版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B.C. D.2.記為等差數(shù)列的前項和.若,,則()A.5 B.3 C.-12 D.-133.已知,則()A. B. C. D.24.已知正項等比數(shù)列的前項和為,則的最小值為()A. B. C. D.5.已知函數(shù),其中,記函數(shù)滿足條件:為事件,則事件發(fā)生的概率為A. B.C. D.6.已知命題,,則是()A., B.,.C., D.,.7.設(shè),,則()A. B. C. D.8.已知函數(shù),當(dāng)時,的取值范圍為,則實(shí)數(shù)m的取值范圍是()A. B. C. D.9.把函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,若函數(shù)是偶函數(shù),則實(shí)數(shù)的最小值是()A. B. C. D.10.已知集合,,且、都是全集(為實(shí)數(shù)集)的子集,則如圖所示韋恩圖中陰影部分所表示的集合為()A. B.或C. D.11.若集合,,則A. B. C. D.12.已知的展開式中第項與第項的二項式系數(shù)相等,則奇數(shù)項的二項式系數(shù)和為().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.根據(jù)記載,最早發(fā)現(xiàn)勾股定理的人應(yīng)是我國西周時期的數(shù)學(xué)家商高,商高曾經(jīng)和周公討論過“勾3股4弦5”的問題.現(xiàn)有滿足“勾3股4弦5”,其中“股”,為“弦”上一點(diǎn)(不含端點(diǎn)),且滿足勾股定理,則______.14.已知函數(shù)f(x)=若關(guān)于x的方程f(x)=kx有兩個不同的實(shí)根,則實(shí)數(shù)k的取值范圍是________.15.在數(shù)列中,,,曲線在點(diǎn)處的切線經(jīng)過點(diǎn),下列四個結(jié)論:①;②;③;④數(shù)列是等比數(shù)列;其中所有正確結(jié)論的編號是______.16.已知實(shí)數(shù),對任意,有,且,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)有兩個極值點(diǎn),.(1)求實(shí)數(shù)的取值范圍;(2)證明:.18.(12分)已知橢圓的焦距為,斜率為的直線與橢圓交于兩點(diǎn),若線段的中點(diǎn)為,且直線的斜率為.(1)求橢圓的方程;(2)若過左焦點(diǎn)斜率為的直線與橢圓交于點(diǎn)為橢圓上一點(diǎn),且滿足,問:是否為定值?若是,求出此定值,若不是,說明理由.19.(12分)在四棱錐中,底面是邊長為2的菱形,是的中點(diǎn).(1)證明:平面;(2)設(shè)是直線上的動點(diǎn),當(dāng)點(diǎn)到平面距離最大時,求面與面所成二面角的正弦值.20.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)存在零點(diǎn),求的求值范圍.21.(12分)如圖,在四棱錐中,側(cè)棱底面,,,,,是棱中點(diǎn).(1)已知點(diǎn)在棱上,且平面平面,試確定點(diǎn)的位置并說明理由;(2)設(shè)點(diǎn)是線段上的動點(diǎn),當(dāng)點(diǎn)在何處時,直線與平面所成角最大?并求最大角的正弦值.22.(10分)設(shè)函數(shù),.(Ⅰ)討論的單調(diào)性;(Ⅱ)時,若,,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由題意首先確定幾何體的空間結(jié)構(gòu)特征,然后結(jié)合空間結(jié)構(gòu)特征即可求得其表面積.【詳解】由三視圖可知,該幾何體為邊長為正方體挖去一個以為球心以為半徑球體的,如圖,故其表面積為,故選:B.【點(diǎn)睛】(1)以三視圖為載體考查幾何體的表面積,關(guān)鍵是能夠?qū)o出的三視圖進(jìn)行恰當(dāng)?shù)姆治?,從三視圖中發(fā)現(xiàn)幾何體中各元素間的位置關(guān)系及數(shù)量關(guān)系.(2)多面體的表面積是各個面的面積之和;組合體的表面積應(yīng)注意重合部分的處理.(3)圓柱、圓錐、圓臺的側(cè)面是曲面,計算側(cè)面積時需要將這個曲面展為平面圖形計算,而表面積是側(cè)面積與底面圓的面積之和.2、B【解析】
由題得,,解得,,計算可得.【詳解】,,,,解得,,.故選:B【點(diǎn)睛】本題主要考查了等差數(shù)列的通項公式,前項和公式,考查了學(xué)生運(yùn)算求解能力.3、B【解析】
結(jié)合求得的值,由此化簡所求表達(dá)式,求得表達(dá)式的值.【詳解】由,以及,解得..故選:B【點(diǎn)睛】本小題主要考查利用同角三角函數(shù)的基本關(guān)系式化簡求值,考查二倍角公式,屬于中檔題.4、D【解析】
由,可求出等比數(shù)列的通項公式,進(jìn)而可知當(dāng)時,;當(dāng)時,,從而可知的最小值為,求解即可.【詳解】設(shè)等比數(shù)列的公比為,則,由題意得,,得,解得,得.當(dāng)時,;當(dāng)時,,則的最小值為.故選:D.【點(diǎn)睛】本題考查等比數(shù)列的通項公式的求法,考查等比數(shù)列的性質(zhì),考查學(xué)生的計算求解能力,屬于中檔題.5、D【解析】
由得,分別以為橫縱坐標(biāo)建立如圖所示平面直角坐標(biāo)系,由圖可知,.6、B【解析】
根據(jù)全稱命題的否定為特稱命題,得到結(jié)果.【詳解】根據(jù)全稱命題的否定為特稱命題,可得,本題正確選項:【點(diǎn)睛】本題考查含量詞的命題的否定,屬于基礎(chǔ)題.7、D【解析】
集合是一次不等式的解集,分別求出再求交集即可【詳解】,,則故選【點(diǎn)睛】本題主要考查了一次不等式的解集以及集合的交集運(yùn)算,屬于基礎(chǔ)題.8、C【解析】
求導(dǎo)分析函數(shù)在時的單調(diào)性、極值,可得時,滿足題意,再在時,求解的x的范圍,綜合可得結(jié)果.【詳解】當(dāng)時,,令,則;,則,∴函數(shù)在單調(diào)遞增,在單調(diào)遞減.∴函數(shù)在處取得極大值為,∴時,的取值范圍為,∴又當(dāng)時,令,則,即,∴綜上所述,的取值范圍為.故選C.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)分析函數(shù)值域的方法,考查了分段函數(shù)的性質(zhì),屬于難題.9、A【解析】
先求出的解析式,再求出的解析式,根據(jù)三角函數(shù)圖象的對稱性可求實(shí)數(shù)滿足的等式,從而可求其最小值.【詳解】的圖象向右平移個單位長度,所得圖象對應(yīng)的函數(shù)解析式為,故.令,,解得,.因?yàn)闉榕己瘮?shù),故直線為其圖象的對稱軸,令,,故,,因?yàn)?,故,?dāng)時,.故選:A.【點(diǎn)睛】本題考查三角函數(shù)的圖象變換以及三角函數(shù)的圖象性質(zhì),注意平移變換是對自變量做加減,比如把的圖象向右平移1個單位后,得到的圖象對應(yīng)的解析式為,另外,如果為正弦型函數(shù)圖象的對稱軸,則有,本題屬于中檔題.10、C【解析】
根據(jù)韋恩圖可確定所表示集合為,根據(jù)一元二次不等式解法和定義域的求法可求得集合,根據(jù)補(bǔ)集和交集定義可求得結(jié)果.【詳解】由韋恩圖可知:陰影部分表示,,,.故選:.【點(diǎn)睛】本題考查集合運(yùn)算中的補(bǔ)集和交集運(yùn)算,涉及到一元二次不等式和函數(shù)定義域的求解;關(guān)鍵是能夠根據(jù)韋恩圖確定所求集合.11、C【解析】
解一元次二次不等式得或,利用集合的交集運(yùn)算求得.【詳解】因?yàn)榛?,,所以,故選C.【點(diǎn)睛】本題考查集合的交運(yùn)算,屬于容易題.12、D【解析】因?yàn)榈恼归_式中第4項與第8項的二項式系數(shù)相等,所以,解得,所以二項式中奇數(shù)項的二項式系數(shù)和為.考點(diǎn):二項式系數(shù),二項式系數(shù)和.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先由等面積法求得,利用向量幾何意義求解即可.【詳解】由等面積法可得,依題意可得,,所以.故答案為:【點(diǎn)睛】本題考查向量的數(shù)量積,重點(diǎn)考查向量數(shù)量積的幾何意義,屬于基礎(chǔ)題.14、【解析】由圖可知,當(dāng)直線y=kx在直線OA與x軸(不含它們)之間時,y=kx與y=f(x)的圖像有兩個不同交點(diǎn),即方程有兩個不相同的實(shí)根.15、①③④【解析】
先利用導(dǎo)數(shù)求得曲線在點(diǎn)處的切線方程,由此求得與的遞推關(guān)系式,進(jìn)而證得數(shù)列是等比數(shù)列,由此判斷出四個結(jié)論中正確的結(jié)論編號.【詳解】∵,∴曲線在點(diǎn)處的切線方程為,則.∵,∴,則是首項為1,公比為的等比數(shù)列,從而,,.故所有正確結(jié)論的編號是①③④.故答案為:①③④【點(diǎn)睛】本小題主要考查曲線的切線方程的求法,考查根據(jù)遞推關(guān)系式證明等比數(shù)列,考查等比數(shù)列通項公式和前項和公式,屬于基礎(chǔ)題.16、-1【解析】
由二項式定理及展開式系數(shù)的求法得,又,所以,令得:,所以,得解.【詳解】由,且,則,又,所以,令得:,所以,故答案為:.【點(diǎn)睛】本題考查了二項式定理及展開式系數(shù)的求法,意在考查學(xué)生對這些知識的理解掌握水平.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)先求得導(dǎo)函數(shù),根據(jù)兩個極值點(diǎn)可知有兩個不等實(shí)根,構(gòu)造函數(shù),求得;討論和兩種情況,即可確定零點(diǎn)的情況,即可由零點(diǎn)的情況確定的取值范圍;(2)根據(jù)極值點(diǎn)定義可知,,代入不等式化簡變形后可知只需證明;構(gòu)造函數(shù),并求得,進(jìn)而判斷的單調(diào)區(qū)間,由題意可知,并設(shè),構(gòu)造函數(shù),并求得,即可判斷在內(nèi)的單調(diào)性和最值,進(jìn)而可得,即可由函數(shù)性質(zhì)得,進(jìn)而由單調(diào)性證明,即證明,從而證明原不等式成立.【詳解】(1)函數(shù)則,因?yàn)榇嬖趦蓚€極值點(diǎn),,所以有兩個不等實(shí)根.設(shè),所以.①當(dāng)時,,所以在上單調(diào)遞增,至多有一個零點(diǎn),不符合題意.②當(dāng)時,令得,0減極小值增所以,即.又因?yàn)?,,所以在區(qū)間和上各有一個零點(diǎn),符合題意,綜上,實(shí)數(shù)的取值范圍為.(2)證明:由題意知,,所以,.要證明,只需證明,只需證明.因?yàn)?,,所?設(shè),則,所以在上是增函數(shù),在上是減函數(shù).因?yàn)?,不妨設(shè),設(shè),,則,當(dāng)時,,,所以,所以在上是增函數(shù),所以,所以,即.因?yàn)?,所以,所?因?yàn)椋?,且在上是減函數(shù),所以,即,所以原命題成立,得證.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn),由導(dǎo)數(shù)證明不等式,構(gòu)造函數(shù)法的綜合應(yīng)用,極值點(diǎn)偏移證明不等式成立的應(yīng)用,是高考的??键c(diǎn)和熱點(diǎn),屬于難題.18、(1).(2)為定值.過程見解析.【解析】分析:(1)焦距說明,用點(diǎn)差法可得=.這樣可解得,得橢圓方程;(2)若,這種特殊情形可直接求得,在時,直線方程為,設(shè),把直線方程代入橢圓方程,后可得,然后由紡長公式計算出弦長,同時直線方程為,代入橢圓方程可得點(diǎn)坐標(biāo),從而計算出,最后計算即可.詳解:(1)由題意可知,設(shè),代入橢圓可得:,兩式相減并整理可得,,即.又因?yàn)?,,代入上式可得?又,所以,故橢圓的方程為.(2)由題意可知,,當(dāng)為長軸時,為短半軸,此時;否則,可設(shè)直線的方程為,聯(lián)立,消可得,,則有:,所以設(shè)直線方程為,聯(lián)立,根據(jù)對稱性,不妨得,所以.故,綜上所述,為定值.點(diǎn)睛:設(shè)直線與橢圓相交于兩點(diǎn),的中點(diǎn)為,則有,證明方法是點(diǎn)差法:即把點(diǎn)坐標(biāo)代入橢圓方程得,,兩式相減,結(jié)合斜率公式可得.19、(1)證明見解析(2)【解析】
(1)取中點(diǎn),連接,根據(jù)菱形的性質(zhì),結(jié)合線面垂直的判定定理和性質(zhì)進(jìn)行證明即可;(2)根據(jù)面面垂直的判定定理和性質(zhì)定理,可以確定點(diǎn)到直線的距離即為點(diǎn)到平面的距離,結(jié)合垂線段的性質(zhì)可以確定點(diǎn)到平面的距離最大,最大值為1.以為坐標(biāo)原點(diǎn),直線分別為軸建立空間直角坐標(biāo)系.利用空間向量夾角公式,結(jié)合同角的三角函數(shù)關(guān)系式進(jìn)行求解即可.【詳解】(1)證明:取中點(diǎn),連接,因?yàn)樗倪呅螢榱庑吻?所以,因?yàn)?,所以,又,所以平面,因?yàn)槠矫?,所?同理可證,因?yàn)椋云矫?(2)解:由(1)得平面,所以平面平面,平面平面.所以點(diǎn)到直線的距離即為點(diǎn)到平面的距離.過作的垂線段,在所有的垂線段中長度最大的為,此時必過的中點(diǎn),因?yàn)闉橹悬c(diǎn),所以此時,點(diǎn)到平面的距離最大,最大值為1.以為坐標(biāo)原點(diǎn),直線分別為軸建立空間直角坐標(biāo)系.則所以平面的一個法向量為,設(shè)平面的法向量為,則即取,則,,所以,所以面與面所成二面角的正弦值為.【點(diǎn)睛】本題考查了線面垂直的判定定理和性質(zhì)的應(yīng)用,考查了二面角的向量求法,考查了推理論證能力和數(shù)學(xué)運(yùn)算能力.20、(1)或;(2).【解析】
(1)通過討論的范圍,將絕對值符號去掉,轉(zhuǎn)化為求不等式組的解集,之后取并集,得到原不等式的解集;(2)將函數(shù)零點(diǎn)問題轉(zhuǎn)化為曲線交點(diǎn)問題解決,數(shù)形結(jié)合得到結(jié)果.【詳解】(1)有題不等式可化為,當(dāng)時,原不等式可化為,解得;當(dāng)時,原不等式可化為,解得,不滿足,舍去;當(dāng)時,原不等式可化為,解得,所以不等式的解集為.(2)因?yàn)?,所以若函?shù)存在零點(diǎn)則可轉(zhuǎn)化為函數(shù)與的圖像存在交點(diǎn),函數(shù)在上單調(diào)增,在上單調(diào)遞減,且.數(shù)形結(jié)合可知.【點(diǎn)睛】該題考查的是有關(guān)不等式的問題,涉及到的知識點(diǎn)有分類討論求絕對值不等式的解集,將零點(diǎn)問題轉(zhuǎn)化為曲線交點(diǎn)的問題來解決,數(shù)形結(jié)合思想的應(yīng)用,屬于簡單題目.21、(1)為中點(diǎn),理由見解析;(2)當(dāng)點(diǎn)在線段靠近的三等分點(diǎn)時,直線與平面所成角最大,最大角的正弦值.【解析】
(1)為中點(diǎn),可利用中位線與平行四邊形性質(zhì)證明,,從而證明平面平面;(2)以A為原點(diǎn),分別以,,所在直線為、、軸建立空間直角坐標(biāo)系,利用向量法求出當(dāng)點(diǎn)在線段靠近的三等分點(diǎn)時,直線與平面所成角最大,并可求出最大角的正弦值.【詳解】(1)為中點(diǎn),證明如下:分別為中點(diǎn),又平面平面平面又,且四邊形為平行四邊形,同理,平面,又平面平面(2)以A為原點(diǎn),分別以,,所在直線為、、軸建立空間直角坐標(biāo)系則,設(shè)直線與平面所成角為,則取平面的法向量為則令,則所以當(dāng)時,等號成立即當(dāng)點(diǎn)在線段靠近的三等分點(diǎn)時,直線與平面所成角最大,最大角的正弦值.【點(diǎn)睛】本題主要考查了平面與平面的平行,直線與平面所成角的求解,考查了學(xué)生的直觀想象與運(yùn)算求解能力.22、(1)證明見解析;(2)證明見解析.【解析】
(1)首先對函數(shù)求導(dǎo),再根據(jù)參數(shù)的取值,討論的正負(fù),即可求出關(guān)于的單調(diào)性即可;(2)首先通過構(gòu)造新函數(shù),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版智能交通解決方案合同
- 2025年粗紡混紡紗行業(yè)深度研究分析報告
- 2024-2029年中國微電聲器件行業(yè)市場研究與投資預(yù)測分析報告
- 全電子時控開關(guān)鐘行業(yè)行業(yè)發(fā)展趨勢及投資戰(zhàn)略研究分析報告
- 2025年度個人教育培訓(xùn)貸款延期合同4篇
- 2025年山西華新燃?xì)饧瘓F(tuán)有限公司招聘筆試參考題庫含答案解析
- 2025年山東海洋冷鏈發(fā)展有限公司招聘筆試參考題庫含答案解析
- 二零二五版門衛(wèi)勞務(wù)與城市安全服務(wù)合同4篇
- 2025年江蘇海晟控股集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 2025年遼寧鞍山市臺安縣城建集團(tuán)招聘筆試參考題庫含答案解析
- 冷庫存儲合同協(xié)議書范本
- AQ/T 4131-2023 煙花爆竹重大危險源辨識(正式版)
- 武術(shù)體育運(yùn)動文案范文
- 設(shè)計服務(wù)合同范本百度網(wǎng)盤
- 2024年市級??谱o(hù)士理論考核試題及答案
- 肺炎臨床路徑
- 供應(yīng)商供貨服務(wù)方案(2篇)
- JB∕T 3077-2019 汽輪機(jī)圖形符號
- 《藥物臨床試驗(yàn)機(jī)構(gòu)備案評估指南及檢查細(xì)則(試行)》
- 河北省2022年中考數(shù)學(xué)真題及答案
- 氨水安全技術(shù)說明書msds
評論
0/150
提交評論