陜西省渭南市2023學年中考數(shù)學模擬預測題含解析及點睛_第1頁
陜西省渭南市2023學年中考數(shù)學模擬預測題含解析及點睛_第2頁
陜西省渭南市2023學年中考數(shù)學模擬預測題含解析及點睛_第3頁
陜西省渭南市2023學年中考數(shù)學模擬預測題含解析及點睛_第4頁
陜西省渭南市2023學年中考數(shù)學模擬預測題含解析及點睛_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.半徑為3的圓中,一條弦長為4,則圓心到這條弦的距離是()A.3 B.4 C. D.2.“山西八分鐘,驚艷全世界”.2019年2月25日下午,在外交部藍廳隆重舉行山西全球推介活動.山西經濟結構從“一煤獨大”向多元支撐轉變,三年累計退出煤炭過剩產能8800余萬噸,煤層氣產量突破56億立方米.數(shù)據(jù)56億用科學記數(shù)法可表示為()A.56×108 B.5.6×108 C.5.6×109 D.0.56×10103.在-,,0,-2這四個數(shù)中,最小的數(shù)是()A. B. C.0 D.-24.如圖,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P點是BD的中點,若AD=6,則CP的長為()A.3.5 B.3 C.4 D.4.55.下列圖形中一定是相似形的是()A.兩個菱形 B.兩個等邊三角形 C.兩個矩形 D.兩個直角三角形6.6的絕對值是()A.6 B.﹣6 C. D.7.圖1~圖4是四個基本作圖的痕跡,關于四條?、?、②、③、④有四種說法:?、偈且設為圓心,任意長為半徑所畫的?。换、谑且訮為圓心,任意長為半徑所畫的??;?、凼且訟為圓心,任意長為半徑所畫的??;?、苁且訮為圓心,任意長為半徑所畫的弧;其中正確說法的個數(shù)為()A.4 B.3 C.2 D.18.如果將直線l1:y=2x﹣2平移后得到直線l2:y=2x,那么下列平移過程正確的是()A.將l1向左平移2個單位 B.將l1向右平移2個單位C.將l1向上平移2個單位 D.將l1向下平移2個單位9.2017上半年,四川貨物貿易進出口總值為2098.7億元,較去年同期增長59.5%,遠高于同期全國19.6%的整體進出口增幅.在“一帶一路”倡議下,四川同期對以色列、埃及、羅馬尼亞、伊拉克進出口均實現(xiàn)數(shù)倍增長.將2098.7億元用科學記數(shù)法表示是()A.2.0987×103 B.2.0987×1010 C.2.0987×1011 D.2.0987×101210.一個多邊形的每個內角都等于120°,則這個多邊形的邊數(shù)為()A.4 B.5 C.6 D.7二、填空題(共7小題,每小題3分,滿分21分)11.如圖,點、、在直線上,點,,在直線上,以它們?yōu)轫旤c依次構造第一個正方形,第二個正方形,若的橫坐標是1,則的坐標是______,第n個正方形的面積是______.12.下面是“利用直角三角形作矩形”尺規(guī)作圖的過程.已知:如圖1,在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.小明的作法如下:如圖2,(1)分別以點A、C為圓心,大于AC同樣長為半徑作弧,兩弧交于點E、F;(2)作直線EF,直線EF交AC于點O;(3)作射線BO,在BO上截取OD,使得OD=OB;(4)連接AD,CD.∴四邊形ABCD就是所求作的矩形.老師說,“小明的作法正確.”請回答,小明作圖的依據(jù)是:__________________________________________________.13.如圖,AB是⊙O的直徑,點C是⊙O上的一點,若BC=6,AB=10,OD⊥BC于點D,則OD的長為______.14.不透明的袋子里裝有2個白球,1個紅球,這些球除顏色外無其他差別,從袋子中隨機摸出1個球,則摸出白球的概率是________.15.計算的結果等于______________________.16.如圖,在一次數(shù)學活動課上,小明用18個棱長為1的正方體積木搭成一個幾何體,然后他請小亮用其他棱長為1的正方體積木在旁邊再搭一個幾何體,使小亮所搭幾何體恰好和小明所搭幾何體拼成一個無空隙的大長方體(不改變小明所搭幾何體的形狀).請從下面的A、B兩題中任選一題作答,我選擇__________.A、按照小明的要求搭幾何體,小亮至少需要__________個正方體積木.B、按照小明的要求,小亮所搭幾何體的表面積最小為__________.17.分解因式:__________.三、解答題(共7小題,滿分69分)18.(10分)(2017四川省內江市)小明隨機調查了若干市民租用共享單車的騎車時間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根據(jù)圖中信息,解答下列問題:(1)這項被調查的總人數(shù)是多少人?(2)試求表示A組的扇形統(tǒng)計圖的圓心角的度數(shù),補全條形統(tǒng)計圖;(3)如果小明想從D組的甲、乙、丙、丁四人中隨機選擇兩人了解平時租用共享單車情況,請用列表或畫樹狀圖的方法求出恰好選中甲的概率.19.(5分)如圖,AB是⊙O的直徑,D為⊙O上一點,過弧BD上一點T作⊙O的切線TC,且TC⊥AD于點C.(1)若∠DAB=50°,求∠ATC的度數(shù);(2)若⊙O半徑為2,TC=3,求AD的長.20.(8分)如圖,平面直角坐標系xOy中,已知點A(0,3),點B(,0),連接AB,若對于平面內一點C,當△ABC是以AB為腰的等腰三角形時,稱點C是線段AB的“等長點”.(1)在點C1(﹣2,3+2),點C2(0,﹣2),點C3(3+,﹣)中,線段AB的“等長點”是點________;(2)若點D(m,n)是線段AB的“等長點”,且∠DAB=60°,求點D的坐標;(3)若直線y=kx+3k上至少存在一個線段AB的“等長點”,求k的取值范圍.21.(10分)如圖,有長為14m的籬笆,現(xiàn)一面利用墻(墻的最大可用長度a為10m)圍成中間隔有一道籬笆的長方形花圃,設花圃的寬AB為xm,面積為Sm1.求S與x的函數(shù)關系式及x值的取值范圍;要圍成面積為45m1的花圃,AB的長是多少米?當AB的長是多少米時,圍成的花圃的面積最大?22.(10分)(10分)如圖,AB是⊙O的直徑,OD⊥弦BC于點F,交⊙O于點E,連結CE、AE、CD,若∠AEC=∠ODC.(1)求證:直線CD為⊙O的切線;(2)若AB=5,BC=4,求線段CD的長.23.(12分)如圖,△ABC三個頂點的坐標分別為A(1,1)、B(4,2)、C(3,4).(1)畫出△ABC關于y軸的對稱圖形△A1B1C1,并寫出B1點的坐標;(2)畫出△ABC繞原點O旋轉180°后得到的圖形△A2B2C2,并寫出B2點的坐標;(3)在x軸上求作一點P,使△PAB的周長最小,并直接寫出點P的坐標.24.(14分)解方程:(x﹣3)(x﹣2)﹣4=1.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】如圖所示:過點O作OD⊥AB于點D,∵OB=3,AB=4,OD⊥AB,∴BD=AB=×4=2,在Rt△BOD中,OD=.故選C.2、C【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值是易錯點,由于56億有10位,所以可以確定n=10﹣1=1.【詳解】56億=56×108=5.6×101,故選C.【點睛】此題考查科學記數(shù)法表示較大的數(shù)的方法,準確確定a與n值是關鍵.3、D【解析】

根據(jù)正數(shù)大于0,負數(shù)小于0,正數(shù)大于一切負數(shù),兩個負數(shù),絕對值大的反而小比較即可.【詳解】在﹣,,0,﹣1這四個數(shù)中,﹣1<﹣<0<,故最小的數(shù)為:﹣1.故選D.【點睛】本題考查了實數(shù)的大小比較,解答本題的關鍵是熟練掌握實數(shù)的大小比較方法,特別是兩個負數(shù)的大小比較.4、B【解析】

解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD平分∠ABC,∴∠ABD=∠ABC=10°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P點是BD的中點,∴CP=BD=1.故選B.5、B【解析】

如果兩個多邊形的對應角相等,對應邊的比相等,則這兩個多邊形是相似多邊形.【詳解】解:∵等邊三角形的對應角相等,對應邊的比相等,∴兩個等邊三角形一定是相似形,又∵直角三角形,菱形的對應角不一定相等,矩形的邊不一定對應成比例,∴兩個直角三角形、兩個菱形、兩個矩形都不一定是相似形,故選:B.【點睛】本題考查了相似多邊形的識別.判定兩個圖形相似的依據(jù)是:對應邊成比例,對應角相等,兩個條件必須同時具備.6、A【解析】試題分析:1是正數(shù),絕對值是它本身1.故選A.考點:絕對值.7、C【解析】

根據(jù)基本作圖的方法即可得到結論.【詳解】解:(1)?、偈且設為圓心,任意長為半徑所畫的弧,正確;(2)弧②是以P為圓心,大于點P到直線的距離為半徑所畫的弧,錯誤;(3)?、凼且訟為圓心,大于AB的長為半徑所畫的弧,錯誤;(4)?、苁且訮為圓心,任意長為半徑所畫的弧,正確.故選C.【點睛】此題主要考查了基本作圖,解決問題的關鍵是掌握基本作圖的方法.8、C【解析】

根據(jù)“上加下減”的原則求解即可.【詳解】將函數(shù)y=2x﹣2的圖象向上平移2個單位長度,所得圖象對應的函數(shù)解析式是y=2x.故選:C.【點睛】本題考查的是一次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象變換的法則是解答此題的關鍵.9、C【解析】將2098.7億元用科學記數(shù)法表示是2.0987×1011,故選:C.點睛:本題考查了正整數(shù)指數(shù)科學計數(shù)法,對于一個絕對值較大的數(shù),用科學記數(shù)法寫成的形式,其中,n是比原整數(shù)位數(shù)少1的數(shù).10、C【解析】試題解析:∵多邊形的每一個內角都等于120°,∴多邊形的每一個外角都等于180°-120°=10°,∴邊數(shù)n=310°÷10°=1.故選C.考點:多邊形內角與外角.二、填空題(共7小題,每小題3分,滿分21分)11、(4,2),【解析】

由的橫坐標是1,可得,利用兩個函數(shù)解析式求出點、的坐標,得出的長度以及第1個正方形的面積,求出的坐標;然后再求出的坐標,得出第2個正方形的面積,求出的坐標;再求出、的坐標,得出第3個正方形的面積;從而得出規(guī)律即可得到第n個正方形的面積.【詳解】解:點、、在直線上,的橫坐標是1,

,

點,,在直線上,

,,

,,

第1個正方形的面積為:;

,

,,,

第2個正方形的面積為:;

,

,,

第3個正方形的面積為:;

,

第n個正方形的面積為:.

故答案為,.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征,正方形的性質以及規(guī)律型中圖形的變化規(guī)律,解題的關鍵是找出規(guī)律本題難度適中,解決該題型題目時,根據(jù)給定的條件求出第1、2、3個正方形的邊長,根據(jù)數(shù)據(jù)的變化找出變化規(guī)律是關鍵.12、到線段兩端點的距離相等的點在這條線段的垂直平分線上;對角線互相平分的四邊形為平行四邊形;有一個角為90°的平行四邊形為矩形【解析】

先利用作法判定OA=OC,OD=OB,則根據(jù)平行四邊形的判定方法判斷四邊形ABCD為平行四邊形,然后根據(jù)矩形的判定方法判斷四邊形ABCD為矩形.【詳解】解:由作法得EF垂直平分AC,則OA=OC,而OD=OB,所以四邊形ABCD為平行四邊形,而∠ABC=90°,所以四邊形ABCD為矩形.故答案為到線段兩段點的距離相等的點在這條線段的垂直平分線上;對角線互相平分的四邊形為平行四邊形;有一個內角為90°的平行四邊形為矩形.【點睛】本題考查了作圖-復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.13、1【解析】

根據(jù)垂徑定理求得BD,然后根據(jù)勾股定理求得即可.【詳解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==1.故答案為1.【點睛】本題考查垂徑定理及其勾股定理,熟記定理并靈活應用是本題的解題關鍵.14、【解析】

先求出球的總數(shù),再根據(jù)概率公式求解即可.【詳解】∵不透明的袋子里裝有2個白球,1個紅球,∴球的總數(shù)=2+1=3,∴從袋子中隨機摸出1個球,則摸出白球的概率=.故答案為.【點睛】本題考查的是概率公式,熟知隨機事件A的概率P(A)=事件A可能出現(xiàn)的結果數(shù)所有可能出現(xiàn)的結果數(shù)的商是解答此題的關鍵.15、【解析】

根據(jù)完全平方式可求解,完全平方式為【詳解】【點睛】此題主要考查二次根式的運算,完全平方式的正確運用是解題關鍵16、A,18,1【解析】

A、首先確定小明所搭幾何體所需的正方體的個數(shù),然后確定兩人共搭建幾何體所需小立方體的數(shù)量,求差即可;

B、分別得到前后面,上下面,左右面的面積,相加即可求解.【詳解】A、∵小亮所搭幾何體恰好可以和小明所搭幾何體拼成一個無縫隙的大長方體,

∴該長方體需要小立方體4×32=36個,

∵小明用18個邊長為1的小正方體搭成了一個幾何體,

∴小亮至少還需36-18=18個小立方體,

B、表面積為:2×(8+8+7)=1.

故答案是:A,18,1.【點睛】考查了由三視圖判斷幾何體的知識,能夠確定兩人所搭幾何體的形狀是解答本題的關鍵.17、3(m-1)2【解析】試題分析:根據(jù)因式分解的方法,先提公因式,再根據(jù)完全平方公式分解因式即可,即3m2-6m+3=3(m2-2m+1)=3(m-1)2.故答案為:3(m-1)2點睛:因式分解是把一個多項式化為幾個因式積的形式.根據(jù)因式分解的一般步驟:一提(公因式)、二套(平方差公式,完全平方公式)、三檢查(徹底分解).三、解答題(共7小題,滿分69分)18、(1)50;(2)108°;(3).【解析】分析:(1)根據(jù)B組的人數(shù)和所占的百分比,即可求出這次被調查的總人數(shù),從而補全統(tǒng)計圖;用360乘以A組所占的百分比,求出A組的扇形圓心角的度數(shù),再用總人數(shù)減去A、B、D組的人數(shù),求出C組的人數(shù);(2)畫出樹狀圖,由概率公式即可得出答案.本題解析:解:(1)調查的總人數(shù)是:19÷38%=50(人).C組的人數(shù)有50-15-19-4=12(人),補全條形圖如圖所示.(2)畫樹狀圖如下.共有12種等可能的結果,恰好選中甲的結果有6種,∴P(恰好選中甲)=.點睛:本題考查了列表法與樹狀圖、條形統(tǒng)計圖的綜合運用.熟練掌握畫樹狀圖法,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關鍵.19、(2)65°;(2)2.【解析】試題分析:(2)連接OT,根據(jù)角平分線的性質,以及直角三角形的兩個銳角互余,證得CT⊥OT,CT為⊙O的切線;(2)證明四邊形OTCE為矩形,求得OE的長,在直角△OAE中,利用勾股定理即可求解.試題解析:(2)連接OT,∵OA=OT,∴∠OAT=∠OTA,又∵AT平分∠BAD,∴∠DAT=∠OAT,∴∠DAT=∠OTA,∴OT∥AC,又∵CT⊥AC,∴CT⊥OT,∴CT為⊙O的切線;(2)過O作OE⊥AD于E,則E為AD中點,又∵CT⊥AC,∴OE∥CT,∴四邊形OTCE為矩形,∵CT=,∴OE=,又∵OA=2,∴在Rt△OAE中,AE=,∴AD=2AE=2.考點:2.切線的判定與性質;2.勾股定理;3.圓周角定理.20、(1)C1,C3;(2)D(﹣,0)或D(,3);(3)﹣≤k≤【解析】

(1)直接利用線段AB的“等長點”的條件判斷;(2)分兩種情況討論,利用對稱性和垂直的性質即可求出m,n;(3)先判斷出直線y=kx+3與圓A,B相切時,如圖2所示,利用相似三角形的性質即可求出結論.【詳解】(1)∵A(0,3),B(,0),∴AB=2,∵點C1(﹣2,3+2),∴AC1==2,∴AC1=AB,∴C1是線段AB的“等長點”,∵點C2(0,﹣2),∴AC2=5,BC2==,∴AC2≠AB,BC2≠AB,∴C2不是線段AB的“等長點”,∵點C3(3+,﹣),∴BC3==2,∴BC3=AB,∴C3是線段AB的“等長點”;故答案為C1,C3;(2)如圖1,在Rt△AOB中,OA=3,OB=,∴AB=2,tan∠OAB==,∴∠OAB=30°,當點D在y軸左側時,∵∠DAB=60°,∴∠DAO=∠DAB﹣∠BAO=30°,∵點D(m,n)是線段AB的“等長點”,∴AD=AB,∴D(﹣,0),∴m=,n=0,當點D在y軸右側時,∵∠DAB=60°,∴∠DAO=∠BAO+∠DAB=90°,∴n=3,∵點D(m,n)是線段AB的“等長點”,∴AD=AB=2,∴m=2;∴D(,3)(3)如圖2,∵直線y=kx+3k=k(x+3),∴直線y=kx+3k恒過一點P(﹣3,0),∴在Rt△AOP中,OA=3,OP=3,∴∠APO=30°,∴∠PAO=60°,∴∠BAP=90°,當PF與⊙B相切時交y軸于F,∴PA切⊙B于A,∴點F就是直線y=kx+3k與⊙B的切點,∴F(0,﹣3),∴3k=﹣3,∴k=﹣,當直線y=kx+3k與⊙A相切時交y軸于G切點為E,∴∠AEG=∠OPG=90°,∴△AEG∽△POG,∴,∴=,解得:k=或k=(舍去)∵直線y=kx+3k上至少存在一個線段AB的“等長點”,∴﹣≤k≤,【點睛】此題是一次函數(shù)綜合題,主要考查了新定義,銳角三角函數(shù),直角三角形的性質,等腰三角形的性質,對稱性,解(1)的關鍵是理解新定義,解(2)的關鍵是畫出圖形,解(3)的關鍵是判斷出直線和圓A,B相切時是分界點.21、(1)S=﹣3x1+14x,≤x<8;(1)5m;(3)46.67m1【解析】

(1)設花圃寬AB為xm,則長為(14-3x),利用長方形的面積公式,可求出S與x關系式,根據(jù)墻的最大長度求出x的取值范圍;(1)根據(jù)(1)所求的關系式把S=2代入即可求出x,即AB;(3)根據(jù)二次函數(shù)的性質及x的取值范圍求出即可.【詳解】解:(1)根據(jù)題意,得S=x(14﹣3x),即所求的函數(shù)解析式為:S=﹣3x1+14x,又∵0<14﹣3x≤10,∴;(1)根據(jù)題意,設花圃寬AB為xm,則長為(14-3x),∴﹣3x1+14x=2.整理,得x1﹣8x+15=0,解得x=3或5,當x=3時,長=14﹣9=15>10不成立,當x=5時,長=14﹣15=9<10成立,∴AB長為5m;(3)S=14x﹣3x1=﹣3(x﹣4)1+48∵墻的最大可用長度為10m,0≤14﹣3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論