安徽省濱湖壽春中學2021-2022學年高三下學期第六次檢測數學試卷含解析_第1頁
安徽省濱湖壽春中學2021-2022學年高三下學期第六次檢測數學試卷含解析_第2頁
安徽省濱湖壽春中學2021-2022學年高三下學期第六次檢測數學試卷含解析_第3頁
安徽省濱湖壽春中學2021-2022學年高三下學期第六次檢測數學試卷含解析_第4頁
安徽省濱湖壽春中學2021-2022學年高三下學期第六次檢測數學試卷含解析_第5頁
免費預覽已結束,剩余17頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,以下結論正確的個數為()①當時,函數的圖象的對稱中心為;②當時,函數在上為單調遞減函數;③若函數在上不單調,則;④當時,在上的最大值為1.A.1 B.2 C.3 D.42.已知雙曲線的焦距為,若的漸近線上存在點,使得經過點所作的圓的兩條切線互相垂直,則雙曲線的離心率的取值范圍是()A. B. C. D.3.定義域為R的偶函數滿足任意,有,且當時,.若函數至少有三個零點,則的取值范圍是()A. B. C. D.4.音樂,是用聲音來展現美,給人以聽覺上的享受,熔鑄人們的美學趣味.著名數學家傅立葉研究了樂聲的本質,他證明了所有的樂聲都能用數學表達式來描述,它們是一些形如的簡單正弦函數的和,其中頻率最低的一項是基本音,其余的為泛音.由樂聲的數學表達式可知,所有泛音的頻率都是基本音頻率的整數倍,稱為基本音的諧波.下列函數中不能與函數構成樂音的是()A. B. C. D.5.2019年10月17日是我國第6個“扶貧日”,某醫(yī)院開展扶貧日“送醫(yī)下鄉(xiāng)”醫(yī)療義診活動,現有五名醫(yī)生被分配到四所不同的鄉(xiāng)鎮(zhèn)醫(yī)院中,醫(yī)生甲被指定分配到醫(yī)院,醫(yī)生乙只能分配到醫(yī)院或醫(yī)院,醫(yī)生丙不能分配到醫(yī)生甲、乙所在的醫(yī)院,其他兩名醫(yī)生分配到哪所醫(yī)院都可以,若每所醫(yī)院至少分配一名醫(yī)生,則不同的分配方案共有()A.18種 B.20種 C.22種 D.24種6.若復數滿足,則(其中為虛數單位)的最大值為()A.1 B.2 C.3 D.47.若復數為虛數單位在復平面內所對應的點在虛軸上,則實數a為()A. B.2 C. D.8.函數的部分圖象如圖中實線所示,圖中圓與的圖象交于兩點,且在軸上,則下列說法中正確的是A.函數的最小正周期是B.函數的圖象關于點成中心對稱C.函數在單調遞增D.函數的圖象向右平移后關于原點成中心對稱9.已知雙曲線的焦距是虛軸長的2倍,則雙曲線的漸近線方程為()A. B. C. D.10.集合中含有的元素個數為()A.4 B.6 C.8 D.1211.已知圓關于雙曲線的一條漸近線對稱,則雙曲線的離心率為()A. B. C. D.12.對于任意,函數滿足,且當時,函數.若,則大小關系是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數在上僅有2個零點,設,則在區(qū)間上的取值范圍為_______.14.在平行四邊形中,已知,,,若,,則____________.15.二項式的展開式中項的系數為_____.16.已知橢圓的下頂點為,若直線與橢圓交于不同的兩點、,則當_____時,外心的橫坐標最大.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設數列是等差數列,其前項和為,且,.(1)求數列的通項公式;(2)證明:.18.(12分)已知函數.(1)當時,求不等式的解集;(2)若的解集包含,求的取值范圍.19.(12分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點.(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.20.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,,為等邊三角形,平面平面ABCD,M,N分別是線段PD和BC的中點.(1)求直線CM與平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)試判斷直線MN與平面PAB的位置關系,并給出證明.21.(12分)有甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司底薪元,送餐員每單制成元;乙公司無底薪,單以內(含單)的部分送餐員每單抽成元,超過單的部分送餐員每單抽成元.現從這兩家公司各隨機選取一名送餐員,分別記錄其天的送餐單數,得到如下頻數分布表:送餐單數3839404142甲公司天數101015105乙公司天數101510105(1)從記錄甲公司的天送餐單數中隨機抽取天,求這天的送餐單數都不小于單的概率;(2)假設同一公司的送餐員一天的送餐單數相同,將頻率視為概率,回答下列兩個問題:①求乙公司送餐員日工資的分布列和數學期望;②小張打算到甲、乙兩家公司中的一家應聘送餐員,如果僅從日工資的角度考慮,小張應選擇哪家公司應聘?說明你的理由.22.(10分)已知函數,.(1)若,,求實數的值.(2)若,,求正實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

逐一分析選項,①根據函數的對稱中心判斷;②利用導數判斷函數的單調性;③先求函數的導數,若滿足條件,則極值點必在區(qū)間;④利用導數求函數在給定區(qū)間的最值.【詳解】①為奇函數,其圖象的對稱中心為原點,根據平移知識,函數的圖象的對稱中心為,正確.②由題意知.因為當時,,又,所以在上恒成立,所以函數在上為單調遞減函數,正確.③由題意知,當時,,此時在上為增函數,不合題意,故.令,解得.因為在上不單調,所以在上有解,需,解得,正確.④令,得.根據函數的單調性,在上的最大值只可能為或.因為,,所以最大值為64,結論錯誤.故選:C【點睛】本題考查利用導數研究函數的單調性,極值,最值,意在考查基本的判斷方法,屬于基礎題型.2.B【解析】

由可得;由過點所作的圓的兩條切線互相垂直可得,又焦點到雙曲線漸近線的距離為,則,進而求解.【詳解】,所以離心率,又圓是以為圓心,半徑的圓,要使得經過點所作的圓的兩條切線互相垂直,必有,而焦點到雙曲線漸近線的距離為,所以,即,所以,所以雙曲線的離心率的取值范圍是.故選:B【點睛】本題考查雙曲線的離心率的范圍,考查雙曲線的性質的應用.3.B【解析】

由題意可得的周期為,當時,,令,則的圖像和的圖像至少有個交點,畫出圖像,數形結合,根據,求得的取值范圍.【詳解】是定義域為R的偶函數,滿足任意,,令,又,為周期為的偶函數,當時,,當,當,作出圖像,如下圖所示:函數至少有三個零點,則的圖像和的圖像至少有個交點,,若,的圖像和的圖像只有1個交點,不合題意,所以,的圖像和的圖像至少有個交點,則有,即,.故選:B.【點睛】本題考查函數周期性及其應用,解題過程中用到了數形結合方法,這也是高考常考的熱點問題,屬于中檔題.4.C【解析】

由基本音的諧波的定義可得,利用可得,即可判斷選項.【詳解】由題,所有泛音的頻率都是基本音頻率的整數倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點睛】本題考查三角函數的周期與頻率,考查理解分析能力.5.B【解析】

分兩類:一類是醫(yī)院A只分配1人,另一類是醫(yī)院A分配2人,分別計算出兩類的分配種數,再由加法原理即可得到答案.【詳解】根據醫(yī)院A的情況分兩類:第一類:若醫(yī)院A只分配1人,則乙必在醫(yī)院B,當醫(yī)院B只有1人,則共有種不同分配方案,當醫(yī)院B有2人,則共有種不同分配方案,所以當醫(yī)院A只分配1人時,共有種不同分配方案;第二類:若醫(yī)院A分配2人,當乙在醫(yī)院A時,共有種不同分配方案,當乙不在A醫(yī)院,在B醫(yī)院時,共有種不同分配方案,所以當醫(yī)院A分配2人時,共有種不同分配方案;共有20種不同分配方案.故選:B【點睛】本題考查排列與組合的綜合應用,在做此類題時,要做到分類不重不漏,考查學生分類討論的思想,是一道中檔題.6.B【解析】

根據復數的幾何意義可知復數對應的點在以原點為圓心,1為半徑的圓上,再根據復數的幾何意義即可確定,即可得的最大值.【詳解】由知,復數對應的點在以原點為圓心,1為半徑的圓上,表示復數對應的點與點間的距離,又復數對應的點所在圓的圓心到的距離為1,所以.故選:B【點睛】本題考查了復數模的定義及其幾何意義應用,屬于基礎題.7.D【解析】

利用復數代數形式的乘除運算化簡,再由實部為求得值.【詳解】解:在復平面內所對應的點在虛軸上,,即.故選D.【點睛】本題考查復數代數形式的乘除運算,考查復數的代數表示法及其幾何意義,是基礎題.8.B【解析】

根據函數的圖象,求得函數,再根據正弦型函數的性質,即可求解,得到答案.【詳解】根據給定函數的圖象,可得點的橫坐標為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當時,,即函數的一個對稱中心為,即函數的圖象關于點成中心對稱.故選B.【點睛】本題主要考查了由三角函數的圖象求解函數的解析式,以及三角函數的圖象與性質,其中解答中根據函數的圖象求得三角函數的解析式,再根據三角函數的圖象與性質求解是解答的關鍵,著重考查了數形結合思想,以及運算與求解能力,屬于基礎題.9.A【解析】

根據雙曲線的焦距是虛軸長的2倍,可得出,結合,得出,即可求出雙曲線的漸近線方程.【詳解】解:由雙曲線可知,焦點在軸上,則雙曲線的漸近線方程為:,由于焦距是虛軸長的2倍,可得:,∴,即:,,所以雙曲線的漸近線方程為:.故選:A.【點睛】本題考查雙曲線的簡單幾何性質,以及雙曲線的漸近線方程.10.B【解析】解:因為集合中的元素表示的是被12整除的正整數,那么可得為1,2,3,4,6,,12故選B11.C【解析】

將圓,化為標準方程為,求得圓心為.根據圓關于雙曲線的一條漸近線對稱,則圓心在漸近線上,.再根據求解.【詳解】已知圓,所以其標準方程為:,所以圓心為.因為雙曲線,所以其漸近線方程為,又因為圓關于雙曲線的一條漸近線對稱,則圓心在漸近線上,所以.所以.故選:C【點睛】本題主要考查圓的方程及對稱性,還有雙曲線的幾何性質,還考查了運算求解的能力,屬于中檔題.12.A【解析】

由已知可得的單調性,再由可得對稱性,可求出在單調性,即可求出結論.【詳解】對于任意,函數滿足,因為函數關于點對稱,當時,是單調增函數,所以在定義域上是單調增函數.因為,所以,.故選:A.【點睛】本題考查利用函數性質比較函數值的大小,解題的關鍵要掌握函數對稱性的代數形式,屬于中檔題..二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

先根據零點個數求解出的值,然后得到的解析式,采用換元法求解在上的值域即可.【詳解】因為在上有兩個零點,所以,所以,所以且,所以,所以,所以,令,所以,所以,因為,所以,所以,所以,所以,,所以.故答案為:.【點睛】本題考查三角函數圖象與性質的綜合,其中涉及到換元法求解三角函數值域的問題,難度較難.對形如的函數的值域求解,關鍵是采用換元法令,然后根據,將問題轉化為關于的函數的值域,同時要注意新元的范圍.14.【解析】

設,則,得到,,利用向量的數量積的運算,即可求解.【詳解】由題意,如圖所示,設,則,又由,,所以為的中點,為的三等分點,則,,所以.【點睛】本題主要考查了向量的共線定理以及向量的數量積的運算,其中解答中熟記向量的線性運算法則,以及向量的共線定理和向量的數量積的運算公式,準確運算是解答的關鍵,著重考查了推理與運算能力,屬于中檔試題.15.15【解析】

由題得,,令,解得,代入可得展開式中含x6項的系數.【詳解】由題得,,令,解得,所以二項式的展開式中項的系數為.故答案為:15【點睛】本題主要考查了二項式定理的應用,考查了利用通項公式去求展開式中某項的系數問題.16.【解析】

由已知可得、的坐標,求得的垂直平分線方程,聯立已知直線方程與橢圓方程,求得的垂直平分線方程,兩垂直平分線方程聯立求得外心的橫坐標,再由導數求最值.【詳解】如圖,由已知條件可知,不妨設,則外心在的垂直平分線上,即在直線,也就是在直線上,聯立,得或,的中點坐標為,則的垂直平分線方程為,把代入上式,得,令,則,由,得(舍)或.當時,,當時,.當時,函數取極大值,亦為最大值.故答案為:.【點睛】本題考查直線與橢圓位置關系的應用,訓練了利用導數求最值,是中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)見解析【解析】

(1)設數列的公差為,由,得到,再結合題干所給數據得到公差,即可求得數列的通項公式;(2)由(1)可得,再利用放縮法證明不等式即可;【詳解】解:(1)設數列的公差為,∵,∴,∴,∴.(2)∵,∴,∴.【點睛】本題考查等差數列的通項公式的計算,放縮法證明數列不等式,屬于中檔題.18.(1);(2).【解析】

(1)對范圍分類整理得:,分類解不等式即可.(2)利用已知轉化為“當時,”恒成立,利用絕對值不等式的性質可得:,問題得解.【詳解】當時,,當時,由得,解得;當時,無解;當時,由得,解得,所以的解集為(2)的解集包含等價于在上恒成立,當時,等價于恒成立,而,∴,故滿足條件的的取值范圍是【點睛】本題主要考查了含絕對值不等式的解法,還考查了轉化能力及絕對值不等式的性質,考查計算能力,屬于中檔題.19.(Ⅰ)見解析;(Ⅱ)【解析】

(Ⅰ)要證明線面平行,需先證明線線平行,所以連接,交于點M,連接ME,證明;(Ⅱ)由題意可知點到平面ABC的距離等于點到平面ABC的距離,根據體積公式剩余部分的體積是.【詳解】(Ⅰ)如圖,連接,交于點M,連接ME,則.因為平面,平面,所以平面.(Ⅱ)因為平面ABC,所以點到平面ABC的距離等于點到平面ABC的距離.如圖,設O是AC的中點,連接,OB.因為為正三角形,所以,又平面平面,平面平面,所以平面ABC.所以點到平面ABC的距離,故三棱錐的體積為.而斜三棱柱的體積為.所以剩余部分的體積為.【點睛】本題考查證明線面平行,計算體積,意在考查推理證明,空間想象能力,計算能力,屬于中檔題型,一般證明線面平行的方法1.證明線線平行,則線面平行,2.證明面面平行,則線面平行,關鍵是證明線線平行,一般構造平行四邊形,則對邊平行,或是構造三角形中位線.20.(1)(2)(3)直線平面,證明見解析【解析】

取中點,連接,則,再由已知證明平面,以為坐標原點,分別以,,所在直線為,,軸建立空間直角坐標系,求出平面的一個法向量.(1)求出的坐標,由與所成角的余弦值可得直線與平面所成角的正弦值;(2)求出平面的一個法向量,再由兩平面法向量所成角的余弦值可得二面角的余弦值;(3)求出的坐標,由,結合平面,可得直線平面.【詳解】底面是邊長為2的菱形,,為等邊三角形.取中點,連接,則,為等邊三角形,,又平面平面,且平面平面,平面.以為坐標原點,分別以,,所在直線為,,軸建立空間直角坐標系.則,,,,1,,,0,,,,,,0,,,,,,,.,,設平面的一個法向量為.由,取,得.(1)證明:設直線與平面所成角為,,則,即直線與平面所成角的正弦值為;(2)設平面的一個法向量為,由,得二面角的余弦值為;(3),,又平面,直線平面.【點睛】本題考查線面平行的證明,考查二面角的余弦值的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查推理能力與計算能力,屬于中檔題.21.(1);(2)①分布列見解析,;②小張應選擇甲公司應聘.【解析】

(1)記抽取的3天送餐單數都不小于40為事件,可得(A)的值.(2)①設乙公司送餐員送餐單數為,可得當時,,以此類推可得:當時,當時,的值.當時,的值,同理可得:當時,.的所有可能取值.可得的分布列及其數學期望.②依題意,甲公司送餐員日平均送餐單數.可得甲公司送餐員日平均工資,與乙數學期望比較即可得出.【詳解】解:(1)由表知,50天送餐單數中有30天的送餐單數不小于40單,記抽取的3天送餐單數都不小于40為事件,則.(2)①設乙公司送餐員的送餐單數為,日工資為元,則當時,;當時,;當時,;當時,;當時,.所以的分布列為228234240247254.②依題意,甲公司送餐員的日平均送餐單數為,所以甲公司送餐員的日平均工資為元,因為,所以小張應選擇甲公司應聘.【點睛】本題考查了隨機變量的分布列與數學期望、古典概率計算公式、組

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論