2023年山西國際商務(wù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年山西國際商務(wù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年山西國際商務(wù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年山西國際商務(wù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年山西國際商務(wù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年山西國際商務(wù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.直線y=33x繞原點逆時針方向旋轉(zhuǎn)30°后,所得直線與圓(x-2)2+y2=3的交點個數(shù)是______.答案:∵直線y=33x的斜率為33,∴此直線的傾斜角為30°,∴此直線繞原點逆時針方向旋轉(zhuǎn)30°后傾斜角為60°,∴此直線旋轉(zhuǎn)后的方程為y=3x,由圓(x-2)2+y2=3,得到圓心坐標(biāo)為(2,0),半徑r=3,∵圓心到直線y=3x的距離d=232=3=r,∴該直線與圓相切,則直線與圓(x-2)2+y2=3的交點個數(shù)是1.故為:12.拋物線y2=4x的焦點坐標(biāo)為()

A.(0,1)

B.(1,0)

C.(0,2)

D.(2,0)答案:B3.已知直線ax+by+c=0(abc≠0)與圓x2+y2=1相切,則三條邊長分別為|a|、|b|、|c|的三角形()

A.是銳角三角形

B.是直角三角形

C.是鈍角三角形

D.不存在答案:B4.已知x與y之間的一組數(shù)據(jù):

x

0

1

2

3

y

2

4

6

8

則y與x的線性回歸方程為y=bx+a必過點()

A.(1.5,4)

B.(1.5,5)

C.(1,5)

D.(2,5)答案:B5.命題“方程|x|=1的解是x=±1”中,使用邏輯詞的情況是()A.沒有使用邏輯連接詞B.使用了邏輯連接詞“或”C.使用了邏輯連接詞“且”D.使用了邏輯連接詞“或”與“且”答案:∵命題“方程|x|=1的解是x=±1”等價于命題“方程|x|=1的解是x=1或x=-1.”∴該命題使用了邏輯連接詞“或”.故選B.6.求過點A(2,3)且被兩直線3x+4y-7=0,3x+4y+8=0截得線段為32的直線方程.答案:設(shè)所求直線l的斜率為k,∵|MN|=32,又在Rt△MNB中,|MB|=3,∴∠MNB=45°,即2條直線的夾角為45°,∴|

k-(-34)1+k(-34)|=tan45°=1,解得k=17,或k=-7,所求直線的方程為y-3=17(x-2),或y-3=-7(x-2),即x-7y+19=0,或7x+y-17=0.7.袋子里有大小相同的3個紅球和4個黑球,今從袋子里隨機取球.

(Ⅰ)若有放回地取3次,每次取1個球,求取出1個紅球2個黑球的概率;

(Ⅱ)若無放回地取3次,每次取1個球,

①求在前2次都取出紅球的條件下,第3次取出黑球的概率;

②求取出的紅球數(shù)X

的分布列和數(shù)學(xué)期望.答案:(Ⅰ)記“取出1個紅球2個黑球”為事件A,根據(jù)題意有P(A)=C13(37)×(47)2=144343;

所以取出1個紅球2個黑球的概率是144343.(Ⅱ)①記“在前2次都取出紅球”為事件B,“第3次取出黑球”為事件C,則P(B)=3×27×6=17,P(BC)=3×2×47×6×5=435,所以P(C|B)=P(BC)P(B)=43517=45.所以在前2次都取出紅球的條件下,第3次取出黑球的概率是45.②隨機變量X

的所有取值為0,1,2,3.P(X=0)=C34?A33A37=435,P(X=1)=C24C13?A33A37=1835,P(X=2)=C14C23?A33A37=1235,P(X=3)=C33?A33A37=135.所以X的分布列為:所以EX=0×435+1×1835+2×1235+3×135=4535=97.8.點(2,0,3)在空間直角坐標(biāo)系中的位置是在()

A.y軸上

B.xOy平面上

C.xOz平面上

D.第一卦限內(nèi)答案:C9.已知x,y的取值如下表所示:

x3711y102024從散點圖分析,y與x線性相關(guān),且y=74x+a,則a=______.答案:∵線性回歸方程為y=74x+a,,又∵線性回歸方程過樣本中心點,.x=3+7+113=7,.y=10+20+243=18,∴回歸方程過點(7,18)∴18=74×7+a,∴a=234.故為:234.10.三棱錐A-BCD中,平面ABD與平面BCD的法向量分別為n1,n2,若<n1,n2>=,則二面角A-BD-C的大小為()

A.

B.

C.或

D.或答案:C11.已知函數(shù)f(x)=2x,x≥01,

x<0,若f(1-a2)>f(2a),則實數(shù)a的取值范圍是______.答案:函數(shù)f(x)=2x,x≥01,

x<0,x<0時是常函數(shù),x≥0時是增函數(shù),由f(1-a2)>f(2a),所以2a<1-a21-a2>0,解得:-1<a<2-1,故為:-1<a<2-1.12.直線l經(jīng)過點A(2,-1)和點B(-1,5),其斜率為()

A.-2

B.2

C.-3

D.3答案:A13.已知:a={2,-3,1},b={2,0,-2},c={-1,-2,0},r=2a-3b+c,

則r的坐標(biāo)為______.答案:∵a=(2,-3,1),b=(2,0,-2),c=(-1,-2,0)∴r=2a-

3b+c=2(2,-3,1)-3(2,0,-2)+(-1,-2,0)=(4,-6,2)-(6,0,-6)+(-1,-2,0)=(-3,-8,8)故為:(-3,-8,8)14.如果雙曲線的焦距為6,兩條準(zhǔn)線間的距離為4,那么該雙曲線的離心率為()

A.

B.

C.

D.2答案:C15.一段雙行道隧道的橫截面邊界由橢圓的上半部分和矩形的三邊組成,如圖所示.一輛卡車運載一個長方形的集裝箱,此箱平放在車上與車同寬,車與箱的高度共計4.2米,箱寬3米,若要求通過隧道時,車體不得超過中線.試問這輛卡車是否能通過此隧道,請說明理由.答案:建立如圖所示的坐標(biāo)系,則此隧道橫截面的橢圓上半部分方程為:x225+y24=1,y≥0.令x=3,則代入橢圓方程,解得y=1.6,因為1.6+3=4.6>4.2,所以,卡車能夠通過此隧道.16.有這樣一段“三段論”推理,對于可導(dǎo)函數(shù)f(x),大前提:如果f’(x0)=0,那么x=x0是函數(shù)f(x)的極值點;小前提:因為函數(shù)f(x)=x3在x=0處的導(dǎo)數(shù)值f’(0)=0,結(jié)論:所以x=0是函數(shù)f(x)=x3的極值點.以上推理中錯誤的原因是______錯誤(填大前提、小前提、結(jié)論).答案:∵大前提是:“對于可導(dǎo)函數(shù)f(x),如果f'(x0)=0,那么x=x0是函數(shù)f(x)的極值點”,不是真命題,因為對于可導(dǎo)函數(shù)f(x),如果f'(x0)=0,且滿足當(dāng)x>x0時和當(dāng)x<x0時的導(dǎo)函數(shù)值異號時,那么x=x0是函數(shù)f(x)的極值點,∴大前提錯誤,故為:大前提.17.如圖,PT是⊙O的切線,切點為T,直線PA與⊙O交于A、B兩點,∠TPA的平分線分別交直線TA、TB于D、E兩點,已知PT=2,PB=3,則PA=______,TEAD=______.答案:由題意,如圖可得PT2=PB×PA又由已知PT=2,PB=3,故可得PA=433又TPA的平分線分別交直線TA、TB于D、E兩點,可得∠TPE=∠APD又由弦切角定理知∠PTE=∠PAD故有△PET≈△PDA故有TE:AD=PT:PA=3:2故為433,3218.已知兩圓x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0.

(1)m取何值時兩圓外切?

(2)m取何值時兩圓內(nèi)切?

(3)當(dāng)m=45時,求兩圓的公共弦所在直線的方程和公共弦的長.答案:(1)由已知可得兩個圓的方程分別為(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=61-m,兩圓的圓心距d=(5-1)2+(6-3)2=5,兩圓的半徑之和為11+61-m,由兩圓的半徑之和為11+61-m=5,可得m=25+1011.(2)由兩圓的圓心距d=(5-1)2+(6-3)2=5等于兩圓的半徑之差為|11-61-m|,即|11-61-m|=5,可得

11-61-m=5(舍去),或

11-61-m=-5,解得m=25-1011.(3)當(dāng)m=45時,兩圓的方程分別為(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=16,把兩個圓的方程相減,可得公共弦所在的直線方程為4x+3y-23=0.第一個圓的圓心(1,3)到公共弦所在的直線的距離為d=|4+9-23|5=2,可得弦長為211-4=27.19.是x1,x2,…,x100的平均數(shù),a是x1,x2,…,x40的平均數(shù),b是x41,x42,…,x100的平均數(shù),則下列各式正確的是()

A.=

B=

C.=a+b

D.答案:A20.下面是某工藝品廠隨機抽取兩個批次的初加工矩形寬度與長度的比值樣本:

甲批次:0.598

0.625

0.628

0.595

0.639

乙批次:0.618

0.613

0.592

0.622

0.620

我們將比值為0.618的矩形稱為“完美矩形”,0.618為標(biāo)準(zhǔn)值,根據(jù)上述兩個樣本來估計兩個批次的總體平均數(shù),正確結(jié)論是()

A.甲批次的總體平均數(shù)與標(biāo)準(zhǔn)值更接近

B.乙批次的總體平均數(shù)與標(biāo)準(zhǔn)值更接近

C.兩個批次總體平均數(shù)與標(biāo)準(zhǔn)值接近程度相同

D.以上選項均不對答案:A21.從裝有5只紅球和5只白球的袋中任意取出3只球,有如下幾對事件:

①“取出兩只紅球和一只白球”與“取出一只紅球和兩只白球”;

②“取出兩只紅球和一只白球”與“取出3只紅球”;

③“取出3只紅球”與“取出的3只球中至少有一只白球”;

④“取出3只紅球”與“取出3只白球”.

其中是對立事件的有______(只填序號).答案:對于①“取出兩只紅球和一只白球”與“取出一只紅球和兩只白球”,由于它們不能同時發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.對于②“取出兩只紅球和一只白球”與“取出3只紅球”,由于它們不能同時發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.對于③“取出3只紅球”與“取出的3只球中至少有一只白球”,它們不可能同時發(fā)生,而且它們的并事件是必然事件,故它們是對立事件.④“取出3只紅球”與“取出3只白球”.由于它們不能同時發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.故為③.22.已知α,β表示兩個不同的平面,m為平面α內(nèi)的一條直線,則“α⊥β”是“m⊥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由平面與平面垂直的判定定理知如果m為平面α內(nèi)的一條直線,m⊥β,則α⊥β,反過來則不一定所以“α⊥β”是“m⊥β”的必要不充分條件.故選B.23.若直線l的方向向量為a,平面α的法向量為n,能使l∥α的是()A.a(chǎn)=(1,0,0),n=(-2,0,0)B.a(chǎn)=(1,3,5),n=(1,0,1)C.a(chǎn)=(0,2,1),n=(-1,0,-1)D.a(chǎn)=(1,-1,3),n=(0,3,1)答案:若l∥α,則a?n=0.而A中a?n=-2,B中a?n=1+5=6,C中a?n=-1,只有D選項中a?n=-3+3=0.故選D.24.如圖,AB是平面a的斜線段,A為斜足,若點P在平面a內(nèi)運動,使得△ABP的面積為定值,則動點P的軌跡是()A.圓B.橢圓C.一條直線D.兩條平行直線答案:本題其實就是一個平面斜截一個圓柱表面的問題,因為三角形面積為定值,以AB為底,則底邊長一定,從而可得P到直線AB的距離為定值,分析可得,點P的軌跡為一以AB為軸線的圓柱面,與平面α的交線,且α與圓柱的軸線斜交,由平面與圓柱面的截面的性質(zhì)判斷,可得P的軌跡為橢圓.25.參數(shù)方程(θ為參數(shù))表示的曲線是()

A.直線

B.圓

C.橢圓

D.拋物線答案:C26.如圖,已知PA是圓O的切線,切點為A,PO交圓O于B、C兩點,PA=3,PB=1,則∠C=______.答案:∵PA切圓O于A點,PBC是圓O的割線∴PA2=PB?PC,可得(3)2=1×PC,得PC=3∵點O在BC上,即BC是圓O的直徑,∴∠ABC=90°,由弦切角定理,得∠PAB=∠C,∠PAC=90°+∠C∴△PAC中,根據(jù)正弦定理,得PAsinC=PCsin∠PAC即3sinC=3sin(90°+C),整理得tanC=33∵∠C是銳角,∴∠C=30°.故為:30°27.若圓O1方程為(x+1)2+(y+1)2=4,圓O2方程為(x-3)2+(y-2)2=1,則方程(x+1)2+(y+1)2-4=(x-3)2+(y-2)2-1表示的軌跡是()

A.經(jīng)過兩點O1,O2的直線

B.線段O1O2的中垂線

C.兩圓公共弦所在的直線

D.一條直線且該直線上的點到兩圓的切線長相等答案:D28.整數(shù)630的正約數(shù)(包括1和630)共有______個.答案:首先將630分解質(zhì)因數(shù)630=2×32×5×7;然后注意到每一因數(shù)可出現(xiàn)的次冪數(shù),如2可有20,21兩種情況,3有30,31,32三種情況,5有50,51兩種情況,7有70,71兩種情況,按分步計數(shù)原理,整數(shù)630的正約數(shù)(包括1和630)共有2×3×2×2=24個.故為:24.29.已知直線l1:y=kx+(k<0=被圓x2+y2=4截得的弦長為,則l1與直線l2:y=(2+)x的夾角的大小是()

A.30°

B.45°

C.60°

D.75°答案:B30.若向量{}是空間的一個基底,則一定可以與向量構(gòu)成空間的另一個基底的向量是()

A.

B.

C.

D.答案:C31.下列各圖形不是函數(shù)的圖象的是()A.

B.

C.

D.

答案:由函數(shù)的概念,B中有的x,存在兩個y與x對應(yīng),不符合函數(shù)的定義,而ACD均符合.故選B32.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎,有人走訪了四位歌手,甲說:“是乙或丙獲獎.”乙說:“甲、丙都未獲獎.”丙說:“我獲獎了.”丁說:“是乙獲獎.”四位歌手的話只有兩句是對的,則獲獎的歌手是()A.甲B.乙C.丙D.丁答案:若甲是獲獎的歌手,則都說假話,不合題意.若乙是獲獎的歌手,則甲、乙、丁都說真話,丙說假話,不符合題意.若丁是獲獎的歌手,則甲、丁、丙都說假話,乙說真話,不符合題意.故獲獎的歌手是丙故先C33.已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=x,x∈R},則集合A∩B中的元素個數(shù)為(

)

A.0個

B.1個

C.2個

D.無窮多個答案:C34.已知兩定點F1(5,0),F(xiàn)2(-5,0),曲線C上的點P到F1、F2的距離之差的絕對值是8,則曲線C的方程為()A.x29-y216=1B.x216-y29=1C.x225-y236=1D.y225-x236=1答案:據(jù)雙曲線的定義知:P的軌跡是以F1(5,0),F(xiàn)2(-5,0)為焦點,以實軸長為8的雙曲線.所以c=5,a=4,b2=c2-a2=9,所以雙曲線的方程為:x216-y29=1故選B35.設(shè)拋物線y2=8x的焦點為F,準(zhǔn)線為l,P為拋物線上一點,PA⊥l,A為垂足.如果直線AF的斜率為-3,那么|PF|=()A.43B.8C.83D.16答案:拋物線的焦點F(2,0),準(zhǔn)線方程為x=-2,直線AF的方程為y=-3(x-2),所以點A(-2,43)、P(6,43),從而|PF|=6+2=8故選B.36.已知a、b、c為某一直角三角形的三條邊長,c為斜邊.若點(m,n)在直線ax+by+2c=0上,則m2+n2的最小值是______.答案:根據(jù)題意可知:當(dāng)(m,n)運動到原點與已知直線作垂線的垂足位置時,m2+n2的值最小,由三角形為直角三角形,且c為斜邊,根據(jù)勾股定理得:c2=a2+b2,所以原點(0,0)到直線ax+by+2c=0的距離d=|0+0+2c|a2+b2=2,則m2+n2的最小值為4.故為:4.37.在程序語言中,下列符號分別表示什么運算*;\;∧;SQR;ABS?答案:“*”表示乘法運算;“\”表示除法運算;“∧”表示乘方運算;“SQR()”表示求算術(shù)平方根運算;“ABS()”表示求絕對值運算.38.函數(shù)f(x)=8xx2+2(x>0)()A.當(dāng)x=2時,取得最小值83B.當(dāng)x=2時,取得最大值83C.當(dāng)x=2時,取得最小值22D.當(dāng)x=2時,取得最大值22答案:f(x)=8xx2+2=8x+2x≤822(x>0)=22當(dāng)且僅當(dāng)x=2x即x=2時,取得最大值22故選D.39.設(shè)O是坐標(biāo)原點,F(xiàn)是拋物線y2=2px(p>0)的焦點,A是拋物線上的一個動點,F(xiàn)A與x軸正方向的夾角為60°,求|OA|的值.答案:由題意設(shè)A(x+P2,3x),代入y2=2px得(3x)2=2p(x+p2)解得x=p(負(fù)值舍去).∴A(32p,3p)∴|OA|=(32p)2+3p2=212p40.用0、1、2、3、4、5這6個數(shù)字,可以組成無重復(fù)數(shù)字的五位偶數(shù)的個數(shù)為______(用數(shù)字作答).答案:末尾是0時,有A55=120種;末尾不是0時,有2種選擇,首位有4種選擇,中間有A44,故有2×4×A44=192種故共有120+192=312種.故為:31241.一射手對靶射擊,直到第一次命中為止每次命中的概率為0.6,現(xiàn)有4顆子彈,命中后的剩余子彈數(shù)目ξ的期望為()

A.2.44

B.3.376

C.2.376

D.2.4答案:C42.已知向量OA=(2,3),OB=(4,-1),P是線段AB的中點,則P點的坐標(biāo)是()A.(2,-4)B.(3,1)C.(-2,4)D.(6,2)答案:由線段的中點公式可得OP=12(OA+OB)=(3,1),故P點的坐標(biāo)是(3,1),故選B.43.在平面直角坐標(biāo)系中,橫坐標(biāo)、縱坐標(biāo)均為有理數(shù)的點稱為有理點.試根據(jù)這一定義,證明下列命題:若直線y=kx+b(k≠0)經(jīng)過點M(2,1),則此直線不能經(jīng)過兩個有理點.答案:證明:假設(shè)此直線上有兩個有理點A(x1,y1),B(x2,y2),其中x1、y1、x2、y2均為有理數(shù),則有y1=kx1+b,y2=kx2+b,兩式相減,得y1-y2=k(x1-x2).∵斜率k存在,∴x1≠x2,得k=y1-y2x1-x2.而有理數(shù)經(jīng)過四則運算后還是有理數(shù),故k為有理數(shù).又由y1=kx1+b知,b也是有理數(shù).又∵點M(2,1)在此直線上,∴1=2k+b,于是有2=1-bk(k≠0).此式左端為無理數(shù),右端為有理數(shù),顯然矛盾,故此直線不能經(jīng)過兩個有理點.44.下面四個結(jié)論:

①偶函數(shù)的圖象一定與y軸相交;

②奇函數(shù)的圖象一定通過原點;

③偶函數(shù)的圖象關(guān)于y軸對稱;

④既是奇函數(shù)又是偶函數(shù)的函數(shù)一定是f(x)=0(x∈R),

其中正確命題的個數(shù)是()A.1B.2C.3D.4答案:偶函數(shù)的圖象關(guān)于y軸對稱,但不一定與y軸相交,因此①錯誤,③正確;奇函數(shù)的圖象關(guān)于原點對稱,但不一定經(jīng)過原點,只有在原點處有定義才通過原點,因此②錯誤;若y=f(x)既是奇函數(shù),又是偶函數(shù),由定義可得f(x)=0,但不一定x∈R,只要定義域關(guān)于原點對稱即可,因此④錯誤.故選A.45.已知直線l經(jīng)過點P(3,1),且被兩平行直線l1;x+y+1=0和l2:x+y+6=0截得的線段之長為5,求直線l的方程.答案:解法一:若直線l的斜率不存在,則直線l的方程為x=3,此時與l1、l2的交點分別為A′(3,-4)或B′(3,-9),截得的線段AB的長|AB|=|-4+9|=5,符合題意.若直線l的斜率存在,則設(shè)直線l的方程為y=k(x-3)+1.解方程組y=k(x-3)+1x+y+1=0得A(3k-2k+1,-4k-1k+1).解方程組y=k(x-3)+1x+y+6=0得B(3k-7k+1,-9k-1k+1).由|AB|=5.得(3k-2k+1-3k-7k+1)2+(-4k-1k+1+9k-1k+1)2=52.解之,得k=0,直線方程為y=1.綜上可知,所求l的方程為x=3或y=1.解法二:由題意,直線l1、l2之間的距離為d=|1-6|2=522,且直線L被平行直線l1、l2所截得的線段AB的長為5,設(shè)直線l與直線l1的夾角為θ,則sinθ=5225=22,故θ=45°.由直線l1:x+y+1=0的傾斜角為135°,知直線l的傾斜角為0°或90°,又由直線l過點P(3,1),故直線l的方程為:x=3或y=1.解法三:設(shè)直線l與l1、l2分別相交A(x1,y1)、B(x2,y2),則x1+y1+1=0,x2+y2+6=0.兩式相減,得(x1-x2)+(y1-y2)=5.①又(x1-x2)2+(y1-y2)2=25.②聯(lián)立①、②可得x1-x2=5y1-y2=0或x1-x2=0y1-y2=5由上可知,直線l的傾斜角分別為0°或90°.故所求的直線方程為x=3或y=1.46.平面向量a與b的夾角為60°,a=(2,0),|b|=1

則|a+2b|=______.答案:∵平面向量a與b的夾角為60°,a=(2,0),|b|=1

∴|a+2b|=(a+2b)2=a2+4×a?b+4b2=4+4×2×1×cos60°+4=23.故為:23.47.搖獎器有10個小球,其中8個小球上標(biāo)有數(shù)字2,2個小球上標(biāo)有數(shù)字5,現(xiàn)搖出3個小球,規(guī)定所得獎金(元)為這3個小球上記號之和,求此次搖獎獲得獎金數(shù)額的數(shù)學(xué)期望.答案:設(shè)此次搖獎的獎金數(shù)額為ξ元,當(dāng)搖出的3個小球均標(biāo)有數(shù)字2時,ξ=6;當(dāng)搖出的3個小球中有2個標(biāo)有數(shù)字2,1個標(biāo)有數(shù)字5時,ξ=9;當(dāng)搖出的3個小球有1個標(biāo)有數(shù)字2,2個標(biāo)有數(shù)字5時,ξ=12.所以,P(ξ=6)=C38C310=715P(ξ=9)=C28C12C310=715P(ξ=12)=C18C22C310=115Eξ=6×715+9×715+12×115=395(元)

答:此次搖獎獲得獎金數(shù)額的數(shù)字期望是395元.48.規(guī)定運算.abcd.=ad-bc,則.1i-i2.=______.答案:根據(jù)題目的新規(guī)定知,.1i-i2.=1×2-(-i)i=2+i2=2-1=1.故為:1.49.若集合A={x|x2-4x-5<0,x∈Z},B={x|y=log0.5x>-3,x∈Z},記x0為拋擲一枚骰子出現(xiàn)的點數(shù),則x0∈A∩B的概率等于______.答案:由x2-4x-5<0,x∈Z,解得:-1<x<5,x∈Z,∴x=0,1,2,3,4.即A={0,1,2,3,4},B={x|y=log0.5x>-3,x∈Z}={1,2,3,4,5,6,7},∴A∩B={1,2,3,4},而x0為拋擲一枚骰子出現(xiàn)的點數(shù)可能有6種,∴P=46=23,故為:23.50.命題:“如果ab=0,那么a、b中至少有一個等于0.”的逆否命題為______

______.答案:∵ab=0的否命題是ab≠0,a、b中至少有一個為零的否命題是a≠0,且b≠0,∴命題“若ab=0,則a、b中至少有一個為零”的逆否命題是“若a≠0,且b≠0,則ab≠0.”故:如果a、b都不為等于0.那么ab≠0第2卷一.綜合題(共50題)1.點P(2,5)關(guān)于直線x+y=1的對稱點的坐標(biāo)是(

)。答案:(-4,-1)2.已知圓C:x2+y2-4x-5=0.

(1)過點(5,1)作圓C的切線,求切線的方程;

(2)若圓C的弦AB的中點P(3,1),求AB所在直線方程.答案:由C:x2+y2-4x-5=0得圓的標(biāo)準(zhǔn)方程為(x-2)2+y2=9-----------(2分)(1)顯然x=5為圓的切線.------------------------(4分)另一方面,設(shè)過(5,1)的圓的切線方程為y-1=k(x-5),即kx-y+1-5k=0;所以d=|2k-5k+1|k2+1=3,解得k=-43于是切線方程為4x+3y-23=0和x=5.------------------------(7分)(2)設(shè)所求直線與圓交于A,B兩點,其坐標(biāo)分別為(x1,y1)B(x2,y2)則有(x1-2)2+y21=9(x2-2)2+y22=9兩式作差得(x1+x2-4)(x2-x1)+(y2+y1)(y2-y1)=0--------------(10分)因為圓C的弦AB的中點P(3,1),所以(x2+x1)=6,(y2+y1)=2

所以y2-y1x2-x1=-1,故所求直線方程為

x+y-4=0-----------------(14分)3.設(shè)向量a=(1,0),b=(sinθ,cosθ),0≤θ≤π,則|a+b|的最大值為

______.答案:|a|=1因為|b|=1,所以|a+b|2=a2+b2+2a?b=2+2sinθ因為0≤θ≤π,所以0≤sinθ≤1,所以2+2sinθ≤4,|a+b|≤2故為:24.在直角三角形ABC中,∠ACB=90°,CD、CE分別為斜邊AB上的高和中線,且∠BCD與∠ACD之比為3:1,求證CD=DE.

答案:證明:∵∠A+∠ACD=∠A+∠B=90°,∴∠ACD=∠B又∵CE是直角△ABC的斜邊AB上的中線∴CE=EB∠B=∠ECB,∠ACD=∠ECB但∵∠BCD=3∠ACD,∠ECD=2∠ACD=12∠ACB=12×90°=45°,△EDC為等腰直角三角形∴CE=DE.5.已知兩點分別為A(4,3)和B(7,-1),則這兩點之間的距離為()A.1B.2C.3D.5答案:∵A(4,3)和B(7,-1),∴AB=(4-7)2+(3+1)2=5故選D.6.一個袋子里裝有大小相同的3個紅球和2個黃球,從中同時取出2個球,則其中含紅球個數(shù)的數(shù)學(xué)期望是

______.答案:設(shè)含紅球個數(shù)為ξ,ξ的可能取值是0、1、2,當(dāng)ξ=0時,表示從中取出2個球,其中不含紅球,當(dāng)ξ=1時,表示從中取出2個球,其中1個紅球,1個黃球,當(dāng)ξ=2時,表示從中取出2個球,其中2個紅球,∴P(ξ=0)=C22C25=0.1,P(ξ=1)=C12C13C25=0.6P(ξ=2)=C23C25=0.3∴Eξ=0×0.1+1×0.6+2×0.3=1.2.故為:1.2.7.在某項體育比賽中,七位裁判為一選手打出的分?jǐn)?shù)如下:

90

89

90

95

93

94

93

去掉一個最高分和一個最低分后,所剩數(shù)的平均值和方差分別為()

A.92,2

B.92,2.8

C.93,2

D.93,2.8答案:B8.若不等式(﹣1)na<2+對任意n∈N*恒成立,則實數(shù)a的取值范圍是

[

]A.[﹣2,)

B.(﹣2,)

C.[﹣3,)

D.(﹣3,)答案:A9.算法框圖中表示判斷的是()A.

B.

C.

D.

答案:∵在算法框圖中,表示判斷的是菱形,故選B.10.若向量=(1,λ,2),=(-2,1,1),,夾角的余弦值為,則λ等于()

A.1

B.-1

C.±1

D.2答案:A11.設(shè)計一個計算1×3×5×7×9×11×13的算法.圖中給出了程序的一部分,則在橫線①上不能填入的數(shù)是()

A.13

B.13.5

C.14

D.14.5答案:A12.設(shè)F為拋物線y2=ax(a>0)的焦點,點P在拋物線上,且其到y(tǒng)軸的距離與到點F的距離之比為1:2,則|PF|等于()

A.

B.a(chǎn)

C.

D.答案:D13.設(shè)全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},則(CuA)∩B=()A.{2}B.{4,6}C.{l,3,5}D.{4,6,7,8}答案:∵全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},∴CUA={4,6,7,8},∴(CuA)∩B={4,6}.故選B.14.已知圓M的方程為:(x+3)2+y2=100及定點N(3,0),動點P在圓M上運動,線段PN的垂直平分線交圓M的半徑MP于Q點,設(shè)點Q的軌跡為曲線C,則曲線C的方程是______.答案:連接QN,如圖由已知,得|QN|=|QP|,所以|QM|+|QN|=|QM|+|QN|=|MP|=10又|MN|=6,10>6,根據(jù)橢圓的定義,點Q的軌跡是M,N為焦點,以10為長軸長的橢圓,所以2a=10,2c=6,所以b=4,所以,點Q的軌跡方程為:x225+y216=1故為:x225+y216=115.投擲一個質(zhì)地均勻的、每個面上標(biāo)有一個數(shù)字的正方體玩具,它的六個面中,有兩個面標(biāo)的數(shù)字是0,兩個面標(biāo)的數(shù)字是2,兩個面標(biāo)的數(shù)字是4,將此玩具連續(xù)拋擲兩次,以兩次朝上一面出現(xiàn)的數(shù)字分別作為點P的橫坐標(biāo)和縱坐標(biāo)

(1)求點P落在區(qū)域C:x2+y2≤10內(nèi)的概率;

(2)若以落在區(qū)域C上的所有點為頂點作面積最大的多邊形區(qū)域M,在區(qū)域C上隨機撒一粒豆子,求豆子落在區(qū)域M上的概率.答案:(1)點P的坐標(biāo)有:(0,0),(0,2),(0,4),(2,0),(2,2),(2,4),(4,0),(4,2),(4,4),共9種,其中落在區(qū)域C:x2+y2≤10上的點P的坐標(biāo)有:(0,0),(0,2),(2,0),(2,2),共4種D、故點P落在區(qū)域C:x2+y2≤10內(nèi)的概率為49.(2)區(qū)域M為一邊長為2的正方形,其面積為4,區(qū)域C的面積為10π,則豆子落在區(qū)域M上的概率為25π.16.直線的參數(shù)方程為,l上的點P1對應(yīng)的參數(shù)是t1,則點P1與P(a,b)之間的距離是(

A.|t1|

B.2|t1|

C.

D.答案:C17.寫出系數(shù)矩陣為1221,且解為xy=11的一個線性方程組是______.答案:由題意得:線性方程組為:x+2y=32x+y=3解之得:x=1y=1;故所求的一個線性方程組是x+2y=32x+y=3故為:x+2y=32x+y=3.18.一個四棱錐和一個三棱錐恰好可以拼接成一個三棱柱.這個四棱錐的底面為正方形,且底面邊長與各側(cè)棱長相等,這個三棱錐的底面邊長與各側(cè)棱長也都相等.設(shè)四棱錐、三棱錐、三棱柱的高分別為h1,h2,h,則h1:h2:h3=()

A.:1:1

B.:2:2

C.:2:

D.:2:答案:B19.在如圖所示的莖葉圖中,甲、乙兩組數(shù)據(jù)的中位數(shù)分別是______.答案:由莖葉圖可得甲組共有9個數(shù)據(jù)中位數(shù)為45乙組共9個數(shù)據(jù)中位數(shù)為46故為45、4620.已知向量a、b的夾角為60°,且|a|=2,|b|=1,則|a+2b|=______;向量a與向量a+2b的夾角的大小為______.答案:∵a?b=|a|?|b|cos60°=1,∴|a+2b|=(a+2b)2=4+4+4a?b=23,設(shè)向量a與向量a+2b的夾角的大小為θ,∵a?(a+2b)=2×23cosθ=43cosθ,a?(a+2b)=a2+2a?b=4+2=6,∴43cosθ=6,cosθ=32,∴θ=30°,故為23,30°.21.如圖,PA,PB切⊙O于

A,B兩點,AC⊥PB,且與⊙O相交于

D,若∠DBC=22°,則∠APB═______.答案:連接AB根據(jù)弦切角有∠DBC=∠DAB=22°

∠PAC=∠DBA因為垂直∠DCB=90°根據(jù)外角∠ADB=∠DBC+∠DCB=112°

∵∠DBC=∠DAB∴∠DBA=180°-∠ADB-∠DAB=46°∴∠PAC=∠DBA=46°∴∠P=180°-∠PAC-∠PCA=44°故為:44°22.方程ax2+2x+1=0至少有一個負(fù)的實根的充要條件是()

A.0<a≤1

B.a(chǎn)<1

C.a(chǎn)≤1

D.0<a≤1或a<0答案:C23.函數(shù)數(shù)列{fn(x)}滿足:f1(x)=x1+x2(x>0),fn+1(x)=f1[fn(x)]

(1)求f2(x),f3(x);

(2)猜想fn(x)的表達(dá)式,并證明你的結(jié)論.答案:(1)f2(x)=f1(f1(x))=f1(x)1+f21(x)=x1+2x2f3(x)=f1(f2(x))=f2(x)1+f22(x)=x1+3x2(2)猜想:fn(x)=x1+nx2(n∈N*)下面用數(shù)學(xué)歸納法證明:①當(dāng)n=1時,f1(x)=x1+x22,已知,顯然成立②假設(shè)當(dāng)n=K(K∈N*)4時,猜想成立,即fk(x)=x1+kx2則當(dāng)n=K+1時,fk+1(x)=f1(fk(x))=fk(x)1+f2k(x)=x1+kx21+(x1+kx2)2=x1+(k+1)x2即對n=K+1時,猜想也成立.結(jié)合①②可知:猜想fn(x)=x1+nx2對一切n∈N*都成立.24.某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表

廣告費用x(萬元)4235銷售額y(萬元)49263954根據(jù)上表可得回歸方程

y=

bx+

a中的

b為9.4,則

a=______.答案:由圖表中的數(shù)據(jù)可知.x=14(4+2+3+5)=144=3.5,.y=14(49+26+39+54)=42,即樣本中心為(3.5,42),將點代入回歸方程y=bx+a,得42=9.4×3.5+a,解得a=9.1.故為:9.1.25.已知的單調(diào)區(qū)間;

(2)若答案:(1)(2)證明略解析:(1)對已知函數(shù)進(jìn)行降次分項變形

,得,(2)首先證明任意事實上,而

.26.已知f(x)=2x2+1,則函數(shù)f(cosx)的單調(diào)減區(qū)間為______.答案:解;∵f(x)=2x2+1,∴f(cosx)=2cos2x+1=1+cos2x+1=cos2x+2,令2kπ≤2x≤2kπ+π,k∈Z.解得kπ≤x≤kπ+π2,k∈Z.∴函數(shù)f(cosx)的單調(diào)減區(qū)間為[kπ,π2+kπ],k∈Z.故為:[kπ,π2+kπ],k∈Z.27.若a=0.30.2,b=20.4,c=0.30.3,則a,b,c三個數(shù)的大小關(guān)系是:______(用符號“>”連接這三個字母)答案:∵1=0.30>0.30.2>0.30.3,又∵20.4>20=1,∴b>a>c.故為:b>a>c.28.設(shè)函數(shù)f(x)是定義在[a,b]上的奇函數(shù),則f(a+b)=______.答案:因為函數(shù)f(x)是定義在[a,b]上的奇函數(shù),所以定義域關(guān)于原點對稱,所以a+b=0,且f(0)=0.所以f(a+b)=f(0)=0.故為:0.29.(x+2y)4展開式中各項的系數(shù)和為______.答案:令x=y=1,可得(1+2)4=81故為:81.30.若F1、F2是橢圓x24+y2=1的左、右兩個焦點,M是橢圓上的動點,則1|MF1|+1|MF2|的最小值為______.答案:∵F1、F2是橢圓x24+y2=1的左、右兩個焦點,M是橢圓上的動點,∴1|MF1|+1|MF2|=|MF1|+|MF2||MF1|?|MF2|=4|MF1|?|MF2|,∵|MF1|?|MF2|的最大值為a2=4,∴1|MF1|+1|MF2|的最小值=44=1.故為:1.31.已知M為橢圓x2a2+y2b2=1(a>b>0)上的動點,F(xiàn)1、F2為橢圓焦點,延長F2M至點B,則ρF1MB的外角的平分線為MN,過點F1作

F1Q⊥MN,垂足為Q,當(dāng)點M在橢圓上運動時,則點Q的軌跡方程是______.答案:點F1關(guān)于∠F1MF2的外角平分線MQ的對稱點N在直線F1M的延長線上,故|F1N|=|PF1|+|PF2|=2a(橢圓長軸長),又OQ是△F2F1N的中位線,故|OQ|=a,點Q的軌跡是以原點為圓心,a為半徑的圓,點Q的軌跡方程是x2+y2=a2故為:x2+y2=a232.將兩粒均勻的骰子各拋擲一次,觀察向上的點數(shù),計算:

(1)共有多少種不同的結(jié)果?并試著列舉出來.

(2)兩粒骰子點數(shù)之和等于3的倍數(shù)的概率;

(3)兩粒骰子點數(shù)之和為4或5的概率.答案:(1)每一粒均勻的骰子拋擲一次,都有6種結(jié)果,根據(jù)分步計數(shù)原理,所有可能結(jié)果共有6×6=36種.

…(4分)(2)兩粒骰子點數(shù)之和等于3的倍數(shù)的有以下12種:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(5,4),(4,5),(6,6),共有12個結(jié)果,因此,兩粒骰子點數(shù)之和等于3的倍數(shù)的概率是1236=13.

…(8分)(3)兩粒骰子點數(shù)之和為4或5的有以下7種:(2,2),(1,3),(3,1),(2,3),(3,2),(1,4),(4,1),因此,兩粒骰子點數(shù)之和為4或5的概率為736.

…(12分)33.在復(fù)數(shù)范圍內(nèi)解方程|z|2+(z+.z)i=3-i2+i(i為虛數(shù)單位).答案:原方程化簡為|z|2+(z+.z)i=1-i,設(shè)z=x+yi(x、y∈R),代入上述方程得x2+y2+2xi=1-i,∴x2+y2=1且2x=-1,解得x=-12且y=±32,∴原方程的解是z=-12±32i.34.若A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},則A∩B=()

A.{2,1}

B.{(2,1)}

C.{1,2}

D.{(1,2)}答案:D35.有一個容量為80的樣本,數(shù)據(jù)的最大值是140,最小值是51,組距為10,則可以分為(

A.10組

B.9組

C.8組

D.7組答案:B36.如圖,在等腰△ABC中,AC=AB,以AB為直徑的⊙O交BC于點E,過點E作⊙O的切線交AC于點D,交AB的延長線于點P.問:PD與AC是否互相垂直?請說明理由.答案:PD與AC互相垂直.理由如下:連接OE,則OE⊥PD;∵AC=AB,OE=OB,∴∠OEB=∠B=∠C,∴OE∥AC,∴PD與AC互相垂直.37.(選做題)已知x+2y=1,則x2+y2的最小值是______.答案:x2+y2表示(0,0)到x+2y=1上點的距離的平方∴x2+y2的最小值是(0,0)到x+2y=1的距離d的平方據(jù)點到直線的距離公式得d=11+4=15∴x2+y2的最小值是15故為1538.化簡:AB+CD+BC=______.答案:如圖:AB+CD+BC=AB+BC+CD=AC+CD=AD.故為:AD.39.曲線x2+ay+2y+2=0經(jīng)過點(2,-1),則a=______.答案:由題意,∵曲線x2+ay+2y+2=0經(jīng)過點(2,-1),∴22-a-2+2=0∴a=4故為440.已知平行直線l1:x-y+1=0與l2:x-y+3=0,求l1與l2間的距離.答案:∵已知平行直線l1:x-y+1=0與l2:x-y+3=0,則l1與l2間的距離d=|3-1|2=2.41.求證1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2).答案:證明:①當(dāng)n=1時,左邊=2,右邊=13×1×2×3=2,等式成立;②假設(shè)當(dāng)n=k時,等式成立,即1×2+2×3+3×4+…+k(k+1)=13k(k+1)(k+2)則當(dāng)n=k+1時,左邊=13k(k+1)(k+2)+(k+1)(k+2)=(k+1)(k+2)(13k+1)=13(k+1)(k+2)(k+3)即n=k+1時,等式也成立.所以1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2)對任意正整數(shù)都成立.42.甲、乙兩人參加一次考試,已知在備選的10道試題中,甲能答對其中6題,乙能答對其中8題.若規(guī)定每次考試分別都從這10題中隨機抽出3題進(jìn)行測試,至少答對2題算合格.

(1)分別求甲、乙兩人考試合格的概率;

(2)求甲、乙兩人至少有一人合格的概率.答案:(1)(2)解析:(1)設(shè)甲、乙考試合格分別為事件A、B,甲考試合格的概率為P(A)=,乙考試合格的概率為P(B)=.(2)A與B相互獨立,且P(A)=,P(B)=,則甲、乙兩人至少有一人合格的概率為P(AB++A)=×+×+×=.43.解不等式|2x-1|<|x|+1.答案:根據(jù)題意,對x分3種情況討論:①當(dāng)x<0時,原不等式可化為-2x+1<-x+1,解得x>0,又x<0,則x不存在,此時,不等式的解集為?.②當(dāng)0≤x<12時,原不等式可化為-2x+1<x+1,解得x>0,又0≤x<12,此時其解集為{x|0<x<12}.③當(dāng)x≥12

時,原不等式可化為2x-1<x+1,解得12≤x<2,又由x≥12,此時其解集為{x|12≤x<2},?∪{x|0<x<12

}∪{x|12≤x<2

}={x|0<x<2};綜上,原不等式的解集為{x|0<x<2}.44.向量a=i+

2j在向量b=3i+4j上的投影是______.答案:根據(jù)投影的定義可得:a在b方向上的投影為:|a|cos<a,b>=a?b|b|=1×3+2×452=115.故為:115.45.設(shè)a=(x,y,3),b=(3,3,5),且a⊥b,則x+y=()A.1B.-1C.-5D.5答案:∵a=(x,y,3),b=(3,3,5),且a⊥b,∴a?b=3x+3y+15=0,∴x+y=-5,故選

C.46.在區(qū)間[-1,1]上任取兩個數(shù)s和t,則關(guān)于x的方程x2+sx+t=0的兩根都是正數(shù)的概率是[

]A.

B.

C.

D.答案:A47.在120個零件中,一級品24個,二級品36個,三級品60個.用系統(tǒng)抽樣法從中抽取容量為20的樣本、則每個個體被抽取到的概率是()

A.

B.

C.

D.答案:D48.直線L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1∥L2,則a的值為(

A.-3

B.2

C.-3或2

D.3或-2答案:A49.設(shè)a,b是非負(fù)實數(shù),求證:a3+b3≥ab(a2+b2).答案:證明:由a,b是非負(fù)實數(shù),作差得a3+b3-ab(a2+b2)=a2a(a-b)+b2b(b-a)=(a-b)[(a)5-(b)5].當(dāng)a≥b時,a≥b,從而(a)5≥(b)5,得(a-b)[(a)5-(b)5]≥0;當(dāng)a<b時,a<b,從而(a)5<(b)5,得(a-b)[(a)5-(b)5]>0.所以a3+b3≥ab(a2+b2).50.

若向量,滿足||=||=2,與的夾角為60°,則|+|=()

A.

B.2

C.4

D.12答案:B第3卷一.綜合題(共50題)1.用反證法證明命題“三角形的內(nèi)角中至多有一個是鈍角”時,第一步是:“假設(shè)______.答案:根據(jù)用反證法證明數(shù)學(xué)命題的方法和步驟,應(yīng)先假設(shè)命題的否定成立,而命題“三角形的內(nèi)角中至多有一個是鈍角”的否定為:“三角形的內(nèi)角中至少有兩個鈍角”,故為“三角形的內(nèi)角中至少有兩個鈍角”.2.雙曲線的漸近線方程是3x±2y=0,則該雙曲線的離心率等于______.答案:∵雙曲線的漸近線方程是3x±2y=0,∴ba=32,設(shè)a=2k,b=3k,則c=13k,∴e=ca=132.:132.3.設(shè)拋物線y2=8x的焦點為F,準(zhǔn)線為l,P為拋物線上一點,PA⊥l,A為垂足.如果直線AF的斜率為-3,那么|PF|=()A.43B.8C.83D.16答案:拋物線的焦點F(2,0),準(zhǔn)線方程為x=-2,直線AF的方程為y=-3(x-2),所以點A(-2,43)、P(6,43),從而|PF|=6+2=8故選B.4.設(shè)函數(shù)f(x)是定義在[a,b]上的奇函數(shù),則f(a+b)=______.答案:因為函數(shù)f(x)是定義在[a,b]上的奇函數(shù),所以定義域關(guān)于原點對稱,所以a+b=0,且f(0)=0.所以f(a+b)=f(0)=0.故為:0.5.已知a=3i+2j-k,b=i-j+2k,則5a與3b的數(shù)量積等于______.答案:a=3i+2j-k=(3,2,-1),5a=(15,10,-5)b=i-j+2k=(1,-1,2),3b=(3,-3,6)5a?3b=15×3+10×(-3)+(-5)×6=-15故為:-156.若事件與相互獨立,且,則的值等于A.B.C.D.答案:B解析:事件“”表示的意義是事件與同時發(fā)生,因為二者相互獨立,根據(jù)相互獨立事件同時發(fā)生的概率公式得:.7.棱長為2的正方體ABCD-A1B1C1D1中,BC1?B1D1=()A.22B.4C.-22D.-4答案:棱長為2的正方體ABCD-A1B1C1D1中,BC1與

B1D1的夾角等于BC1與BD的夾角,等于60°.∴BC1?B1D1=22×22cos60°=4,故選B.8.如圖所示,CD為Rt△ABC斜邊AB邊上的中線,CE⊥CD,CE=103,連接DE交BC于點F,AC=4,BC=3.

求證:(1)△ABC∽△EDC;

(2)DF=EF.答案:證明:(1)∵CD為Rt△ABC斜邊AB邊上的中線∴CD=12AB=12AC2+BC2=52.∴CECD=10352=43=ACBC,∠ACB=∠DCE=90°.∴△ABC∽△EDC.(2)因為△ABC∽△EDC∴∠B=∠CDE,∠E=∠A.由CD為Rt△ABC斜邊AB邊上的中線得:CD=AD=DB?∠B=∠DCB,∠A=∠DCA∴∠DCB=∠CDE?DF=CF;又因為:∠DCA+∠DCB=∠DCB+∠BCE=90°;∴∠DCA=∠BCE=∠A=∠E∴CF=EF.∴DF=EF.9.已知方程x2-(k2-9)x+k2-5k+6=0的一根小于1,另一根大于2,求實數(shù)k的取值范圍.答案:令f(x)=x2-(k2-9)x+k2-5k+6,則∵方程x2-(k2-9)x+k2-5k+6=0的一根小于1,另一根大于2,∴f(1)<0

且f(2)<0,∴12-(k2-9)+k2-5k+6<0且22-2(k2-9)+k2-5k+6<0,即16-5k<0且k2+5k-28>0,解得k>137-52.10.若直線x=1的傾斜角為α,則α()A.等于0B.等于π4C.等于π2D.不存在答案:由題意知直線的斜率不存在,故傾斜角α=π2,故選C.11.某一批花生種子,如果每1粒發(fā)芽的概率為,那么播下4粒種子恰有2粒發(fā)芽的概率是(

A.

B.

C.

D.答案:B12.如圖中的陰影部分用集合表示為______.答案:由已知中陰影部分所表示的集合元素滿足是A的元素且C的元素,或是B的元素”,故陰影部分所表示的集合是(A∪C)∩(CUB)故為:B∪(A∩C)13.已知200輛汽車通過某一段公路時的時速的頻率分布直方圖如圖所示,則時速在[60,70]的汽車大約有()輛.A.90B.80C.70D.60答案:由已知可得樣本容量為200,又∵數(shù)據(jù)落在區(qū)間[60,70]的頻率為0.04×10=0.4∴時速在[60,70]的汽車大約有200×0.4=80故選B.14.柱坐標(biāo)(2,,5)對應(yīng)的點的直角坐標(biāo)是

。答案:()解析:∵柱坐標(biāo)(2,,5),且,2,∴對應(yīng)直角坐標(biāo)是()15.下列命題中,錯誤的是()

A.平行于同一條直線的兩個平面平行

B.平行于同一個平面的兩個平面平行

C.一個平面與兩個平行平面相交,交線平行

D.一條直線與兩個平行平面中的一個相交,則必與另一個相交答案:A16.若f(x)在定義域[a,b]上有定義,則在該區(qū)間上()A.一定連續(xù)B.一定不連續(xù)C.可能連續(xù)也可能不連續(xù)D.以上均不正確答案:f(x)有定義是f(x)在區(qū)間上連續(xù)的必要而不充分條件.有定義不一定連續(xù).還需加上極限存在才能推出連續(xù).故選C.17.如圖,在復(fù)平面內(nèi),點A表示復(fù)數(shù)z的共軛復(fù)數(shù),則復(fù)數(shù)z對應(yīng)的點是()A.AB.BC.CD.D答案:兩個復(fù)數(shù)是共軛復(fù)數(shù),兩個復(fù)數(shù)的實部相同,下部相反,對應(yīng)的點關(guān)于x軸對稱.所以點A表示復(fù)數(shù)z的共軛復(fù)數(shù)的點是B.故選B.18.如圖所示的多面體,它的正視圖為直角三角形,側(cè)視圖為矩形,俯視圖為直角梯形(尺寸如圖所示)

(1)求證:AE∥平面DCF;

(2)若M是AE的中點,AB=3,∠CEF=90°,求證:平面AEF⊥平面BMC.答案:(1)證法1:過點E作EG⊥CF交CF于G,連結(jié)DG,可得四邊形BCGE為矩形,又四邊形ABCD為矩形,所以AD=EG,從而四邊形ADGE為平行四邊形故AE∥DG

因為AE?平面DCF,DG?平面DCF,所以AE∥平面DCF

證法2:(面面平行的性質(zhì)法)因為四邊形BEFC為梯形,所以BE∥CF.又因為BE?平面DCF,CF?平面DCF,所以BE∥平面DCF.因為四邊形ABCD為矩形,所以AB∥DC.同理可證AB∥平面DCF.又因為BE和AB是平面ABE內(nèi)的兩相交直線,所以平面ABE∥平面DCF.又因為AE?平面ABE,所以AE∥平面DCF.(2)在Rt△EFG中,∠CEF=90°,EG=3,EF=2.∴∠GEF=30°,GF=12EF=1.在RT△CEG中,∠CEG=60°,∴CG=EGtan60°=3,BE=3.∵AB=3,M是AE中點,∴BM⊥AE,由側(cè)視圖是矩形,俯視圖是直角梯形,得BC⊥AB,BC⊥BE,∵AB∩BM=B,∴AE⊥平面BCM又∵AE?平面ACE,∴平面ACE⊥平面BCM.19.從30個足球中抽取10個進(jìn)行質(zhì)量檢測,說明利用隨機數(shù)法抽取這個樣本的步驟及公平性.答案:第一步:首先將30個足球編號:00,01,02…29,第二步:在隨機數(shù)表中隨機的選一個數(shù)作為開始.第三步:從選定的數(shù)字向右讀,得到二位數(shù)字,將它取出,把大于29的去掉,,按照這種方法繼續(xù)向右讀,取出的二位數(shù)若與前面相同,則去掉,依次下去,就得到一個具有10個數(shù)據(jù)的樣本.其公平性在于:第一隨機數(shù)表中每一個位置上出現(xiàn)的哪一個數(shù)都是等可能的,第二從30個個體中抽到那一個個體的號碼也是機會均等的,基于以上兩點,利用隨機數(shù)表抽取樣本保證了各個個體被抽到的機會是等可能的.20.已知M(-2,0),N(2,0),|PM|-|PN|=3,則動點P的軌跡是()A.雙曲線B.雙曲線右支C.一條射線D.不存在答案:∵|PM|-|PN|=3,M(-2,0),N(2,0),且3<4=|MN|,根據(jù)雙曲線的定義,∴點P是以M(-2,0),N(2,0)為兩焦點的雙曲線的右支.故選B.21.如圖是一個空間幾何體的三視圖,試用斜二測畫法畫出它的直觀圖.(尺寸不作嚴(yán)格要求,但是凡是未用鉛筆作圖不得分,隨手畫圖也不得分)答案:由題可知題目所述幾何體是正六棱臺,畫法如下:畫法:(1)、畫軸畫x軸、y軸、z軸,使∠x′O′y′=45°,∠x′O′z′=90°

(圖1)(2)、畫底面以O(shè)′為中心,在XOY坐標(biāo)系內(nèi)畫正六棱臺下底面正方形的直觀圖ABCDEF.在z′軸上取線段O′O1等于正六棱臺的高;過O1

畫O1M、O1N分別平行O’x′、O′y′,再以O(shè)1為中心,畫正六棱臺上底面正方形的直觀圖A′B′C′E′F′(3)、成圖連接AA′、BB′、CC′、DD′、EE′、FF′,并且加以整理,就得到正六棱臺的直觀圖

(如圖2).22.已知P是以F1,F(xiàn)2為焦點的橢圓(a>b>0)上的一點,若PF1⊥PF2,tan∠PF1F2=,則此橢圓的離心率為()

A.

B.

C.

D.答案:D23.平面向量的夾角為,則等于(

A.

B.3

C.7

D.79答案:A24.已知=(2,-1,3),=(-1,4,-2),=(7,5,λ),若、、三向量共面,則實數(shù)λ等于()

A.

B.

C.

D.答案:D25.下表表示y是x的函數(shù),則函數(shù)的值域是

______.

答案:有圖表可知,所有的函數(shù)值構(gòu)成的集合為{2,3,4,5},故函數(shù)的值域為{2,3,4,5}.26.點M的直角坐標(biāo)是,則點M的極坐標(biāo)為()

A.(2,)

B.(2,-)

C.(2,)

D.(2,2kπ+)(k∈Z)答案:C27.已知a為常數(shù),a>0且a≠1,指數(shù)函數(shù)f(x)=ax和對數(shù)函數(shù)g(x)=logax的圖象分別為C1與C2,點M在曲線C1上,線段OM(O為坐標(biāo)原點)與曲線C1的另一個交點為N,若曲線C2上存在一點P,且點P的橫坐標(biāo)與點M的縱坐標(biāo)相等,點P的縱坐標(biāo)是點N的橫坐標(biāo)2倍,則點P的坐標(biāo)為______.答案:設(shè)點M的坐標(biāo)為(m,am),點N的坐標(biāo)為(n,an)∵點P的橫坐標(biāo)與點M的縱坐標(biāo)相等∴點P的坐標(biāo)為(am,m)∵點P的縱坐標(biāo)是點N的橫坐標(biāo)2倍,∴m=2n而O、M、N三點共線則amm=ann=

am2m2解得:am=4即m=loga4∴點P的坐標(biāo)為(4,loga4)故為:(4,loga4)28.從5名男學(xué)生、3名女學(xué)生中選3人參加某項知識對抗賽,要求這3人中既有男生又有女生,則不同的選法共有()A.45種B.56種C.90種D.120種答案:由題意知本題是一個分類計數(shù)問題,要求這3人中既有男生又有女生包括兩種情況,一是兩女一男,二是兩男一女,當(dāng)包括兩女一男時,有C32C51=15種結(jié)果,當(dāng)包括兩男一女時,有C31C52=30種結(jié)果,∴根據(jù)分類加法得到共有15+30=45故選A.29.設(shè)P1(4,-3),P2(-2,6),且P在P1P2的延長線上,使||=2||,則點P的坐標(biāo)

()

A.(-8,15)

B.(0,3)

C.(-,)

D.(1,)答案:A30.在正方形ABCD中,已知它的邊長為1,設(shè)=,=,=,則|++|的值為(

A.0

B.3

C.2+

D.2答案:D31.一個長方體的長、寬、高之比為2:1:3,全面積為88cm2,則它的體積為

______cm3.答案:由長方體的長、寬、高之比為2:1:3,不妨設(shè)長、寬、高分別為2x,x,3x;則長方體的全面積為:2(2x?x+2x?3x+x?3x)=2×11x2=88,∴x=±2,這里取x=2;所以,長方體的體積為:V=2x?x?3x=4×2×6=48.故為:4832.已知x=-3-2i(i為虛數(shù)單位)是一元二次方程x2+ax+b=0(a,b均為實數(shù))的一個根,則a+b=______.答案:∵x=-3-2i(i為虛數(shù)單位)是一元二次方程x2+ax+b=0(a,b均為實數(shù))的一個根,∴(-3-2i)2+a(-3-2i)+b=0,化為5-3a+b+(12-2a)i=0.根據(jù)復(fù)數(shù)相等即可得到5-3a+b=012-2a=0,解得a=6b=13.∴a+b=19.故為19.33.以下四組向量中,互相平行的是.()

(1)=(1,2,1),=(1,-2,3);

(2)=(8,4,-6),=(4,2,-3);

(3)=(0,1,-1),=(0,-3,3);

(4)=(-3,2,0),=(4,-3,3).

A.(1)(2)

B.(2)(3)

C.(2)(4)

D.(1)(3)答案:B34.方程x2+(m-2)x+5-m=0的兩根都大于2,則m的取值范圍是()

A.(-5,-4]

B.(-∞,-4]

C.(-∞,-2]

D.(-∞,-5)∪(-5,-4]答案:A35.2008年北京奧運會期間,計劃將5名志愿者分配到3個不同的奧運場館參加接待工作,每個場館至少分配一名志愿者的方案種數(shù)為()A.540B.300C.150D.180答案:將5個人分成滿足題意的3組有1,1,3與2,2,1兩種,分成1、1、3時,有C53?A33種分法,分成2、2、1時,有C25C23A22?A33種分法,所以共有C53?A33+C25C23A22?A33=150種分法,故選C.36.有外形相同的球分裝三個盒子,每盒10個.其中,第一個盒子中7個球標(biāo)有字母A、3個球標(biāo)有字母B;第二個盒子中有紅球和白球各5個;第三個盒子中則有紅球8個,白球2個.試驗按如下規(guī)則進(jìn)行:先在第一號盒子中任取一球,若取得標(biāo)有字母A的球,則在第二號盒子

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論