江蘇省鹽城市阜寧東溝2023學年中考數(shù)學考試模擬沖刺卷含解析及點睛_第1頁
江蘇省鹽城市阜寧東溝2023學年中考數(shù)學考試模擬沖刺卷含解析及點睛_第2頁
江蘇省鹽城市阜寧東溝2023學年中考數(shù)學考試模擬沖刺卷含解析及點睛_第3頁
江蘇省鹽城市阜寧東溝2023學年中考數(shù)學考試模擬沖刺卷含解析及點睛_第4頁
江蘇省鹽城市阜寧東溝2023學年中考數(shù)學考試模擬沖刺卷含解析及點睛_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023中考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.PM2.5是指大氣中直徑小于或等于2.5μm(0.0000025m)的顆粒物,含有大量有毒、有害物質(zhì),也稱為可入肺顆粒物,將25微米用科學記數(shù)法可表示為()米.A.25×10﹣7B.2.5×10﹣6C.0.25×10﹣5D.2.5×10﹣52.已知x2+mx+25是完全平方式,則m的值為()A.10 B.±10 C.20 D.±203.如圖,釣魚竿AC長6m,露在水面上的魚線BC長m,某釣者想看看魚釣上的情況,把魚竿AC轉(zhuǎn)動到AC'的位置,此時露在水面上的魚線B′C′為m,則魚竿轉(zhuǎn)過的角度是()A.60° B.45° C.15° D.90°4.下列實數(shù)中,無理數(shù)是()A.3.14 B.1.01001 C. D.5.sin60°的值為()A. B. C. D.6.在一個不透明的口袋中裝有4個紅球和若干個白球,他們除顏色外其他完全相同.通過多次摸球?qū)嶒灪蟀l(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在25%附近,則口袋中白球可能有()A.16個 B.15個 C.13個 D.12個7.如圖,在△ABC中,AD是BC邊的中線,∠ADC=30°,將△ADC沿AD折疊,使C點落在C′的位置,若BC=4,則BC′的長為()A.2 B.2 C.4 D.38.下列分子結(jié)構(gòu)模型的平面圖中,既是軸對稱圖形又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個9.如果關(guān)于x的一元二次方程k2x2-(2k+1)x+1=0有兩個不相等的實數(shù)根,那么k的取值范圍是()A.k>- B.k>-且 C.k<- D.k-且10.某車間20名工人日加工零件數(shù)如表所示:日加工零件數(shù)45678人數(shù)26543這些工人日加工零件數(shù)的眾數(shù)、中位數(shù)、平均數(shù)分別是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6二、填空題(共7小題,每小題3分,滿分21分)11.已知,(),請用計算器計算當時,、的若干個值,并由此歸納出當時,、間的大小關(guān)系為______.12.在計算器上,按照下面如圖的程序進行操作:如表中的x與y分別是輸入的6個數(shù)及相應的計算結(jié)果:上面操作程序中所按的第三個鍵和第四個鍵分別是_____、_____.x﹣3﹣2﹣1012y﹣5﹣3﹣113513.若一個多邊形的每一個外角都等于40°,則這個多邊形的內(nèi)角和是_____.14.如圖,已知AE∥BD,∠1=130°,∠2=28°,則∠C的度數(shù)為____.15.如圖,半徑為1的半圓形紙片,按如圖方式折疊,使對折后半圓弧的中點M與圓心O重合,則圖中陰影部分的面積是________.16.《孫子算經(jīng)》是中國古代重要的數(shù)學著作,成書于約一千五百年前,其中有首歌謠:“今有竿不知其長,量得影長一丈五尺,立一標桿,長一尺五寸,影長五寸,問竿長幾何?”意思就是:有一根竹竿不知道有多長,量出它在太陽下的影子長一丈五尺,同時立一根一尺五寸的小標桿(如圖所示),它的影長五寸(提示:1丈=10尺,1尺=10寸),則竹竿的長為_____.17.拋物線y=3x2﹣6x+a與x軸只有一個公共點,則a的值為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平面直角坐標系xOy中,一次函數(shù)y=x與反比例函數(shù)的圖象相交于點.(1)求a、k的值;(2)直線x=b()分別與一次函數(shù)y=x、反比例函數(shù)的圖象相交于點M、N,當MN=2時,畫出示意圖并直接寫出b的值.19.(5分)學習了正多邊形之后,小馬同學發(fā)現(xiàn)利用對稱、旋轉(zhuǎn)等方法可以計算等分正多邊形面積的方案.(1)請聰明的你將下面圖①、圖②、圖③的等邊三角形分別割成2個、3個、4個全等三角形;(2)如圖④,等邊△ABC邊長AB=4,點O為它的外心,點M、N分別為邊AB、BC上的動點(不與端點重合),且∠MON=120°,若四邊形BMON的面積為s,它的周長記為l,求最小值;(3)如圖⑤,等邊△ABC的邊長AB=4,點P為邊CA延長線上一點,點Q為邊AB延長線上一點,點D為BC邊中點,且∠PDQ=120°,若PA=x,請用含x的代數(shù)式表示△BDQ的面積S△BDQ.20.(8分)在中,,是邊的中線,于,連結(jié),點在射線上(與,不重合)(1)如果①如圖1,②如圖2,點在線段上,連結(jié),將線段繞點逆時針旋轉(zhuǎn),得到線段,連結(jié),補全圖2猜想、之間的數(shù)量關(guān)系,并證明你的結(jié)論;(2)如圖3,若點在線段的延長線上,且,連結(jié),將線段繞點逆時針旋轉(zhuǎn)得到線段,連結(jié),請直接寫出、、三者的數(shù)量關(guān)系(不需證明)21.(10分)天水某公交公司將淘汰某一條線路上“冒黑煙”較嚴重的公交車,計劃購買A型和B型兩行環(huán)保節(jié)能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元,求購買A型和B型公交車每輛各需多少萬元?預計在該條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1220萬元,且確保這10輛公交車在該線路的年均載客量總和不少于650萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少總費用是多少?22.(10分)如圖,一位測量人員,要測量池塘的寬度的長,他過兩點畫兩條相交于點的射線,在射線上取兩點,使,若測得米,他能求出之間的距離嗎?若能,請你幫他算出來;若不能,請你幫他設(shè)計一個可行方案.23.(12分)計算:(﹣2)0+()﹣1+4cos30°﹣|4﹣|24.(14分)如圖,要在木里縣某林場東西方向的兩地之間修一條公路MN,已知C點周圍200米范圍內(nèi)為原始森林保護區(qū),在MN上的點A處測得C在A的北偏東45°方向上,從A向東走600米到達B處,測得C在點B的北偏西60°方向上.(1)MN是否穿過原始森林保護區(qū),為什么?(參考數(shù)據(jù):≈1.732)(2)若修路工程順利進行,要使修路工程比原計劃提前5天完成,需將原定的工作效率提高25%,則原計劃完成這項工程需要多少天?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

由科學計數(shù)法的概念表示出0.0000025即可.【詳解】0.0000025=2.5×10﹣6.故選B.【點睛】本題主要考查科學計數(shù)法,熟記相關(guān)概念是解題關(guān)鍵.2、B【解析】

根據(jù)完全平方式的特點求解:a2±2ab+b2.【詳解】∵x2+mx+25是完全平方式,∴m=±10,故選B.【點睛】本題考查了完全平方公式:a2±2ab+b2,其特點是首平方,尾平方,首尾積的兩倍在中央,這里首末兩項是x和1的平方,那么中間項為加上或減去x和1的乘積的2倍.3、C【解析】試題解析:∵sin∠CAB=∴∠CAB=45°.∵,∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,魚竿轉(zhuǎn)過的角度是15°.故選C.考點:解直角三角形的應用.4、C【解析】

先把能化簡的數(shù)化簡,然后根據(jù)無理數(shù)的定義逐一判斷即可得.【詳解】A、3.14是有理數(shù);B、1.01001是有理數(shù);C、是無理數(shù);D、是分數(shù),為有理數(shù);故選C.【點睛】本題主要考查無理數(shù)的定義,屬于簡單題.5、B【解析】解:sin60°=.故選B.6、D【解析】

由摸到紅球的頻率穩(wěn)定在25%附近得出口袋中得到紅色球的概率,進而求出白球個數(shù)即可.【詳解】解:設(shè)白球個數(shù)為:x個,

∵摸到紅色球的頻率穩(wěn)定在25%左右,

∴口袋中得到紅色球的概率為25%,

∴,

解得:x=12,

經(jīng)檢驗x=12是原方程的根,

故白球的個數(shù)為12個.

故選:D.【點睛】本題考查了利用頻率估計概率,根據(jù)大量反復試驗下頻率穩(wěn)定值即概率得出是解題的關(guān)鍵.7、A【解析】連接CC′,∵將△ADC沿AD折疊,使C點落在C′的位置,∠ADC=30°,∴∠ADC′=∠ADC=30°,CD=C′D,∴∠CDC′=∠ADC+∠ADC′=60°,∴△DCC′是等邊三角形,∴∠DC′C=60°,∵在△ABC中,AD是BC邊的中線,即BD=CD,∴C′D=BD,∴∠DBC′=∠DC′B=∠CDC′=30°,∴∠BC′C=∠DC′B+∠DC′C=90°,∵BC=4,∴BC′=BC?cos∠DBC′=4×=2,故選A.【點睛】本題考查了折疊的性質(zhì)、等邊三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、直角三角形的性質(zhì)以及三角函數(shù)等知識,準確添加輔助線,掌握折疊前后圖形的對應關(guān)系是解題的關(guān)鍵.8、C【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A是軸對稱圖形,不是中心對稱圖形;B,C,D是軸對稱圖形,也是中心對稱圖形.故選:C.【點睛】掌握中心對稱圖形與軸對稱圖形的概念:軸對稱圖形:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形;中心對稱圖形:在同一平面內(nèi),如果把一個圖形繞某一點旋轉(zhuǎn)180°,旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.9、B【解析】

在與一元二次方程有關(guān)的求值問題中,必須滿足下列條件:(1)二次項系數(shù)不為零;(2)在有兩個實數(shù)根下必須滿足△=b2-4ac≥1.【詳解】由題意知,k≠1,方程有兩個不相等的實數(shù)根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.因此可求得k>且k≠1.故選B.【點睛】本題考查根據(jù)根的情況求參數(shù),熟記判別式與根的關(guān)系是解題的關(guān)鍵.10、D【解析】

5出現(xiàn)了6次,出現(xiàn)的次數(shù)最多,則眾數(shù)是5;把這些數(shù)從小到大排列,中位數(shù)是第10,11個數(shù)的平均數(shù),則中位數(shù)是(6+6)÷2=6;平均數(shù)是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故答案選D.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】試題分析:當n=3時,A=≈0.3178,B=1,A<B;當n=4時,A=≈0.2679,B=≈0.4142,A<B;當n=5時,A=≈0.2631,B=≈0.3178,A<B;當n=6時,A=≈0.2134,B=≈0.2679,A<B;……以此類推,隨著n的增大,a在不斷變小,而b的變化比a慢兩個數(shù),所以可知當n≥3時,A、B的關(guān)系始終是A<B.12、+,1【解析】

根據(jù)表格中數(shù)據(jù)求出x、y之間的關(guān)系,即可得出答案.【詳解】解:根據(jù)表格中數(shù)據(jù)分析可得:x、y之間的關(guān)系為:y=2x+1,則按的第三個鍵和第四個鍵應是“+”“1”.故答案為+,1.【點睛】此題考查了有理數(shù)的運算,要求同學們能熟練應用計算器,會用科學記算器進行計算.13、【解析】

根據(jù)任何多邊形的外角和都是360度,先利用360°÷40°求出多邊形的邊數(shù),再根據(jù)多邊形的內(nèi)角和公式(n-2)?180°計算即可求解.【詳解】解:多邊形的邊數(shù)是:360°÷40°=9,

則內(nèi)角和是:(9-2)?180°=1260°.

故答案為1260°.【點睛】本題考查正多邊形的外角與邊數(shù)的關(guān)系,求出多邊形的邊數(shù)是解題的關(guān)鍵.14、22°【解析】

由AE∥BD,根據(jù)平行線的性質(zhì)求得∠CBD的度數(shù),再由對頂角相等求得∠CDB的度數(shù),繼而利用三角形的內(nèi)角和等于180°求得∠C的度數(shù).【詳解】解:∵AE∥BD,∠1=130°,∠2=28°,∴∠CBD=∠1=130°,∠CDB=∠2=28°,∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.故答案為22°【點睛】本題考查了平行線的性質(zhì),對頂角相等及三角形內(nèi)角和定理.熟練運用相關(guān)知識是解決問題的關(guān)鍵.15、.【解析】試題解析:如圖,連接OM交AB于點C,連接OA、OB,由題意知,OM⊥AB,且OC=MC=1,在RT△AOC中,∵OA=2,OC=1,∴cos∠AOC=,AC=∴∠AOC=60°,AB=2AC=2,∴∠AOB=2∠AOC=120°,則S弓形ABM=S扇形OAB-S△AOB==,S陰影=S半圓-2S弓形ABM=π×22-2()=2.故答案為2.16、四丈五尺【解析】

根據(jù)同一時刻物高與影長成正比可得出結(jié)論.【詳解】解:設(shè)竹竿的長度為x尺,∵竹竿的影長=一丈五尺=15尺,標桿長=一尺五寸=1.5尺,影長五寸=0.5尺,∴=,解得x=45(尺).故答案為:四丈五尺.【點睛】本題考查的是相似三角形的應用,熟知同一時刻物髙與影長成正比是解答此題的關(guān)鍵.17、3【解析】

根據(jù)拋物線與x軸只有一個公共交點,則判別式等于0,據(jù)此即可求解.【詳解】∵拋物線y=3x2﹣6x+a與x軸只有一個公共點,∴判別式Δ=36-12a=0,解得:a=3,故答案為3【點睛】本題考查了二次函數(shù)圖象與x軸的公共點的個數(shù)的判定方法,如果△>0,則拋物線與x軸有兩個不同的交點;如果△=0,與x軸有一個交點;如果△<0,與x軸無交點.三、解答題(共7小題,滿分69分)18、(1),k=2;(2)b=2或1.【解析】

(1)依據(jù)直線y=x與雙曲線(k≠0)相交于點,即可得到a、k的值;(2)分兩種情況:當直線x=b在點A的左側(cè)時,由x=2,可得x=1,即b=1;當直線x=b在點A的右側(cè)時,由x2,可得x=2,即b=2.【詳解】(1)∵直線y=x與雙曲線(k≠0)相交于點,∴,∴,∴,解得:k=2;(2)如圖所示:當直線x=b在點A的左側(cè)時,由x=2,可得:x=1,x=﹣2(舍去),即b=1;當直線x=b在點A的右側(cè)時,由x2,可得x=2,x=﹣1(舍去),即b=2;綜上所述:b=2或1.【點睛】本題考查了利用待定系數(shù)法求函數(shù)解析式以及函數(shù)的圖象與解析式的關(guān)系,解題時注意:點在圖象上,就一定滿足函數(shù)的解析式.19、(1)詳見解析;(2)2+2;(3)S△BDQx+.【解析】

(1)根據(jù)要求利用全等三角形的判定和性質(zhì)畫出圖形即可.(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.證明△OEM≌△OFN(ASA),推出EM=FN,ON=OM,S△EOM=S△NOF,推出S四邊形BMON=S四邊形BEOF=定值,證明Rt△OBE≌Rt△OBF(HL),推出BM+BN=BE+EM+BF﹣FN=2BE=定值,推出欲求最小值,只要求出l的最小值,因為l=BM+BN+ON+OM=定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因為OM=ON,根據(jù)垂線段最短可知,當OM與OE重合時,OM定值最小,由此即可解決問題.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.證明△PDF≌△QDE(ASA),即可解決問題.【詳解】解:(1)如圖1,作一邊上的中線可分割成2個全等三角形,如圖2,連接外心和各頂點的線段可分割成3個全等三角形,如圖3,連接各邊的中點可分割成4個全等三角形,(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.∵△ABC是等邊三角形,O是外心,∴OB平分∠ABC,∠ABC=60°∵OE⊥AB,OF⊥BC,∴OE=OF,∵∠OEB=∠OFB=90°,∴∠EOF+∠EBF=180°,∴∠EOF=∠NOM=120°,∴∠EOM=∠FON,∴△OEM≌△OFN(ASA),∴EM=FN,ON=OM,S△EOM=S△NOF,∴S四邊形BMON=S四邊形BEOF=定值,∵OB=OB,OE=OF,∠OEB=∠OFB=90°,∴Rt△OBE≌Rt△OBF(HL),∴BE=BF,∴BM+BN=BE+EM+BF﹣FN=2BE=定值,∴欲求最小值,只要求出l的最小值,∵l=BM+BN+ON+OM=定值+ON+OM,欲求最小值,只要求出ON+OM的最小值,∵OM=ON,根據(jù)垂線段最短可知,當OM與OE重合時,OM定值最小,此時定值最小,s=×2×=,l=2+2++=4+,∴的最小值==2+2.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.∵△ABC是等邊三角形,BD=DC,∴AD平分∠BAC,∵DE⊥AB,DF⊥AC,∴DE=DF,∵∠DEA=∠DEQ=∠AFD=90°,∴∠EAF+∠EDF=180°,∵∠EAF=60°,∴∠EDF=∠PDQ=120°,∴∠PDF=∠QDE,∴△PDF≌△QDE(ASA),∴PF=EQ,在Rt△DCF中,∵DC=2,∠C=60°,∠DFC=90°,∴CF=CD=1,DF=,同法可得:BE=1,DE=DF=,∵AF=AC﹣CF=4﹣1=3,PA=x,∴PF=EQ=3+x,∴BQ=EQ﹣BE=2+x,∴S△BDQ=?BQ?DE=×(2+x)×=x+.【點睛】本題主要考查多邊形的綜合題,主要涉及的知識點:全等三角形的判定和性質(zhì)、多邊形內(nèi)角和、角平分線的性質(zhì)、等量代換、三角形的面積等,牢記并熟練運用這些知識點是解此類綜合題的關(guān)鍵。20、(1)①60;②.理由見解析;(2),理由見解析.【解析】

(1)①根據(jù)直角三角形斜邊中線的性質(zhì),結(jié)合,只要證明是等邊三角形即可;②根據(jù)全等三角形的判定推出,根據(jù)全等的性質(zhì)得出,(2)如圖2,求出,,求出,,根據(jù)全等三角形的判定得出,求出,推出,解直角三角形求出即可.【詳解】解:(1)①∵,,∴,∵,∴,∴是等邊三角形,∴.故答案為60.②如圖1,結(jié)論:.理由如下:∵,是的中點,,,∴,,∴,,,∴,∵,∴,∵線段繞點逆時針旋轉(zhuǎn)得到線段,∴,在和中,∴,∴.(2)結(jié)論:.理由:∵,是的中點,,,∴,,∴,,,∴,∵,∴,∵線段繞點逆時針旋轉(zhuǎn)得到線段,∴,在和中,∴,∴,而,∴,在中,,∴,∴,∴,即.【點睛】本題考查了三角形外角性質(zhì),全等三角形的性質(zhì)和判定,直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì)的應用,能推出是解此題的關(guān)鍵,綜合性比較強,證明過程類似.21、(1)購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.【解析】

(1)設(shè)購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,根據(jù)“A型公交車1輛,B型公交車2輛,共需400萬元;A型公交車2輛,B型公交車1輛,共需350萬元”列出方程組解決問題;(2)設(shè)購買A型公交車a輛,則B型公交車(10-a)輛,由“購買A型和B型公交車的總費用不超過1220萬元”和“10輛公交車在該線路的年均載客總和不少于650萬人次”列出不等式組探討得出答案即可.【詳解】(1)設(shè)購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,由題意得,解得,答:購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)設(shè)購買A型公交車a輛,則B型公交車(10﹣a)輛,由題意得,解得:,因為a是整數(shù),所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論