.條形統(tǒng)計圖;1.算術(shù)平均數(shù),掌握概念正確計算是關(guān)鍵.9、D【解析】
∵∠ACD對的弧是,對的另一個圓周角是∠ABD,∴∠ABD=∠ACD(同圓中,同弧所對的圓周角相等),又∵AB為直徑,∴∠ADB=90°,∴∠ABD+∠BAD=90°,即∠ACD+∠BAD=90°,∴與∠ACD互余的角是∠BAD.故選D.10、C【解析】
根據(jù)按一定規(guī)律排列的一列數(shù)依次為:,1,,,,…,可知符號規(guī)律為奇數(shù)項為負(fù),偶數(shù)項為正;分母為3、7、9、……,型;分子為型,可得第100個數(shù)為.【詳解】按一定規(guī)律排列的一列數(shù)依次為:,1,,,,…,按此規(guī)律,奇數(shù)項為負(fù),偶數(shù)項為正,分母為3、7、9、……,型;分子為型,可得第n個數(shù)為,∴當(dāng)時,這個數(shù)為,故選:C.【點睛】本題屬于規(guī)律題,準(zhǔn)確找出題目的規(guī)律并將特殊規(guī)律轉(zhuǎn)化為一般規(guī)律是解決本題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、13【解析】試題解析:圓錐的側(cè)面積=×底面半徑×母線長,把相應(yīng)數(shù)值代入即可求解.設(shè)母線長為R,則:解得:故答案為13.12、.【解析】試題分析:設(shè)正方形的邊長為y,EC=x,由題意知,AE2=AB2+BE2,即(x+y)2=y2+(y-x)2,由于y≠0,化簡得y=4x,∴sin∠EAB=.考點:1.相切兩圓的性質(zhì);2.勾股定理;3.銳角三角函數(shù)的定義13、1【解析】解:由圖象可知,AB+BC=6,AB+BC+CD=10,∴CD=4,根據(jù)題意可知,當(dāng)P點運動到C點時,△PAD的面積最大,S△PAD=×AD×DC=8,∴AD=4,又∵S△ABD=×AB×AD=2,∴AB=1,∴當(dāng)P點運動到BC中點時,△PAD的面積=×(AB+CD)×AD=1,故答案為1.14、且.【解析】試題分析:求函數(shù)自變量的取值范圍,就是求函數(shù)解析式有意義的條件,根據(jù)二次根式被開方數(shù)必須是非負(fù)數(shù)和分式分母不為0的條件,要使在實數(shù)范圍內(nèi)有意義,必須且.考點:1.函數(shù)自變量的取值范圍;2.二次根式和分式有意義的條件.15、7.5【解析】試題解析:當(dāng)旋轉(zhuǎn)到達(dá)地面時,為最短影長,等于AB,∵最小值3m,∴AB=3m,∵影長最大時,木桿與光線垂直,即AC=5m,∴BC=4,又可得△CAB∽△CFE,∴∵AE=5m,∴解得:EF=7.5m.故答案為7.5.點睛:相似三角形的性質(zhì):相似三角形的對應(yīng)邊成比例.16、2∶1【解析】分析:已知a、b兩數(shù)的比為1:3,根據(jù)比的基本性質(zhì),a、b兩數(shù)的比1:3=(1×2):(3×2)=2:6;而b、c的比為:2:5=(2×3):(5×3)=6:1;,所以a、c兩數(shù)的比為2:1.詳解:a:b=1:3=(1×2):(3×2)=2:6;
b:c=2:5=(2×3):(5×3)=6:1;,
所以a:c=2:1;
故答案為2:1.點睛:本題主要考查比的基本性質(zhì)的實際應(yīng)用,如果已知甲乙、乙丙兩數(shù)的比,那么可以根據(jù)比的基本性質(zhì)求出任意兩數(shù)的比.17、【解析】
坡度=坡角的正切值,據(jù)此直接解答.【詳解】解:∵,∴坡角=30°.【點睛】此題主要考查學(xué)生對坡度及坡角的理解及掌握.三、解答題(共7小題,滿分69分)18、見解析.【解析】
先證明△AFC為等腰三角形,根據(jù)等腰三角形三線合一證明H為FC的中點,又D為BC的中點,根據(jù)中位線的性質(zhì)即可證明.【詳解】∵AE為△ABC的角平分線,CH⊥AE,∴△ACF是等腰三角形,∴AF=AC,HF=CH,∵AD為△ABC的中線,∴DH是△BCF的中位線,∴DH=BF.【點睛】本題考查三角形中位線定理,等腰三角形的判定與性質(zhì).解決本題的關(guān)鍵是證明H點為FC的中點,然后利用中位線的性質(zhì)解決問題.本題中要證明DH=BF,一般三角形中出現(xiàn)這種2倍或關(guān)系時,常用中位線的性質(zhì)解決.19、(1)每臺型挖掘機一小時挖土30立方米,每臺型挖據(jù)機一小時挖土15立方米;(2)共有三種調(diào)配方案.方案一:型挖據(jù)機7臺,型挖掘機5臺;方案二:型挖掘機8臺,型挖掘機4臺;方案三:型挖掘機9臺,型挖掘機3臺.當(dāng)A型挖掘機7臺,型挖掘機5臺的施工費用最低,最低費用為12000元.【解析】分析:(1)根據(jù)題意列出方程組即可;(2)利用總費用不超過12960元求出方案數(shù)量,再利用一次函數(shù)增減性求出最低費用.詳解:(1)設(shè)每臺型,型挖掘機一小時分別挖土立方米和立方米,根據(jù)題意,得解得所以,每臺型挖掘機一小時挖土30立方米,每臺型挖據(jù)機一小時挖土15立方米.(2)設(shè)型挖掘機有臺,總費用為元,則型挖據(jù)機有臺.根據(jù)題意,得,因為,解得,又因為,解得,所以.所以,共有三種調(diào)配方案.方案一:當(dāng)時,,即型挖據(jù)機7臺,型挖掘機5臺;方案二:當(dāng)時,,即型挖掘機8臺,型挖掘機4臺;方案三:當(dāng)時,,即型挖掘機9臺,型挖掘機3臺.,由一次函數(shù)的性質(zhì)可知,隨的減小而減小,當(dāng)時,,此時型挖掘機7臺,型挖掘機5臺的施工費用最低,最低費用為12000元.點睛:本題考查了二元一次方程組和一次函數(shù)增減性,解答時先根據(jù)題意確定自變量取值范圍,再應(yīng)用一次函數(shù)性質(zhì)解答問題.20、(1)m=﹣1;y=﹣3x﹣1;(2)P1(5,0),P2(,0).【解析】
(1)將A代入反比例函數(shù)中求出m的值,即可求出直線解析式,(2)聯(lián)立方程組求出B的坐標(biāo),理由過兩點之間距離公式求出AB的長,求出P點坐標(biāo),表示出BP長即可解題.【詳解】解:(1)∵點A(m,2)在雙曲線上,∴m=﹣1,∴A(﹣1,2),直線y=kx﹣1,∵點A(﹣1,2)在直線y=kx﹣1上,∴y=﹣3x﹣1.(2),解得或,∴B(,﹣3),∴AB==,設(shè)P(n,0),則有(n﹣)2+32=解得n=5或,∴P1(5,0),P2(,0).【點睛】本題考查了一次函數(shù)和反比例函數(shù)的交點問題,中等難度,聯(lián)立方程組,會用兩點之間距離公式是解題關(guān)鍵.21、熱氣球離地面的高度約為1米.【解析】
作AD⊥BC交CB的延長線于D,設(shè)AD為x,表示出DB和DC,根據(jù)正切的概念求出x的值即可.【詳解】解:作AD⊥BC交CB的延長線于D,設(shè)AD為x,由題意得,∠ABD=45°,∠ACD=35°,在Rt△ADB中,∠ABD=45°,∴DB=x,在Rt△ADC中,∠ACD=35°,∴tan∠ACD=,∴=,解得,x≈1.答:熱氣球離地面的高度約為1米.【點睛】考查的是解直角三角形的應(yīng)用,理解仰角和俯角的概念、掌握銳角三角函數(shù)的概念是解題的關(guān)鍵,解答時,注意正確作出輔助線構(gòu)造直角三角形.22、(1)證明見解析;(2)tan∠CBG=.【解析】
(1)連接OD,CD,根據(jù)圓周角定理得∠BDC=90°,由等腰三角形三線合一的性質(zhì)得D為AB的中點,所以O(shè)D是中位線,由三角形中位線性質(zhì)得:OD∥AC,根據(jù)切線的性質(zhì)可得結(jié)論;
(2)如圖,連接BG,先證明EF∥BG,則∠CBG=∠E,求∠CBG的正切即可.【詳解】解:(1)證明:連接OD,CD,∵BC是⊙O的直徑,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,∵OB=OC,∴OD是△ABC的中位線∴OD∥AC,∵DF為⊙O的切線,∴OD⊥DF,∴DF⊥AC;(2)解:如圖,連接BG,∵BC是⊙O的直徑,∴∠BGC=90°,∵∠EFC=90°=∠BGC,∴EF∥BG,∴∠CBG=∠E,Rt△BDC中,∵BD=3,BC=5,∴CD=4,∵S△ABC=,即6×4=5BG,∴BG=,由勾股定理得:CG=,∴tan∠CBG=tan∠E=.【點睛】本題考查了切線的性質(zhì)、等腰三角形的性質(zhì)、平行線的判定和性質(zhì)及勾股定理的應(yīng)用;把所求角的正切進(jìn)行轉(zhuǎn)移是基本思路,利用面積法求BG的長是解決本題的難點.23、,當(dāng)x=0時,原式=(或:當(dāng)x=-1時,原式=).【解析】
先根據(jù)分式混合運算的法則把原式進(jìn)行化簡,再選取合適的x的值代入進(jìn)行計算即可.【詳解】解:原式=×=.x滿足﹣1≤x≤1且為整數(shù),若使分式有意義,x只能取0,﹣1.當(dāng)x=0時,原式=﹣(或:當(dāng)x=﹣1時,原式=).【點睛】本題考查分式的化簡求值,化簡的過程中要注意運算順序和分式的化簡.化簡的最后結(jié)果分子、分母要進(jìn)行約分,注意運算的結(jié)果要化成最簡分式或整式.24、(1)拋物線的解析式為;(2)PM=(0<m<3);(3)存在這樣的點P使△PFC與△AEM相似.此時m的值為或1,△PCM為直角三角形或等腰三角形.【解析】
(1)將A(3,0),C(0,4)代入,運用待定系數(shù)法即可求出拋物線的解析式.(2)先根據(jù)A、C的坐標(biāo),用待定系
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《證券基本知識培訓(xùn)》課件
- 七年級英語Peopleandwork課件
- 2025年寫人要抓住特點
- 大學(xué)計算機專業(yè)介紹
- 《試驗室管理》課件
- 單位管理制度集粹選集【職員管理篇】
- 單位管理制度范例選集人員管理十篇
- 單位管理制度呈現(xiàn)合集人員管理十篇
- 單位管理制度呈現(xiàn)大合集人事管理篇
- (高頻選擇題50題)第1單元 中華人民共和國的成立和鞏固(解析版)
- 9高考語文透析一題·詩歌鑒賞(手法技巧)《柳梢青 送盧梅坡 》
- 織金縣實興鄉(xiāng)白龍重晶石礦5.0萬t-a(新建)項目環(huán)評報告
- 妊娠期肝內(nèi)膽汁淤積癥教學(xué)課件
- 【航空個性化服務(wù)淺析4700字(論文)】
- 保障農(nóng)民工工資支付條例全文及解讀課件
- 中國移動全面預(yù)算管理
- 【部編】小高考:2021年江蘇普通高中學(xué)業(yè)水平測試歷史試卷
- 公路隧道建設(shè)施工技術(shù)規(guī)范學(xué)習(xí)考試題庫(400道)
- 新人教版七至九年級英語單詞表 漢譯英(含音標(biāo))
- 淺談事業(yè)單位固定資產(chǎn)的折舊本科學(xué)位論文
- 食堂管理制度大全
評論
0/150
提交評論