版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知條件,條件直線(xiàn)與直線(xiàn)平行,則是的()A.充要條件 B.必要不充分條件 C.充分不必要條件 D.既不充分也不必要條件2.若雙曲線(xiàn)的一條漸近線(xiàn)與直線(xiàn)垂直,則該雙曲線(xiàn)的離心率為()A.2 B. C. D.3.已知為虛數(shù)單位,若復(fù)數(shù),則A. B.C. D.4.設(shè)不等式組,表示的平面區(qū)域?yàn)椋趨^(qū)域內(nèi)任取一點(diǎn),則點(diǎn)的坐標(biāo)滿(mǎn)足不等式的概率為A. B.C. D.5.已知復(fù)數(shù)滿(mǎn)足,其中是虛數(shù)單位,則復(fù)數(shù)在復(fù)平面中對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離為()A. B. C. D.6.如圖,在中,,是上一點(diǎn),若,則實(shí)數(shù)的值為()A. B. C. D.7.下列函數(shù)中,值域?yàn)镽且為奇函數(shù)的是()A. B. C. D.8.在菱形中,,,,分別為,的中點(diǎn),則()A. B. C.5 D.9.甲、乙、丙、丁四位同學(xué)高考之后計(jì)劃去三個(gè)不同社區(qū)進(jìn)行幫扶活動(dòng),每人只能去一個(gè)社區(qū),每個(gè)社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數(shù)為()A.8 B.7 C.6 D.510.下列命題為真命題的個(gè)數(shù)是()(其中,為無(wú)理數(shù))①;②;③.A.0 B.1 C.2 D.311.下列函數(shù)中,既是奇函數(shù),又在上是增函數(shù)的是().A. B.C. D.12.某學(xué)校組織學(xué)生參加英語(yǔ)測(cè)試,成績(jī)的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為,若低于60分的人數(shù)是18人,則該班的學(xué)生人數(shù)是()A.45 B.50 C.55 D.60二、填空題:本題共4小題,每小題5分,共20分。13.已知的終邊過(guò)點(diǎn),若,則__________.14.已知雙曲線(xiàn)的左右焦點(diǎn)分別為,過(guò)的直線(xiàn)與雙曲線(xiàn)左支交于兩點(diǎn),,的內(nèi)切圓的圓心的縱坐標(biāo)為,則雙曲線(xiàn)的離心率為_(kāi)_______.15.設(shè),滿(mǎn)足約束條件,若目標(biāo)函數(shù)的最大值為,則的最小值為_(kāi)_____.16.某次足球比賽中,,,,四支球隊(duì)進(jìn)入了半決賽.半決賽中,對(duì)陣,對(duì)陣,獲勝的兩隊(duì)進(jìn)入決賽爭(zhēng)奪冠軍,失利的兩隊(duì)爭(zhēng)奪季軍.已知他們之間相互獲勝的概率如下表所示.獲勝概率—0.40.30.8獲勝概率0.6—0.70.5獲勝概率0.70.3—0.3獲勝概率0.20.50.7—?jiǎng)t隊(duì)獲得冠軍的概率為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某公園準(zhǔn)備在一圓形水池里設(shè)置兩個(gè)觀景噴泉,觀景噴泉的示意圖如圖所示,兩點(diǎn)為噴泉,圓心為的中點(diǎn),其中米,半徑米,市民可位于水池邊緣任意一點(diǎn)處觀賞.(1)若當(dāng)時(shí),,求此時(shí)的值;(2)設(shè),且.(i)試將表示為的函數(shù),并求出的取值范圍;(ii)若同時(shí)要求市民在水池邊緣任意一點(diǎn)處觀賞噴泉時(shí),觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值.18.(12分)已知向量,.(1)求的最小正周期;(2)若的內(nèi)角的對(duì)邊分別為,且,求的面積.19.(12分)在四棱柱中,底面為正方形,,平面.(1)證明:平面;(2)若,求二面角的余弦值.20.(12分)選修4-5:不等式選講已知函數(shù).(1)設(shè),求不等式的解集;(2)已知,且的最小值等于,求實(shí)數(shù)的值.21.(12分)如圖,在三棱柱中,已知四邊形為矩形,,,,的角平分線(xiàn)交于.(1)求證:平面平面;(2)求二面角的余弦值.22.(10分)已知,函數(shù),(是自然對(duì)數(shù)的底數(shù)).(Ⅰ)討論函數(shù)極值點(diǎn)的個(gè)數(shù);(Ⅱ)若,且命題“,”是假命題,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
先根據(jù)直線(xiàn)與直線(xiàn)平行確定的值,進(jìn)而即可確定結(jié)果.【詳解】因?yàn)橹本€(xiàn)與直線(xiàn)平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要條件.故選C【點(diǎn)睛】本題主要考查充分條件和必要條件的判定,熟記概念即可,屬于基礎(chǔ)題型.2、B【解析】
由題中垂直關(guān)系,可得漸近線(xiàn)的方程,結(jié)合,構(gòu)造齊次關(guān)系即得解【詳解】雙曲線(xiàn)的一條漸近線(xiàn)與直線(xiàn)垂直.∴雙曲線(xiàn)的漸近線(xiàn)方程為.,得.則離心率.故選:B【點(diǎn)睛】本題考查了雙曲線(xiàn)的漸近線(xiàn)和離心率,考查了學(xué)生綜合分析,概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.3、B【解析】
因?yàn)?,所以,故選B.4、A【解析】
畫(huà)出不等式組表示的區(qū)域,求出其面積,再得到在區(qū)域內(nèi)的面積,根據(jù)幾何概型的公式,得到答案.【詳解】畫(huà)出所表示的區(qū)域,易知,所以的面積為,滿(mǎn)足不等式的點(diǎn),在區(qū)域內(nèi)是一個(gè)以原點(diǎn)為圓心,為半徑的圓面,其面積為,由幾何概型的公式可得其概率為,故選A項(xiàng).【點(diǎn)睛】本題考查由約束條件畫(huà)可行域,求幾何概型,屬于簡(jiǎn)單題.5、B【解析】
利用復(fù)數(shù)的除法運(yùn)算化簡(jiǎn)z,復(fù)數(shù)在復(fù)平面中對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離為利用模長(zhǎng)公式即得解.【詳解】由題意知復(fù)數(shù)在復(fù)平面中對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離為故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的除法運(yùn)算,模長(zhǎng)公式和幾何意義,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算,數(shù)形結(jié)合的能力,屬于基礎(chǔ)題.6、C【解析】
由題意,可根據(jù)向量運(yùn)算法則得到(1﹣m),從而由向量分解的唯一性得出關(guān)于t的方程,求出t的值.【詳解】由題意及圖,,又,,所以,∴(1﹣m),又t,所以,解得m,t,故選C.【點(diǎn)睛】本題考查平面向量基本定理,根據(jù)分解的唯一性得到所求參數(shù)的方程是解答本題的關(guān)鍵,本題屬于基礎(chǔ)題.7、C【解析】
依次判斷函數(shù)的值域和奇偶性得到答案.【詳解】A.,值域?yàn)?,非奇非偶函?shù),排除;B.,值域?yàn)?,奇函?shù),排除;C.,值域?yàn)?,奇函?shù),滿(mǎn)足;D.,值域?yàn)?,非奇非偶函?shù),排除;故選:.【點(diǎn)睛】本題考查了函數(shù)的值域和奇偶性,意在考查學(xué)生對(duì)于函數(shù)知識(shí)的綜合應(yīng)用.8、B【解析】
據(jù)題意以菱形對(duì)角線(xiàn)交點(diǎn)為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,用坐標(biāo)表示出,再根據(jù)坐標(biāo)形式下向量的數(shù)量積運(yùn)算計(jì)算出結(jié)果.【詳解】設(shè)與交于點(diǎn),以為原點(diǎn),的方向?yàn)檩S,的方向?yàn)檩S,建立直角坐標(biāo)系,則,,,,,所以.故選:B.【點(diǎn)睛】本題考查建立平面直角坐標(biāo)系解決向量的數(shù)量積問(wèn)題,難度一般.長(zhǎng)方形、正方形、菱形中的向量數(shù)量積問(wèn)題,如果直接計(jì)算較麻煩可考慮用建系的方法求解.9、B【解析】根據(jù)題意滿(mǎn)足條件的安排為:A(甲,乙)B(丙)C(?。籄(甲,乙)B(?。〤(丙);A(甲,丙)B(丁)C(乙);A(甲,?。〣(丙)C(乙);A(甲)B(丙,?。〤(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.10、C【解析】
對(duì)于①中,根據(jù)指數(shù)冪的運(yùn)算性質(zhì)和不等式的性質(zhì),可判定值正確的;對(duì)于②中,構(gòu)造新函數(shù),利用導(dǎo)數(shù)得到函數(shù)為單調(diào)遞增函數(shù),進(jìn)而得到,即可判定是錯(cuò)誤的;對(duì)于③中,構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的最大值為,進(jìn)而得到,即可判定是正確的.【詳解】由題意,對(duì)于①中,由,可得,根據(jù)不等式的性質(zhì),可得成立,所以是正確的;對(duì)于②中,設(shè)函數(shù),則,所以函數(shù)為單調(diào)遞增函數(shù),因?yàn)椋瑒t又由,所以,即,所以②不正確;對(duì)于③中,設(shè)函數(shù),則,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,所以當(dāng)時(shí),函數(shù)取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點(diǎn)睛】本題主要考查了不等式的性質(zhì),以及導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,其中解答中根據(jù)題意,合理構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最值是解答的關(guān)鍵,著重考查了構(gòu)造思想,以及推理與運(yùn)算能力,屬于中檔試題.11、B【解析】
奇函數(shù)滿(mǎn)足定義域關(guān)于原點(diǎn)對(duì)稱(chēng)且,在上即可.【詳解】A:因?yàn)槎x域?yàn)?,所以不可能時(shí)奇函數(shù),錯(cuò)誤;B:定義域關(guān)于原點(diǎn)對(duì)稱(chēng),且滿(mǎn)足奇函數(shù),又,所以在上,正確;C:定義域關(guān)于原點(diǎn)對(duì)稱(chēng),且滿(mǎn)足奇函數(shù),,在上,因?yàn)?,所以在上不是增函?shù),錯(cuò)誤;D:定義域關(guān)于原點(diǎn)對(duì)稱(chēng),且,滿(mǎn)足奇函數(shù),在上很明顯存在變號(hào)零點(diǎn),所以在上不是增函數(shù),錯(cuò)誤;故選:B【點(diǎn)睛】此題考查判斷函數(shù)奇偶性和單調(diào)性,注意奇偶性的前提定義域關(guān)于原點(diǎn)對(duì)稱(chēng),屬于簡(jiǎn)單題目.12、D【解析】
根據(jù)頻率分布直方圖中頻率=小矩形的高×組距計(jì)算成績(jī)低于60分的頻率,再根據(jù)樣本容量求出班級(jí)人數(shù).【詳解】根據(jù)頻率分布直方圖,得:低于60分的頻率是(0.005+0.010)×20=0.30,∴樣本容量(即該班的學(xué)生人數(shù))是60(人).故選:D.【點(diǎn)睛】本題考查了頻率分布直方圖的應(yīng)用問(wèn)題,也考查了頻率的應(yīng)用問(wèn)題,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
】由題意利用任意角的三角函數(shù)的定義,求得的值.【詳解】∵的終邊過(guò)點(diǎn),若,.即答案為-2.【點(diǎn)睛】本題主要考查任意角的三角函數(shù)的定義和誘導(dǎo)公式,屬基礎(chǔ)題.14、2【解析】
由題意畫(huà)出圖形,設(shè)內(nèi)切圓的圓心為,圓分別切于,可得四邊形為正方形,再由圓的切線(xiàn)的性質(zhì)結(jié)臺(tái)雙曲線(xiàn)的定義,求得的內(nèi)切圓的圓心的縱坐標(biāo),結(jié)合已知列式,即可求得雙曲線(xiàn)的離心率.【詳解】設(shè)內(nèi)切圓的圓心為,圓分別切于,連接,則,故四邊形為正方形,邊長(zhǎng)為圓的半徑,由,,得,與重合,,,即——①,——②聯(lián)立①②解得:,又因圓心的縱坐標(biāo)為,.故答案為:【點(diǎn)睛】本題考查雙曲線(xiàn)的幾何性質(zhì),考查數(shù)形結(jié)合思想與運(yùn)算求解能力,屬于中檔題.15、【解析】
先根據(jù)條件畫(huà)出可行域,設(shè),再利用幾何意義求最值,將最大值轉(zhuǎn)化為軸上的截距,只需求出直線(xiàn),過(guò)可行域內(nèi)的點(diǎn)時(shí)取得最大值,從而得到一個(gè)關(guān)于,的等式,最后利用基本不等式求最小值即可.【詳解】解:不等式表示的平面區(qū)域如圖所示陰影部分,當(dāng)直線(xiàn)過(guò)直線(xiàn)與直線(xiàn)的交點(diǎn)時(shí),目標(biāo)函數(shù)取得最大,即,即,而.故答案為.【點(diǎn)睛】本題主要考查了基本不等式在最值問(wèn)題中的應(yīng)用、簡(jiǎn)單的線(xiàn)性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.16、0.18【解析】
根據(jù)表中信息,可得勝C的概率;分類(lèi)討論B或D進(jìn)入決賽,再計(jì)算A勝B或A勝C的概率即可求解.【詳解】由表中信息可知,勝C的概率為;若B進(jìn)入決賽,B勝D的概率為,則A勝B的概率為;若D進(jìn)入決賽,D勝B的概率為,則A勝D的概率為;由相應(yīng)的概率公式知,則A獲得冠軍的概率為.故答案為:0.18【點(diǎn)睛】本題考查了獨(dú)立事件的概率應(yīng)用,互斥事件的概率求法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)(i),;(ii).【解析】
(1)在中,由正弦定理可得所求;(2)(i)由余弦定理得,兩式相加可得所求解析式.(ii)在中,由余弦定理可得,根據(jù)的最大值不小于可得關(guān)于的不等式,解不等式可得所求.【詳解】(1)在中,由正弦定理得,所以,即.(2)(i)在中,由余弦定理得,在中,由余弦定理得,又所以,即.又,解得,所以所求關(guān)系式為,.(ii)當(dāng)觀賞角度的最大時(shí),取得最小值.在中,由余弦定理可得,因?yàn)榈淖畲笾挡恍∮冢裕獾?,?jīng)驗(yàn)證知,所以.即兩處噴泉間距離的最小值為.【點(diǎn)睛】本題考查解三角形在實(shí)際中的應(yīng)用,解題時(shí)要注意把條件轉(zhuǎn)化為三角形的邊或角,然后借助正余弦定理進(jìn)行求解.解題時(shí)要注意三角形邊角關(guān)系的運(yùn)用,同時(shí)還要注意所得結(jié)果要符合實(shí)際意義.18、(1);(2)或【解析】
(1)利用平面向量數(shù)量積的坐標(biāo)運(yùn)算可得,利用正弦函數(shù)的周期性即可求解;(2)由(1)可求,結(jié)合范圍,可求的值,由余弦定理可求的值,進(jìn)而根據(jù)三角形的面積公式即可求解.【詳解】(1)∴最小正周期.(2)由(1)知,∴∴,又∴或.解得或當(dāng)時(shí),由余弦定理得即,解得.此時(shí).當(dāng)時(shí),由余弦定理得.即,解得.此時(shí).【點(diǎn)睛】本題主要考查了平面向量數(shù)量積的坐標(biāo)運(yùn)算、正弦函數(shù)的周期性,考查余弦定理、三角形的面積公式在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想和分類(lèi)討論思想,屬于基礎(chǔ)題.19、(1)詳見(jiàn)解析;(2).【解析】
(1)連接,設(shè),可證得四邊形為平行四邊形,由此得到,根據(jù)線(xiàn)面平行判定定理可證得結(jié)論;(2)以為原點(diǎn)建立空間直角坐標(biāo)系,利用二面角的空間向量求法可求得結(jié)果.【詳解】(1)連接,設(shè),連接,在四棱柱中,分別為的中點(diǎn),,四邊形為平行四邊形,,平面,平面,平面.(2)以為原點(diǎn),所在直線(xiàn)分別為軸建立空間直角坐標(biāo)系.設(shè),四邊形為正方形,,,則,,,,,,,設(shè)為平面的法向量,為平面的法向量,由得:,令,則,,由得:,令,則,,,,,二面角為銳二面角,二面角的余弦值為.【點(diǎn)睛】本題考查立體幾何中線(xiàn)面平行關(guān)系的證明、空間向量法求解二面角的問(wèn)題;關(guān)鍵是能夠熟練掌握二面角的向量求法,易錯(cuò)點(diǎn)是求得法向量夾角余弦值后,未根據(jù)圖形判斷二面角為銳二面角還是鈍二面角,造成余弦值符號(hào)出現(xiàn)錯(cuò)誤.20、(1)(2)【解析】
(1)把f(x)去絕對(duì)值寫(xiě)成分段函數(shù)的形式,分類(lèi)討論,分別求得解集,綜合可得結(jié)論.(2)把f(x)去絕對(duì)值寫(xiě)成分段函數(shù),畫(huà)出f(x)的圖像,找出利用條件求得a的值.【詳解】(1)時(shí),.當(dāng)時(shí),即為,解得.當(dāng)時(shí),,解得.當(dāng)時(shí),,解得.綜上,的解集為.(2).,由的圖象知,,.【點(diǎn)睛】本題主要考查含絕對(duì)值不等式的解法及含絕對(duì)值的函數(shù)的最值問(wèn)題,體現(xiàn)了分類(lèi)討論的數(shù)學(xué)思想,屬于中檔題21、(1)見(jiàn)解析;(2)【解析】
(1)過(guò)點(diǎn)作交于,連接,設(shè),連接,由角平分線(xiàn)的性質(zhì),正方形的性質(zhì),三角形的全等,證得,,由線(xiàn)面垂直的判斷定理證得平面,再由面面垂直的判斷得證.(2)平面幾何知識(shí)和線(xiàn)面的關(guān)系可證得平面,建立空間直角坐標(biāo)系,求得兩個(gè)平面的法向量,根據(jù)二面角的向量計(jì)算公式可求得其值.【詳解】(1)如圖,過(guò)點(diǎn)作交于,連接,設(shè),連接,,,又為的角平分線(xiàn),四邊形為正方形,,又,,,,,又為的中點(diǎn),又平面,,平面,又平面,平面平面,(2)在中,,,,在中,,,又,,,,又,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年六盤(pán)水道路旅客運(yùn)輸從業(yè)資格證模擬考試
- 2024年烏魯木齊客運(yùn)駕駛資格證考試試題及答案
- 2024年江蘇客運(yùn)資格證考試試題模擬a1
- 2025屆山東省文登市大水泊中學(xué)生物高一上期末學(xué)業(yè)水平測(cè)試模擬試題含解析
- 2025屆浙江省金華市義烏市高一上數(shù)學(xué)期末綜合測(cè)試模擬試題含解析
- 2025屆昆明市重點(diǎn)中學(xué)生物高二上期末復(fù)習(xí)檢測(cè)試題含解析
- 湖北省恩施一中、利川一中等四校2025屆高二上生物期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析
- 2025屆黑龍江省牡丹江市五縣市高二上數(shù)學(xué)期末質(zhì)量檢測(cè)試題含解析
- 2025屆貴州省畢節(jié)大方縣德育中學(xué)生物高一第一學(xué)期期末監(jiān)測(cè)模擬試題含解析
- 廣東省潮州市名校2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析
- 2024年中考語(yǔ)文三輪沖刺-第四講+中考作文結(jié)構(gòu)+橫線(xiàn)式課件
- 冠脈介入進(jìn)修匯報(bào)
- 蔣詩(shī)萌小品《誰(shuí)殺死了周日》臺(tái)詞完整版
- 鐵道運(yùn)輸實(shí)訓(xùn)總結(jié)報(bào)告
- 小學(xué)生生涯規(guī)劃班會(huì)課教案設(shè)計(jì)
- 人教部編版五年級(jí)上冊(cè)語(yǔ)文第三單元測(cè)試卷(含答案解析)
- 抗球蟲(chóng)藥1課件
- 兒童民航知識(shí)課件
- ESG投資與可持續(xù)金融
- 對(duì)科學(xué)施肥方法的
- 畢業(yè)生個(gè)人求職自薦信經(jīng)典版
評(píng)論
0/150
提交評(píng)論