七年級數(shù)學(xué)下冊-探索三角形全等的條件(第2、3課時)課件-(新版)北師大版_第1頁
七年級數(shù)學(xué)下冊-探索三角形全等的條件(第2、3課時)課件-(新版)北師大版_第2頁
七年級數(shù)學(xué)下冊-探索三角形全等的條件(第2、3課時)課件-(新版)北師大版_第3頁
七年級數(shù)學(xué)下冊-探索三角形全等的條件(第2、3課時)課件-(新版)北師大版_第4頁
七年級數(shù)學(xué)下冊-探索三角形全等的條件(第2、3課時)課件-(新版)北師大版_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

探索三角形全等的條件(2)第四章三角形

我們知道:如果給出一個三角形三條邊的長度,那么因此得到的三角形都是全等.如果已知一個三角形的兩角及一邊,那么有幾種可能的情況呢?

每種情況下得到的三角形都全等嗎?1、角.邊.角;

2、角.角.邊做一做1、角.邊.角;

若三角形的兩個內(nèi)角分別是60°和80°它們所夾的邊為4cm,你能畫出這個三角形嗎?4cm60°80°

你畫的三角形與同伴畫的一定全等嗎?60°80°2、角.角.邊若三角形的兩個內(nèi)角分別是60°和40°,且40°所對的邊為4cm,你能畫出這個三角形嗎?60°40°60°40°分析:這里的條件與1中的條件有什么相同點與不同點?你能將它轉(zhuǎn)化為1中的條件嗎?80°

兩角和它們的夾邊對應(yīng)相等的兩個三角形全等,簡寫成“角邊角”或“ASA”

兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等,簡寫成“角角邊”或“AAS”三角形全等的判定公理2:∵∠B=∠E,BC=EF,∠C=∠F∴ΔABC≌DEF(ASA)三角形全等的判定公理3:∵∠B=∠E,∠C=∠F,AC=DF∴ΔABC≌DEF

(AAS)ABCDEFABCDEF想一想:

如圖,O是AB的中點,∠A=∠B,△AOC與△BOD全等嗎?為什么?ABCDO我的思考過程如下:兩角與夾邊對應(yīng)相等∴△AOC≌△BODABCDE12

如圖,已知∠C=∠E,∠1=∠2,AB=AD,△ABC和△ADE全等嗎?為什么?解:△ABC和△ADE全等?!摺?=∠2(已知)∴∠1+∠DAC=∠2+∠DAC即∠BAC=∠DAE

在△ABC和△ADC

中∴△ABC≌△ADE(AAS)若△ABC中,∠A=30°,∠B=70°,AC=5cm,△DEF中∠D=70°∠F=80°,DF=5cm,那么△ABC與△DEF全等嗎?為什么?如圖,小明不慎將一塊三角形模具打碎為兩塊,他是否可以只帶其中的一塊碎片到商店去,就能配一塊與原來一樣的三角形模具嗎?如果可以,帶哪塊去合適?你能說明其中理由嗎?兩角和它們的夾邊對應(yīng)相等的兩個三角形全等。(2)已知和中,=,AB=AC.求證:(1)(3)AB=AC(4)BD=CE證明:(2)AE=AD(全等三角形對應(yīng)邊相等)(已知)(已知)(公共角)(全等三角形對應(yīng)邊相等)(等式的性質(zhì))(3)如圖,AC、BD交于點,AC=BD,AB=CD.求證:ABCD練一練:O再創(chuàng)輝煌:1、如圖∠ACB=∠DFE,BC=EF,根據(jù)ASA或AAS,那么應(yīng)補(bǔ)充一個直接條件--------------------------,(寫出一個即可),才能使△ABC≌△DEF2、如圖,BE=CD,∠1=∠2,則AB=AC嗎?為什么?ABCDEF∠B=∠E或∠A=∠DCAB12ED如圖,AB∥CD,AD∥BC,那么AB=CD嗎?為什么?AD與BC呢?ABCD1234證明:∵AB∥CD,AD∥BC(已知)∴∠1=∠2∠3=∠4(兩直線平行,內(nèi)錯角相等)

∴在△ABC與△CDA中∠1=∠2(已證)

AC=AC(公共邊)∠3=∠4(已證)

∴△ABC≌△CDA(ASA)

∴AB=CDBC=AD(全等三角形對應(yīng)邊相等)五、思考題小結(jié)(1)兩角和它們的夾邊對應(yīng)相等的兩個三角形全等.簡寫成“角邊角”或“ASA”.(2)兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等.簡寫成“角角邊”或“AAS”.知識要點:(3)探索三角形全等是證明線段相等(對應(yīng)邊相等),角相等(對應(yīng)角相等)等問題的基本途徑。數(shù)學(xué)思想:要學(xué)會用分類的思想,轉(zhuǎn)化的思想解決問題。探究新知

因鋪設(shè)電線的需要,要在池塘兩側(cè)A、B處各埋設(shè)一根電線桿(如圖),因無法直接量出A、B兩點的距離,現(xiàn)有一足夠的米尺。請你設(shè)計一種方案,粗略測出A、B兩桿之間的距離。。

小明的設(shè)計方案:先在池塘旁取一個能直接到達(dá)A和B處的點C,連結(jié)AC并延長至D點,使AC=DC,連結(jié)BC并延長至E點,使BC=EC,連結(jié)CD,用米尺測出DE的長,這個長度就等于A,B兩點的距離。請你說明理由。回顧與思考到目前為止,我們已學(xué)過哪些方法判定兩三角形全等?答:邊邊邊(SSS)角邊角(ASA)角角邊(AAS)根據(jù)探索三角形全等的條件,至少需要三個條件,除了上述三種情況外,還有哪種情況?答:兩邊一角相等那么有幾種可能的情況呢?答:兩邊及夾角或兩邊及其一邊的對角做一做(1)如果“兩邊及一角”條件中的角是兩邊的夾角,比如三角形兩邊分別為2.5cm,3.5cm,它們所夾的角為40°,你能畫出這個三角形嗎?你畫的三角形與同伴畫的一定全等嗎?3.5cm2.5cm40°ABC3.5cm2.5cm40°DEF(2)若兩邊的夾角為20

°,畫一個三角形。再換一個30°試一試,情況會怎樣呢?3.5cm2.5cm20°EFDABC結(jié)論:兩邊和它們的夾角對應(yīng)相等的兩個三角形全等,簡寫為“邊角邊”或“SAS”

以2.5cm,3.5cm為三角形的兩邊,長度為2.5cm的邊所對的角為40°,情況又怎樣?動手畫一畫,你發(fā)現(xiàn)了什么?ABCDEF2.5cm3.5cm40°40°3.5cm2.5cm結(jié)論:兩邊及其一邊所對的角相等,兩個三角形不一定全等練一練分別找出各題中的全等三角形ABC40°

40°

DEF(1)DCAB(2)△ABC≌△EFD根據(jù)“SAS”△ADC≌△CBA根據(jù)“SAS”

小明的設(shè)計方案:先在池塘旁取一個能直接到達(dá)A和B處的點C,連結(jié)AC并延長至D點,使AC=DC,連結(jié)BC并延長至E點,使BC=EC,連結(jié)CD,用米尺測出DE的長,這個長度就等于A,B兩點的距離。請你說明理由。想一想AC=DC

∠ACB=∠DCEBC=EC△ACB≌△DCEAB=DE小明做了一個如圖所示的風(fēng)箏,其中∠EDH=∠FDH,ED=FD,將上述條件標(biāo)注在圖中,小明不用測量就能知道EH=FH嗎?與同桌進(jìn)行交流。EFDH△EDH≌△FDH根據(jù)“

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論