江蘇省南菁2023學年中考三模數(shù)學試題含解析及點睛_第1頁
江蘇省南菁2023學年中考三模數(shù)學試題含解析及點睛_第2頁
江蘇省南菁2023學年中考三模數(shù)學試題含解析及點睛_第3頁
江蘇省南菁2023學年中考三模數(shù)學試題含解析及點睛_第4頁
江蘇省南菁2023學年中考三模數(shù)學試題含解析及點睛_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2023中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.一、單選題如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.1252.下列各式計算正確的是()A. B. C. D.3.如圖,PA切⊙O于點A,PO交⊙O于點B,點C是⊙O優(yōu)弧弧AB上一點,連接AC、BC,如果∠P=∠C,⊙O的半徑為1,則劣弧弧AB的長為()A.π B.π C.π D.π4.下面的幾何體中,主視圖為圓的是()A. B. C. D.5.函數(shù)y=中自變量x的取值范圍是()A.x≥-1且x≠1 B.x≥-1 C.x≠1 D.-1≤x<16.甲、乙兩車從A地出發(fā),勻速駛向B地.甲車以80km/h的速度行駛1h后,乙車才沿相同路線行駛.乙車先到達B地并停留1h后,再以原速按原路返回,直至與甲車相遇.在此過程中,兩車之間的距離y(km)與乙車行駛時間x(h)之間的函數(shù)關系如圖所示.下列說法:①乙車的速度是120km/h;②m=160;③點H的坐標是(7,80);④n=7.1.其中說法正確的有()A.4個 B.3個 C.2個 D.1個7.為了解中學300名男生的身高情況,隨機抽取若干名男生進行身高測量,將所得數(shù)據(jù)整理后,畫出頻數(shù)分布直方圖(如圖).估計該校男生的身高在169.5cm~174.5cm之間的人數(shù)有()A.12 B.48 C.72 D.968.已知拋物線y=ax2+bx+c與x軸交于(x1,0)、(x2,0)兩點,且0<x1<1,1<x2<2與y軸交于(0,-2),下列結(jié)論:①2a+b>1;②a+b<2;③3a+b>0;④a<-1,其中正確結(jié)論的個數(shù)為()A.1個 B.2個 C.3個 D.4個9.如圖,AB是⊙O的直徑,弦CD⊥AB于E,∠CDB=30°,⊙O的半徑為,則弦CD的長為()A. B.3cm C. D.9cm10.不等式4-2x>0的解集在數(shù)軸上表示為()A. B. C. D.11.下列計算錯誤的是()A.a(chǎn)?a=a2 B.2a+a=3a C.(a3)2=a5 D.a(chǎn)3÷a﹣1=a412.方程的解是A.3 B.2 C.1 D.0二、填空題:(本大題共6個小題,每小題4分,共24分.)13.菱形的兩條對角線長分別是方程的兩實根,則菱形的面積為______.14.如圖,矩形ABCD中,AB=2,點E在AD邊上,以E為圓心,EA長為半徑的⊙E與BC相切,交CD于點F,連接EF.若扇形EAF的面積為43π,則15.拋物線y=x2﹣2x+m與x軸只有一個交點,則m的值為_____.16.某次數(shù)學測試,某班一個學習小組的六位同學的成績?nèi)缦拢?4、75、75、92、86、99,則這六位同學成績的中位數(shù)是_____.17.已知m=,n=,那么2016m﹣n=_____.18.分解因式:8x2-8xy+2y2=_________________________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知CD=CF,∠A=∠E=∠DCF=90°,求證:AD+EF=AE20.(6分)在矩形ABCD中,兩條對角線相交于O,∠AOB=60°,AB=2,求AD的長.21.(6分)某種蔬菜的銷售單價y1與銷售月份x之間的關系如圖(1)所示,成本y2與銷售月份之間的關系如圖(2)所示(圖(1)的圖象是線段圖(2)的圖象是拋物線)分別求出y1、y2的函數(shù)關系式(不寫自變量取值范圍);通過計算說明:哪個月出售這種蔬菜,每千克的收益最大?22.(8分)如圖,在中,AB=AC,,點D是BC的中點,DE⊥AB于點E,DF⊥AC于點F.(1)∠EDB=_____(用含的式子表示)(2)作射線DM與邊AB交于點M,射線DM繞點D順時針旋轉(zhuǎn),與AC邊交于點N.①根據(jù)條件補全圖形;②寫出DM與DN的數(shù)量關系并證明;③用等式表示線段BM、CN與BC之間的數(shù)量關系,(用含的銳角三角函數(shù)表示)并寫出解題思路.23.(8分)每到春夏交替時節(jié),雌性楊樹會以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們造成困擾,為了解市民對治理楊絮方法的贊同情況,某課題小組隨機調(diào)查了部分市民(問卷調(diào)查表如表所示),并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖.治理楊絮一一您選哪一項?(單選)A.減少楊樹新增面積,控制楊樹每年的栽種量B.調(diào)整樹種結(jié)構(gòu),逐漸更換現(xiàn)有楊樹C.選育無絮楊品種,并推廣種植D.對雌性楊樹注射生物干擾素,避免產(chǎn)生飛絮E.其他根據(jù)以上統(tǒng)計圖,解答下列問題:(1)本次接受調(diào)查的市民共有人;(2)扇形統(tǒng)計圖中,扇形E的圓心角度數(shù)是;(3)請補全條形統(tǒng)計圖;(4)若該市約有90萬人,請估計贊同“選育無絮楊品種,并推廣種植”的人數(shù).24.(10分)某中學開展“漢字聽寫大賽”活動,為了解學生的參與情況,在該校隨機抽取了四個班級學生進行調(diào)查,將收集的數(shù)據(jù)整理并繪制成圖1和圖2兩幅尚不完整的統(tǒng)計圖,請根據(jù)圖中的信息,解答下列問題:(1)這四個班參與大賽的學生共__________人;(2)請你補全兩幅統(tǒng)計圖;(3)求圖1中甲班所對應的扇形圓心角的度數(shù);(4)若四個班級的學生總數(shù)是160人,全校共2000人,請你估計全校的學生中參與這次活動的大約有多少人.25.(10分)觀察下列算式:①1×3-22="3"-4=-1②2×4-32="8"-9=-1③3×5-42="15"-16=-1④……(1)請你按以上規(guī)律寫出第4個算式;(2)把這個規(guī)律用含字母的式子表示出來;(3)你認為(2)中所寫出的式子一定成立嗎?并說明理由.26.(12分)已知:關于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整數(shù)).(1)求證:方程有兩個不相等的實數(shù)根;(2)若方程的兩個實數(shù)根都是整數(shù),求k的值.27.(12分)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

根據(jù)角平分線的定義推出△ECF為直角三角形,然后根據(jù)勾股定理即可求得CE2+CF2=EF2,進而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,

又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,

∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,

∴CM=EM=MF=5,EF=10,

由勾股定理可知CE2+CF2=EF2=1.

故選:B.【點睛】本題考查角平分線的定義(從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運用,解題的關鍵是首先證明出△ECF為直角三角形.2、B【解析】A選項中,∵不是同類二次根式,不能合并,∴本選項錯誤;B選項中,∵,∴本選項正確;C選項中,∵,而不是等于,∴本選項錯誤;D選項中,∵,∴本選項錯誤;故選B.3、A【解析】

利用切線的性質(zhì)得∠OAP=90°,再利用圓周角定理得到∠C=∠O,加上∠P=∠C可計算寫出∠O=60°,然后根據(jù)弧長公式計算劣弧的長.【詳解】解:∵PA切⊙O于點A,∴OA⊥PA,∴∠OAP=90°,∵∠C=∠O,∠P=∠C,∴∠O=2∠P,而∠O+∠P=90°,∴∠O=60°,∴劣弧AB的長=.故選:A.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.也考查了圓周角定理和弧長公式.4、C【解析】試題解析:A、的主視圖是矩形,故A不符合題意;B、的主視圖是正方形,故B不符合題意;C、的主視圖是圓,故C符合題意;D、的主視圖是三角形,故D不符合題意;故選C.考點:簡單幾何體的三視圖.5、A【解析】分析:根據(jù)分式的分母不為0;偶次根式被開方數(shù)大于或等于0;當一個式子中同時出現(xiàn)這兩點時,應該是取讓兩個條件都滿足的公共部分.詳解:根據(jù)題意得到:,解得x≥-1且x≠1,故選A.點睛:本題考查了函數(shù)自變量的取值范圍問題,判斷一個式子是否有意義,應考慮分母上若有字母,字母的取值不能使分母為零,二次根號下字母的取值應使被開方數(shù)為非負數(shù).易錯易混點:學生易對二次根式的非負性和分母不等于0混淆.6、B【解析】

根據(jù)題意,兩車距離為函數(shù),由圖象可知兩車起始距離為80,從而得到乙車速度,根據(jù)圖象變化規(guī)律和兩車運動狀態(tài),得到相關未知量.【詳解】由圖象可知,乙出發(fā)時,甲乙相距80km,2小時后,乙車追上甲.則說明乙每小時比甲快40km,則乙的速度為120km/h.①正確;由圖象第2﹣6小時,乙由相遇點到達B,用時4小時,每小時比甲快40km,則此時甲乙距離4×40=160km,則m=160,②正確;當乙在B休息1h時,甲前進80km,則H點坐標為(7,80),③正確;乙返回時,甲乙相距80km,到兩車相遇用時80÷(120+80)=0.4小時,則n=6+1+0.4=7.4,④錯誤.故選B.【點睛】本題以函數(shù)圖象為背景,考查雙動點條件下,兩點距離與運動時間的函數(shù)關系,解答時既要注意圖象變化趨勢,又要關注動點的運動狀態(tài).7、C【解析】

解:根據(jù)圖形,身高在169.5cm~174.5cm之間的人數(shù)的百分比為:,∴該校男生的身高在169.5cm~174.5cm之間的人數(shù)有300×24%=72(人).故選C.8、A【解析】

如圖,且圖像與y軸交于點,可知該拋物線的開口向下,即,①當時,故①錯誤.②由圖像可知,當時,∴∴故②錯誤.③∵∴,又∵,∴,∴,∴,故③錯誤;④∵,,又∵,∴.故④正確.故答案選A.【點睛】本題考查二次函數(shù)系數(shù)符號的確定由拋物線的開口方向、對稱軸和拋物線與坐標軸的交點確定.9、B【解析】

解:∵∠CDB=30°,∴∠COB=60°,又∵OC=,CD⊥AB于點E,∴,解得CE=cm,CD=3cm.故選B.考點:1.垂徑定理;2.圓周角定理;3.特殊角的三角函數(shù)值.10、D【解析】

根據(jù)解一元一次不等式基本步驟:移項、系數(shù)化為1可得.【詳解】移項,得:-2x>-4,

系數(shù)化為1,得:x<2,

故選D.【點睛】考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數(shù)不等號方向要改變.11、C【解析】

解:A、a?a=a2,正確,不合題意;B、2a+a=3a,正確,不合題意;C、(a3)2=a6,故此選項錯誤,符合題意;D、a3÷a﹣1=a4,正確,不合題意;故選C.【點睛】本題考查冪的乘方與積的乘方;合并同類項;同底數(shù)冪的乘法;負整數(shù)指數(shù)冪.12、A【解析】試題分析:分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解:去分母得:2x=3x﹣3,解得:x=3,經(jīng)檢驗x=3是分式方程的解.故選A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解析】

解:x2﹣14x+41=0,則有(x-6)(x-1)=0解得:x=6或x=1.所以菱形的面積為:(6×1)÷2=2.菱形的面積為:2.故答案為2.點睛:本題考查菱形的性質(zhì).菱形的對角線互相垂直,以及對角線互相垂直的四邊形的面積的特點和根與系數(shù)的關系.14、1【解析】分析:設∠AEF=n°,由題意nπ×2詳解:設∠AEF=n°,由題意nπ×2∴∠AEF=120°,∴∠FED=60°,∵四邊形ABCD是矩形,∴BC=AD,∠D=90°,∴∠EFD=10°,∴DE=12∴BC=AD=2+1=1,故答案為1.點睛:本題考查切線的性質(zhì)、矩形的性質(zhì)、扇形的面積公式、直角三角形10度角性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.15、1【解析】

由拋物線y=x2-2x+m與x軸只有一個交點可知,對應的一元二次方程x2-2x+m=2,根的判別式△=b2-4ac=2,由此即可得到關于m的方程,解方程即可求得m的值.【詳解】解:∵拋物線y=x2﹣2x+m與x軸只有一個交點,∴△=2,∴b2﹣4ac=22﹣4×1×m=2;∴m=1.故答案為1.【點睛】本題考查了拋物線與x軸的交點問題,注:①拋物線與x軸有兩個交點,則△>2;②拋物線與x軸無交點,則△<2;③拋物線與x軸有一個交點,則△=2.16、85【解析】

根據(jù)中位數(shù)求法,將學生成績從小到大排列,取中間兩數(shù)的平均數(shù)即可解題.【詳解】解:將六位同學的成績按從小到大進行排列為:75,75,84,86,92,99,中位數(shù)為中間兩數(shù)84和86的平均數(shù),∴這六位同學成績的中位數(shù)是85.【點睛】本題考查了中位數(shù)的求法,屬于簡單題,熟悉中位數(shù)的概念是解題關鍵.17、1【解析】

根據(jù)積的乘方的性質(zhì)將m的分子轉(zhuǎn)化為以3和5為底數(shù)的冪的積,然后化簡從而得到m=n,再根據(jù)任何非零數(shù)的零次冪等于1解答.【詳解】解:∵m===,∴m=n,∴2016m-n=20160=1.故答案為:1【點睛】本題考查了同底數(shù)冪的除法,積的乘方的性質(zhì),難點在于轉(zhuǎn)化m的分母并得到m=n.18、1【解析】

提取公因式1,再對余下的多項式利用完全平方公式繼續(xù)分解.完全平方公式:a1±1ab+b1=(a±b)1.【詳解】8x1-8xy+1y2=1(4x1-4xy+y2)=1(1x-y)1.故答案為:1(1x-y)1【點睛】此題考查的是提取公因式法和公式法分解因式,本題關鍵在于提取公因式可以利用完全平方公式進行二次因式分解.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、證明見解析.【解析】

易證△DAC≌△CEF,即可得證.【詳解】證明:∵∠DCF=∠E=90°,∴∠DCA+∠ECF=90°,∠CFE+∠ECF=90°,∴∠DCA=∠CFE,在△DAC和△CEF中:,∴△DAC≌△CEF(AAS),∴AD=CE,AC=EF,∴AE=AD+EF【點睛】此題主要考查全等三角形的判定與性質(zhì),解題的關鍵是熟知全等三角形的判定與性質(zhì).20、【解析】試題分析:由矩形的對角線相等且互相平分可得:OA=OB=OD,再由∠AOB=60°可得△AOB是等邊三角形,從而得到OB=OA=2,則BD=4,最后在Rt△ABD中,由勾股定理可解得AD的長.試題解析:∵四邊形ABCD是矩形,∴OA=OB=OD,∠BAD=90°,∵∠AOB=60°,∴△AOB是等邊三角形,∴OB=OA=2,∴BD=2OB=4,在Rt△ABD中∴AD===.21、(1)y1=;y2=x2﹣4x+2;(2)5月出售每千克收益最大,最大為.【解析】

(1)觀察圖象找出點的坐標,利用待定系數(shù)法即可求出y1和y2的解析式;(2)由收益W=y1-y2列出W與x的函數(shù)關系式,利用配方求出二次函數(shù)的最大值.【詳解】解:(1)設y1=kx+b,將(3,5)和(6,3)代入得,,解得.∴y1=﹣x+1.設y2=a(x﹣6)2+1,把(3,4)代入得,4=a(3﹣6)2+1,解得a=.∴y2=(x﹣6)2+1,即y2=x2﹣4x+2.(2)收益W=y(tǒng)1﹣y2,=﹣x+1﹣(x2﹣4x+2)=﹣(x﹣5)2+,∵a=﹣<0,∴當x=5時,W最大值=.故5月出售每千克收益最大,最大為元.【點睛】本題考查了一次函數(shù)和二次函數(shù)的應用,熟練掌握待定系數(shù)法求解析式是解題關鍵,掌握配方法是求二次函數(shù)最大值常用的方法22、(1);(2)(2)①見解析;②DM=DN,理由見解析;③數(shù)量關系:【解析】

(1)先利用等腰三角形的性質(zhì)和三角形內(nèi)角和得到∠B=∠C=90°﹣α,然后利用互余可得到∠EDB=α;(2)①如圖,利用∠EDF=180°﹣2α畫圖;②先利用等腰三角形的性質(zhì)得到DA平分∠BAC,再根據(jù)角平分線性質(zhì)得到DE=DF,根據(jù)四邊形內(nèi)角和得到∠EDF=180°﹣2α,所以∠MDE=∠NDF,然后證明△MDE≌△NDF得到DM=DN;③先由△MDE≌△NDF可得EM=FN,再證明△BDE≌△CDF得BE=CF,利用等量代換得到BM+CN=2BE,然后根據(jù)正弦定義得到BE=BDsinα,從而有BM+CN=BC?sinα.【詳解】(1)∵AB=AC,∴∠B=∠C(180°﹣∠A)=90°﹣α.∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣∠B=90°﹣(90°﹣α)=α.故答案為:α;(2)①如圖:②DM=DN.理由如下:∵AB=AC,BD=DC,∴DA平分∠BAC.∵DE⊥AB于點E,DF⊥AC于點F,∴DE=DF,∠MED=∠NFD=90°.∵∠A=2α,∴∠EDF=180°﹣2α.∵∠MDN=180°﹣2α,∴∠MDE=∠NDF.在△MDE和△NDF中,∵,∴△MDE≌△NDF,∴DM=DN;③數(shù)量關系:BM+CN=BC?sinα.證明思路為:先由△MDE≌△NDF可得EM=FN,再證明△BDE≌△CDF得BE=CF,所以BM+CN=BE+EM+CF﹣FN=2BE,接著在Rt△BDE可得BE=BDsinα,從而有BM+CN=BC?sinα.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了等腰三角形的性質(zhì).23、(1)2000;(2)28.8°;(3)補圖見解析;(4)36萬人.【解析】分析:(1)將A選項人數(shù)除以總?cè)藬?shù)即可得;(2)用360°乘以E選項人數(shù)所占比例可得;(3)用總?cè)藬?shù)乘以D選項人數(shù)所占百分比求得其人數(shù),據(jù)此補全圖形即可得;(4)用總?cè)藬?shù)乘以樣本中C選項人數(shù)所占百分比可得.詳解:(1)本次接受調(diào)查的市民人數(shù)為300÷15%=2000人,(2)扇形統(tǒng)計圖中,扇形E的圓心角度數(shù)是360°×=28.8°,(3)D選項的人數(shù)為2000×25%=500,補全條形圖如下:(4)估計贊同“選育無絮楊品種,并推廣種植”的人數(shù)為90×40%=36(萬人).點睛:本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.24、(1)100;(2)見解析;(3)108°;(4)1250.【解析】試題分析:(1)根據(jù)乙班參賽30人,所占比為20%,即可求出這四個班總?cè)藬?shù);(2)根據(jù)丁班參賽35人,總?cè)藬?shù)是100,即可求出丁班所占的百分比,再用整體1減去其它所占的百分比,即可得出丙所占的百分比,再乘以參賽得總?cè)藬?shù),即可得出丙班參賽得人數(shù),從

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論