2022屆江西省鷹潭市重點(diǎn)中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第1頁(yè)
2022屆江西省鷹潭市重點(diǎn)中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第2頁(yè)
2022屆江西省鷹潭市重點(diǎn)中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第3頁(yè)
2022屆江西省鷹潭市重點(diǎn)中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第4頁(yè)
2022屆江西省鷹潭市重點(diǎn)中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若變量,滿足,則的最大值為()A.3 B.2 C. D.102.已知函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.3.已知數(shù)列對(duì)任意的有成立,若,則等于()A. B. C. D.4.已知的內(nèi)角的對(duì)邊分別是且,若為最大邊,則的取值范圍是()A. B. C. D.5.已知向量,則是的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充要條件6.從5名學(xué)生中選出4名分別參加數(shù)學(xué),物理,化學(xué),生物四科競(jìng)賽,其中甲不能參加生物競(jìng)賽,則不同的參賽方案種數(shù)為A.48 B.72 C.90 D.967.函數(shù)滿足對(duì)任意都有成立,且函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng),,則的值為()A.0 B.2 C.4 D.18.在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是()A. B. C. D.29.已知,且,則的值為()A. B. C. D.10.設(shè),,是非零向量.若,則()A. B. C. D.11.已知圓:,圓:,點(diǎn)、分別是圓、圓上的動(dòng)點(diǎn),為軸上的動(dòng)點(diǎn),則的最大值是()A. B.9 C.7 D.12.已知函數(shù)的一條切線為,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角的對(duì)邊分別為,且,若外接圓的半徑為,則面積的最大值是______.14.如圖,、分別是雙曲線的左、右焦點(diǎn),過(guò)的直線與雙曲線的兩條漸近線分別交于、兩點(diǎn),若,,則雙曲線的離心率是______.15.雙曲線的焦點(diǎn)坐標(biāo)是_______________,漸近線方程是_______________.16.已知復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)是_____,_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(Ⅰ)求函數(shù)的極值;(Ⅱ)若,且,求證:.18.(12分)百年大計(jì),教育為本.某校積極響應(yīng)教育部號(hào)召,不斷加大拔尖人才的培養(yǎng)力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長(zhǎng)班進(jìn)行專(zhuān)項(xiàng)培訓(xùn).據(jù)統(tǒng)計(jì)有如下表格.(其中表示通過(guò)自主招生獲得降分資格的學(xué)生人數(shù),表示被清華、北大等名校錄取的學(xué)生人數(shù))年份(屆)2014201520162017201841495557638296108106123(1)通過(guò)畫(huà)散點(diǎn)圖發(fā)現(xiàn)與之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(保留兩位有效數(shù)字)(2)若已知該校2019年通過(guò)自主招生獲得降分資格的學(xué)生人數(shù)為61人,預(yù)測(cè)2019年高考該??既嗣5娜藬?shù);(3)若從2014年和2018年考人名校的學(xué)生中采用分層抽樣的方式抽取出5個(gè)人回校宣傳,在選取的5個(gè)人中再選取2人進(jìn)行演講,求進(jìn)行演講的兩人是2018年畢業(yè)的人數(shù)的分布列和期望.參考公式:,參考數(shù)據(jù):,,,19.(12分)如圖,在四棱錐中,底面是直角梯形,,,,是正三角形,,是的中點(diǎn).(1)證明:;(2)求直線與平面所成角的正弦值.20.(12分)已知函數(shù)為實(shí)數(shù))的圖像在點(diǎn)處的切線方程為.(1)求實(shí)數(shù)的值及函數(shù)的單調(diào)區(qū)間;(2)設(shè)函數(shù),證明時(shí),.21.(12分)已知橢圓與拋物線有共同的焦點(diǎn),且離心率為,設(shè)分別是為橢圓的上下頂點(diǎn)(1)求橢圓的方程;(2)過(guò)點(diǎn)與軸不垂直的直線與橢圓交于不同的兩點(diǎn),當(dāng)弦的中點(diǎn)落在四邊形內(nèi)(含邊界)時(shí),求直線的斜率的取值范圍.22.(10分)如圖,在三棱錐中,,,側(cè)面為等邊三角形,側(cè)棱.(1)求證:平面平面;(2)求三棱錐外接球的體積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】

畫(huà)出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義求解最大值即可.【詳解】解:畫(huà)出滿足條件的平面區(qū)域,如圖示:如圖點(diǎn)坐標(biāo)分別為,目標(biāo)函數(shù)的幾何意義為,可行域內(nèi)點(diǎn)與坐標(biāo)原點(diǎn)的距離的平方,由圖可知到原點(diǎn)的距離最大,故.故選:D【點(diǎn)睛】本題考查了簡(jiǎn)單的線性規(guī)劃問(wèn)題,考查數(shù)形結(jié)合思想,屬于中檔題.2.B【解析】

可判斷函數(shù)在上單調(diào)遞增,且,所以.【詳解】在上單調(diào)遞增,且,所以.故選:B【點(diǎn)睛】本題主要考查了函數(shù)單調(diào)性的判定,指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì),利用單調(diào)性比大小等知識(shí),考查了學(xué)生的運(yùn)算求解能力.3.B【解析】

觀察已知條件,對(duì)進(jìn)行化簡(jiǎn),運(yùn)用累加法和裂項(xiàng)法求出結(jié)果.【詳解】已知,則,所以有,,,,兩邊同時(shí)相加得,又因?yàn)?,所?故選:【點(diǎn)睛】本題考查了求數(shù)列某一項(xiàng)的值,運(yùn)用了累加法和裂項(xiàng)法,遇到形如時(shí)就可以采用裂項(xiàng)法進(jìn)行求和,需要掌握數(shù)列中的方法,并能熟練運(yùn)用對(duì)應(yīng)方法求解.4.C【解析】

由,化簡(jiǎn)得到的值,根據(jù)余弦定理和基本不等式,即可求解.【詳解】由,可得,可得,通分得,整理得,所以,因?yàn)闉槿切蔚淖畲蠼?,所以,又由余弦定理,?dāng)且僅當(dāng)時(shí),等號(hào)成立,所以,即,又由,所以的取值范圍是.故選:C.【點(diǎn)睛】本題主要考查了代數(shù)式的化簡(jiǎn),余弦定理,以及基本不等式的綜合應(yīng)用,試題難度較大,屬于中檔試題,著重考查了推理與運(yùn)算能力.5.A【解析】

向量,,,則,即,或者-1,判斷出即可.【詳解】解:向量,,,則,即,或者-1,所以是或者的充分不必要條件,故選:A.【點(diǎn)睛】本小題主要考查充分、必要條件的判斷,考查向量平行的坐標(biāo)表示,屬于基礎(chǔ)題.6.D【解析】因甲不參加生物競(jìng)賽,則安排甲參加另外3場(chǎng)比賽或甲學(xué)生不參加任何比賽①當(dāng)甲參加另外3場(chǎng)比賽時(shí),共有?=72種選擇方案;②當(dāng)甲學(xué)生不參加任何比賽時(shí),共有=24種選擇方案.綜上所述,所有參賽方案有72+24=96種故答案為:96點(diǎn)睛:本題以選擇學(xué)生參加比賽為載體,考查了分類(lèi)計(jì)數(shù)原理、排列數(shù)與組合數(shù)公式等知識(shí),屬于基礎(chǔ)題.7.C【解析】

根據(jù)函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng)可得為奇函數(shù),結(jié)合可得是周期為4的周期函數(shù),利用及可得所求的值.【詳解】因?yàn)楹瘮?shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng),所以的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),所以為上的奇函數(shù).由可得,故,故是周期為4的周期函數(shù).因?yàn)椋?因?yàn)?,故,所?故選:C.【點(diǎn)睛】本題考查函數(shù)的奇偶性和周期性,一般地,如果上的函數(shù)滿足,那么是周期為的周期函數(shù),本題屬于中檔題.8.B【解析】

畫(huà)出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點(diǎn),再利用均值不等式得到答案.【詳解】如圖所示,畫(huà)出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時(shí),有最大值為,即,故..當(dāng),即時(shí)等號(hào)成立.故選:.【點(diǎn)睛】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.9.A【解析】

由及得到、,進(jìn)一步得到,再利用兩角差的正切公式計(jì)算即可.【詳解】因?yàn)椋?,又,所以,,所?故選:A.【點(diǎn)睛】本題考查三角函數(shù)誘導(dǎo)公式、二倍角公式以及兩角差的正切公式的應(yīng)用,考查學(xué)生的基本計(jì)算能力,是一道基礎(chǔ)題.10.D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點(diǎn):平面向量數(shù)量積.【思路點(diǎn)睛】幾何圖形中向量的數(shù)量積問(wèn)題是近幾年高考的又一熱點(diǎn),作為一類(lèi)既能考查向量的線性運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及平面幾何知識(shí),又能考查學(xué)生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問(wèn)題,實(shí)有其合理之處.解決此類(lèi)問(wèn)題的常用方法是:①利用已知條件,結(jié)合平面幾何知識(shí)及向量數(shù)量積的基本概念直接求解(較易);②將條件通過(guò)向量的線性運(yùn)算進(jìn)行轉(zhuǎn)化,再利用①求解(較難);③建系,借助向量的坐標(biāo)運(yùn)算,此法對(duì)解含垂直關(guān)系的問(wèn)題往往有很好效果.11.B【解析】試題分析:圓的圓心,半徑為,圓的圓心,半徑是.要使最大,需最大,且最小,最大值為的最小值為,故最大值是;關(guān)于軸的對(duì)稱(chēng)點(diǎn),,故的最大值為,故選B.考點(diǎn):圓與圓的位置關(guān)系及其判定.【思路點(diǎn)睛】先根據(jù)兩圓的方程求出圓心和半徑,要使最大,需最大,且最小,最大值為的最小值為,故最大值是,再利用對(duì)稱(chēng)性,求出所求式子的最大值.12.A【解析】

求導(dǎo)得到,根據(jù)切線方程得到,故,設(shè),求導(dǎo)得到函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故,計(jì)算得到答案.【詳解】,則,取,,故,.故,故,.設(shè),,取,解得.故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故.故選:.【點(diǎn)睛】本題考查函數(shù)的切線問(wèn)題,利用導(dǎo)數(shù)求最值,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由正弦定理,三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)已知等式,結(jié)合范圍可求的值,利用正弦定理可求的值,進(jìn)而根據(jù)余弦定理,基本不等式可求的最大值,進(jìn)而根據(jù)三角形的面積公式即可求解.【詳解】解:,由正弦定理可得:,,,又,,,即,可得:,外接圓的半徑為,,解得,由余弦定理,可得,又,(當(dāng)且僅當(dāng)時(shí)取等號(hào)),即最大值為4,面積的最大值為.故答案為:.【點(diǎn)睛】本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用,余弦定理,基本不等式,三角形的面積公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.14.【解析】

根據(jù)三角形中位線證得,結(jié)合判斷出垂直平分,由此求得的值,結(jié)合求得的值.【詳解】∵,∴為中點(diǎn),,∵,∴垂直平分,∴,即,∴,,即.故答案為:【點(diǎn)睛】本小題主要考查雙曲線離心率的求法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.15.【解析】

通過(guò)雙曲線的標(biāo)準(zhǔn)方程,求解,,即可得到所求的結(jié)果.【詳解】由雙曲線,可得,,則,所以雙曲線的焦點(diǎn)坐標(biāo)是,漸近線方程為:.故答案為:;.【點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查了運(yùn)算能力,屬于容易題.16.【解析】

直接利用復(fù)數(shù)的乘法運(yùn)算化簡(jiǎn),從而得到復(fù)數(shù)的共軛復(fù)數(shù)和的模.【詳解】,則復(fù)數(shù)的共軛復(fù)數(shù)為,且.故答案為:;.【點(diǎn)睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)的計(jì)算題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(Ⅰ)極大值為:,無(wú)極小值;(Ⅱ)見(jiàn)解析.【解析】

(Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可求出函數(shù)的極值;(Ⅱ)得到,根據(jù)函數(shù)的單調(diào)性問(wèn)題轉(zhuǎn)化為證明,即證,令,根據(jù)函數(shù)的單調(diào)性證明即可.【詳解】(Ⅰ)的定義域?yàn)榍伊?,得;令,得在上單調(diào)遞增,在上單調(diào)遞減函數(shù)的極大值為,無(wú)極小值(Ⅱ),,即由(Ⅰ)知在上單調(diào)遞增,在上單調(diào)遞減且,則要證,即證,即證,即證即證由于,即,即證令則恒成立在遞增在恒成立【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及分類(lèi)討論思想,轉(zhuǎn)化思想,考查不等式的證明,考查運(yùn)算求解能力及化歸與轉(zhuǎn)化思想,關(guān)鍵是能夠構(gòu)造出合適的函數(shù),將問(wèn)題轉(zhuǎn)化為函數(shù)最值的求解問(wèn)題,屬于難題.18.(1);(2)117人;(3)分布列見(jiàn)解析,【解析】

(1)首先求得和,再代入公式即可列方程,由此求得關(guān)于的線性回歸方程;(2)根據(jù)回歸直線方程計(jì)算公式,計(jì)算可得人數(shù);(3)和被選中的人數(shù)分別為2和3,利用超幾何分布分布列的計(jì)算公式,計(jì)算出的分布列,并求得數(shù)學(xué)期望.【詳解】(1)由題,所以線性回歸方程為(若第一問(wèn)求出.)(2)當(dāng)時(shí),所以預(yù)測(cè)2019年高考該??既朊5娜藬?shù)約為117人(3)由題知和被選中的人數(shù)分別為2和3,進(jìn)行演講的兩人是2018年畢業(yè)的人數(shù)的所有可能取值為0,1,2,,的分布列為012【點(diǎn)睛】本小題主要考查平均數(shù)有關(guān)計(jì)算,考查回歸直線方程的計(jì)算,考查期望的計(jì)算,考查超幾何分布和數(shù)據(jù)處理能力,屬于中檔題.19.(1)見(jiàn)證明;(2)【解析】

(1)設(shè)是的中點(diǎn),連接、,先證明是平行四邊形,再證明平面,即(2)以為坐標(biāo)原點(diǎn),的方向?yàn)檩S的正方向,建空間直角坐標(biāo)系,分別計(jì)算各個(gè)點(diǎn)坐標(biāo),計(jì)算平面法向量,利用向量的夾角公式得到直線與平面所成角的正弦值.【詳解】(1)證明:設(shè)是的中點(diǎn),連接、,是的中點(diǎn),,,,,,,是平行四邊形,,,,,,,,由余弦定理得,,,,平面,,;(2)由(1)得平面,,平面平面,過(guò)點(diǎn)作,垂足為,平面,以為坐標(biāo)原點(diǎn),的方向?yàn)檩S的正方向,建立如圖的空間直角坐標(biāo)系,則,,,,設(shè)是平面的一個(gè)法向量,則,,令,則,,,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查了線面垂直,線線垂直,利用空間直角坐標(biāo)系解決線面夾角問(wèn)題,意在考查學(xué)生的空間想象能力和計(jì)算能力.20.(1);函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)詳見(jiàn)解析.【解析】

試題分析:(1)由題得,根據(jù)曲線在點(diǎn)處的切線方程,列出方程組,求得的值,得到的解析式,即可求解函數(shù)的單調(diào)區(qū)間;(2)由(1)得根據(jù)由,整理得,設(shè),轉(zhuǎn)化為函數(shù)的最值,即可作出證明.試題解析:(1)由題得,函數(shù)的定義域?yàn)?,,因?yàn)榍€在點(diǎn)處的切線方程為,所以解得.令,得,當(dāng)時(shí),,在區(qū)間內(nèi)單調(diào)遞減;當(dāng)時(shí),,在區(qū)間內(nèi)單調(diào)遞增.所以函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)由(1)得,.由,得,即.要證,需證,即證,設(shè),則要證,等價(jià)于證:.令,則,∴在區(qū)間內(nèi)單調(diào)遞增,,即,故.21.(1)(2)或【解析】

(1)由已知條件得到方程組,解得即可;(2)由題意得直線的斜率存在,設(shè)直線方程為,聯(lián)立直線與橢圓方程,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論