版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年廣州工程技術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.已知直線ax+by+c=0(abc≠0)與圓x2+y2=1相離,則以三條邊長分別為|a|,|b|,|c|所構(gòu)成的三角形的形狀是______.答案:直線ax+by+c=0(abc≠0)與圓x2+y2=1相離,即|c|a2+b2>
1即|c|2>a2+b2三角形是鈍角三角形.故為:鈍角三角形.2.某公司的管理機(jī)構(gòu)設(shè)置是:設(shè)總經(jīng)理一個,副總經(jīng)理兩個,直接對總經(jīng)理負(fù)責(zé),下設(shè)有6個部門,其中副總經(jīng)理A管理生產(chǎn)部、安全部和質(zhì)量部,副總經(jīng)理B管理銷售部、財務(wù)部和保衛(wèi)部.請根據(jù)以上信息補(bǔ)充該公司的人事結(jié)構(gòu)圖,其中①、②處應(yīng)分別填()
A.保衛(wèi)部,安全部
B.安全部,保衛(wèi)部
C.質(zhì)檢中心,保衛(wèi)部
D.安全部,質(zhì)檢中心
答案:B3.若圖中的直線l1、l2、l3的斜率分別為k1、k2、k3,則()
A.k1<k2<k3
B.k2<k1<k3
C.k3<k2<k1
D.k1<k3<k2
答案:B4.在120個零件中,一級品24個,二級品36個,三級品60個.用系統(tǒng)抽樣法從中抽取容量為20的樣本、則每個個體被抽取到的概率是()
A.
B.
C.
D.答案:D5.如圖,四面體ABCD中,點E是CD的中點,記=(
)
A.
B.
C.
D.
答案:B6.“cosα=12”是“α=π3”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件答案:∵“coa=12”?“a=π3+2kπ,k∈Z,或a=53π+2kπ,k∈Z”,“a=π3”?“coa=12”.故選D.7.若圓C過點M(0,1)且與直線l:y=-1相切,設(shè)圓心C的軌跡為曲線E,A、B為曲線E上的兩點,點P(0,t)(t>0),且滿足AP=λPB(λ>1).
(I)求曲線E的方程;
(II)若t=6,直線AB的斜率為12,過A、B兩點的圓N與拋物線在點A處共同的切線,求圓N的方程;
(III)分別過A、B作曲線E的切線,兩條切線交于點Q,若點Q恰好在直線l上,求證:t與QA?QB均為定值.答案:【解】(Ⅰ)依題意,點C到定點M的距離等于到定直線l的距離,所以點C的軌跡為拋物線,曲線E的方程為x2=4y.(Ⅱ)直線AB的方程是y=12x+6,即x-2y+12=0.由{_x2=4y,x-2y+12=0,及AP=λPB(λ>1)知|AP|>|PB|,得A(6,9)和B(-4,4)由x2=4y得y=14x2,y′=12x.所以拋物線x2=4y在點A處切線的斜率為y'|x=6=3.直線NA的方程為y-9=-13(x-6),即y=-13x+11.①線段AB的中點坐標(biāo)為(1,132),線段AB中垂線方程為y-132=-2(x-1),即y=-2x+172.②由①、②解得N(-32,232).于是,圓C的方程為(x+32)2+(y-232)2=(-4+32)2+(4-232)2,即(x+32)2+(y-232)2=1252.(Ⅲ)設(shè)A(x1,x124),B(x2,x224),Q(a,-1).過點A的切線方程為y-x214=x12(x-x1),即x12-2ax1-4=0.同理可得x22-2ax2-4=0,所以x1+x2=2a,x1x2=-4.又kAB=x124-x224x1-x2=x1+x24,所以直線AB的方程為y-x124=x1+x24(x-x
1),即y=x1+x24x-x1x24,亦即y=a2x+1,所以t=-1.而QA=(x1-a,x124+1),QB=(x2-a,x224+1),所以QA?QB=(x1-a)(x2-a)+(x214+1)(x224+1)=x1x2-a(x1+x2)+a2+x21x2216+(x1+x2)2-2x1x24+1=-4-2a2+a2+1+4a2+84+1=0.8.求證:若圓內(nèi)接五邊形的每個角都相等,則它為正五邊形.答案:證明:設(shè)圓內(nèi)接五邊形為ABCDE,圓心是O.連接OA,OB,OCOD,OE,可得五個三角形∵OA=OB=OC=OD=OE=半徑,∴有五個等腰三角形在△OAB、△OBC、△OCD、△ODE、△OEA中則∠OAB=∠OBA,∠OBC=∠OCB,∠OCD=∠ODC,∠ODE=∠OED,∠OEA=∠OAE因為所有內(nèi)角相等,所以∠OAE+∠OAB=∠OBA+∠OBC,所以∠OAE=∠OBC同理證明∠OBA=∠OCD,∠OCB=∠OED,∠ODC=∠OEA,∠OED=∠OAB則△OAB、△OBC、△OCD、△ODE、△OEA中,∠AOB=∠BOC=∠COD=∠DOE=∠EOA∴△OAB≌△OBC≌△OCD≌△ODE≌△OEA
(SAS邊角邊定律)∴AB=BC=CD=DE=EA∴五邊形ABCDE為正五邊形9.直線3x+5y-1=0與4x+3y-5=0的交點是()
A.(-2,1)
B.(-3,2)
C.(2,-1)
D.(3,-2)答案:C10.(x+2y)4展開式中各項的系數(shù)和為______.答案:令x=y=1,可得(1+2)4=81故為:81.11.已知向量a=(3,4),b=(8,6),c=(2,k),其中k為常數(shù),如果<a,c>=<b,c>,則k=______.答案:由題意可得cos<a,c>=cos<b,c>,∴a?c|a|?|c|=b?c|b|?|c|,∴6+4k54+k
2=16+6k104+k
2.解得k=2,故為2.12.直線l:y-1=k(x-1)和圓C:x2+y2-2y=0的關(guān)系是()
A.相離
B.相切或相交
C.相交
D.相切答案:C13.若e1、e2、e3是三個不共面向量,則向量a=3e1+2e2+e3,b=-e1+e2+3e3,c=2e1-e2-4e3是否共面?請說明理由.答案:解:設(shè)c=1a+2b,則即∵a、b不共線,向量a、b、c共面.14.用反證法證明命題“三角形的內(nèi)角中至多有一個是鈍角”時,第一步是:“假設(shè)______.答案:根據(jù)用反證法證明數(shù)學(xué)命題的方法和步驟,應(yīng)先假設(shè)命題的否定成立,而命題“三角形的內(nèi)角中至多有一個是鈍角”的否定為:“三角形的內(nèi)角中至少有兩個鈍角”,故為“三角形的內(nèi)角中至少有兩個鈍角”.15.下列函數(shù)圖象中,正確的是()
A.
B.
C.
D.
答案:C16.在吸煙與患肺病這兩個分類變量的計算中,下列說法正確的是()
A.若K2的觀測值為k=6.635,而p(K2≥6.635)=0.010,故我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個吸煙的人中必有99人患有肺病
B.從獨立性檢驗可知有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時,我們說某人吸煙,那么他有99%的可能患有肺病
C.若從統(tǒng)計量中求出有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推判出現(xiàn)錯誤
D.以上三種說法都不正確答案:C17.給出下列說法:①球的半徑是球面上任意一點與球心的連線段;②球的直徑是球面上任意兩點的連線段;③用一個平面截一個球面,得到的是一個圓;④球常用表示球心的字母表示.其中說法正確的是______.答案:根據(jù)球的定義直接判斷①正確;②錯誤;;③用一個平面截一個球面,得到的是一個圓;可以是小圓,也可能是大圓,正確;④球常用表示球心的字母表示.滿足球的定義正確;故為:①③④18.如果如圖所示的程序中運行后輸出的結(jié)果為132,那么在程序While后面的“條件”應(yīng)為______.答案:第一次循環(huán)之后s=12,i=11;第二次循環(huán)之后結(jié)果是s=132,i=10,已滿足題意跳出循環(huán).由于此循環(huán)體是當(dāng)型循環(huán)i=12、11都滿足條件,i=10不滿足條件.故為:i≥1119.在三棱錐O-ABC中,M,N分別是OA,BC的中點,點G是MN的中點,則OG可用基底{OA,OB,OC}表示成:OG=______.答案:如圖,連接ON,在△OBC中,點N是BC中點,則由平行四邊形法則得ON=12(OB+OC)在△OMN中,點G是MN中點,則由平行四邊形法則得OG=12(OM+ON)=12OM+12ON=14OA+12?12(OB+OC)14(OA+OB+OC),故為:14(OA+OB+OC).20.給出一個程序框圖,輸出的結(jié)果為s=132,則判斷框中應(yīng)填()
A.i≥11
B.i≥10
C.i≤11
D.i≤12
答案:A21.方程x2-(k+2)x+1-3k=0有兩個不等實根x1,x2,且0<x1<1<x2<2,則實數(shù)k的取值范圍為______.答案:構(gòu)造函數(shù)f(x)=x2-(k+2)x+1-3k∵方程x2-(k+2)x+1-3k=0有兩個不等實根x1,x2,且0<x1<1<x2<2,∴f(0)>0f(1)<0f(2)>0∴1-3k>0-4k<01-5k>0∴0<k<15∴實數(shù)k的取值范圍為(0,15)故為:(0,15)22.如圖,已知⊙O是△ABC的外接圓,AB為直徑,若PA⊥AB,PO過AC的中點M,求證:PC是⊙O的切線.答案:證明:連接OC,∵PA⊥AB,∴∠PA0=90°.(1分)∵PO過AC的中點M,OA=OC,∴PO平分∠AOC.∴∠AOP=∠COP.(3分)∴在△PAO與△PCO中有OA=OC,∠AOP=∠COP,PO=PO.∴△PAO≌△PCO.(6分)∴∠PCO=∠PA0=90°.即PC是⊙O的切線.(7分)23.小李在一旅游景區(qū)附近租下一個小店面賣紀(jì)念品和T恤,由于經(jīng)營條件限制,他最多進(jìn)50件T恤和30件紀(jì)念品,他至少需要T恤和紀(jì)念品40件才能維持經(jīng)營,已知進(jìn)貨價為T恤每件36元,紀(jì)念品每件50元,現(xiàn)在他有2400元可進(jìn)貨,假設(shè)每件T恤的利潤是18元,每件紀(jì)念品的利潤是20元,問怎樣進(jìn)貨才能使他的利潤最大,最大利潤為多少?答案:設(shè)進(jìn)T恤x件,紀(jì)念品y件,可得利潤為z元,由題意得x、y滿足的約束條件為:
0≤x≤50
0≤y≤30
x+y≥4036x+48y≤2400,且x、y∈N*目標(biāo)函數(shù)z=18x+20y約束條件的可行域如圖所示:五邊形ABCDE的各個頂點坐標(biāo)分別為:A(40,0),B(50,0),C(50,252),D(803,30),E(10,30),當(dāng)直線l:z=18x+20y經(jīng)過C(50,252)時取最大值,∵x,y必為整數(shù),∴當(dāng)x=50,y=12時,z取最大值即進(jìn)50件T恤,12件紀(jì)念品時,可獲最大利潤,最大利潤為1140元.24.在正方體ABCD-A1B1C1D1中,若E為A1C1中點,則直線CE垂直于()A.ACB.BDC.A1DD.A1A答案:以A為原點,AB、AD、AA1所在直線分別為x,y,z軸建空間直角坐標(biāo)系,設(shè)正方體棱長為1,則A(0,0,0),C(1,1,0),B(1,0,0),D(0,1,0),A1(0,0,1),E(12,12,1),∴CE=(-12,-12,1),AC=(1,1,0),BD=(-1,1,0),A1D=(0,1,-1),A1A=(0,0,-1),顯然CE?BD=12-12+0=0,∴CE⊥BD,即CE⊥BD.
故選B.25.設(shè)a,b∈R,ab≠0,則直線ax-y+b=0和曲線bx2+ay2=ab的大致圖形是()
A.
B.
C.
D.
答案:B26.如圖,AB,AC分別是⊙O的切線和割線,且∠C=45°,∠BDA=60°,CD=6,則切線AB的長是______.答案:過點A作AM⊥BD與點M.∵AB為圓O的切線∴∠ABD=∠C=45°∵∠BDA=60°∴∠BAD=75°,∠DAM=30°,∠BAM=45°設(shè)AB=x,則AM=22x,在直角△AMD中,AD=63x由切割線定理得:AB2=AD?ACx2=63x(63x+6)解得:x1=6,x2=0(舍去)故AB=6.故是:6.27.已知圓的方程是(x-2)2+(y-3)2=4,則點P(3,2)滿足()
A.是圓心
B.在圓上
C.在圓內(nèi)
D.在圓外答案:C28.算法的有窮性是指()A.算法必須包含輸出B.算法中每個操作步驟都是可執(zhí)行的C.算法的步驟必須有限D(zhuǎn).以上說法均不正確答案:一個算法必須在有限步內(nèi)結(jié)束,簡單的說就是沒有死循環(huán)即算法的步驟必須有限故選C.29.集合{1,2,3}的真子集總共有()A.8個B.7個C.6個D.5個答案:集合{1,2,3}的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7個.故選B.30.若數(shù)列{an}(n∈N+)為等差數(shù)列,則數(shù)列bn=a1+a2+a3+…+ann(n∈N+)也為等差數(shù)列,類比上述性質(zhì),相應(yīng)地,若數(shù)列{cn}是等比數(shù)列且cn>0(n∈N+),則有數(shù)列dn=______(n∈N+)也是等比數(shù)列.答案:從商類比開方,從和類比到積,可得如下結(jié)論:nC1C2C3Cn故為:nC1C2C3Cn31.安排6名演員的演出順序時,要求演員甲不第一個出場,也不最后一個出場,則不同的安排方法種數(shù)是()
A.120
B.240
C.480
D.720答案:C32.已知平面向量=(1,-3),=(4,-2),λ+與垂直,則λ是()
A.1
B.2
C.-2
D.-1答案:D33.若{、、}為空間的一組基底,則下列各項中,能構(gòu)成基底的一組向量是[
]A.,+,﹣
B.,+,﹣
C.,+,﹣
D.+,﹣,+2答案:C34.用數(shù)學(xué)歸納法證明等式時,第一步驗證n=1時,左邊應(yīng)取的項是()
A.1
B.1+2
C.1+2+3
D.1+2+3+4答案:D35.已知一9行9列的矩陣中的元素是由互不相等的81個數(shù)組成,a11a12…a19a21a22…a29…………a91a92…a99若每行9個數(shù)與每列的9個數(shù)按表中順序分別構(gòu)成等差數(shù)列,且正中間一個數(shù)a55=7,則矩陣中所有元素之和為______.答案:∵每行9個數(shù)按從左至右的順序構(gòu)成等差數(shù)列,∴a11+a12+a13+…+a18+a19=9a15,a21+a22+a23+…+a28+a29=9a25,a31+a32+a33+…+a38+a39=9a35,a41+a42+a43+…+a48+a49=9a45,…a91+a92+a93+…+a98+a99=9a95,∵每列的9個數(shù)按從上到下的順序也構(gòu)成等差數(shù)列,∴a15+a25+a35+…+a85+a95=9a55,∴表中所有數(shù)之和為81a55=567,故為567.36.隨機(jī)變量ξ服從二項分布ξ~B(n,p),且Eξ=300,Dξ=200,則p等于()
A.
B.0
C.1
D.答案:D37.下列語句是命題的是______.
①求證3是無理數(shù);
②x2+4x+4≥0;
③你是高一的學(xué)生嗎?
④一個正數(shù)不是素數(shù)就是合數(shù);
⑤若x∈R,則x2+4x+7>0.答案:①是祈使句,所以①不是命題.②是命題,能夠判斷真假,因為x2+4x+4=(x+2)2≥0,所以②是命題.③是疑問句,所以③不是命題.④能夠判斷真假,所以④是命題.⑤能夠判斷真假,因為x2+4x+7=(x+2)2+3>0,所以⑤是命題.故為:②④⑤.38.已知z=1+i,則|z|=______.答案:由z=1+i,所以|z|=12+12=2.故為2.39.已知拋物線x2=4y上的點p到焦點的距離是10,則p點坐標(biāo)是
______.答案:根據(jù)拋物線方程可求得焦點坐標(biāo)為(0,1)根據(jù)拋物線定義可知點p到焦點的距離與到準(zhǔn)線的距離相等,∴yp+1=10,求得yp=9,代入拋物線方程求得x=±6∴p點坐標(biāo)是(±6,9)故為:(±6,9)40.因為樣本是總體的一部分,是由某些個體所組成的,盡管對總體具有一定的代表性,但并不等于總體,為什么不把所有個體考查一遍,使樣本就是總體?答案:如果樣本就是總體,抽樣調(diào)查就變成普查了,盡管這樣確實反映了實際情況,但不是統(tǒng)計的基本思想,其操作性、可行性、人力、物力等方面,都會有制約因素存在,何況有些調(diào)查是破壞性的,如考查一批玻璃的抗碎能力,燈泡的使用壽命等,普查就全破壞了.41.某校在檢查學(xué)生作業(yè)時,抽出每班學(xué)號尾數(shù)為4的學(xué)生作業(yè)進(jìn)行檢查,這里主要運用的抽樣方法是()
A.分層抽樣
B.抽簽抽樣
C.隨機(jī)抽樣
D.系統(tǒng)抽樣答案:D42.點M(2,-3,1)關(guān)于坐標(biāo)原點對稱的點是()
A.(-2,3,-1)
B.(-2,-3,-1)
C.(2,-3,-1)
D.(-2,3,1)答案:A43.命題“若A∪B=A,則A∩B=B”的否命題是()A.若A∪B≠A,則A∩B≠BB.若A∩B=B,則A∪B=AC.若A∩B≠A,則A∪B≠BD.若A∪B=B,則A∩B=A答案:“若A∪B=A,則A∩B=B”的否命題:“若A∪B≠A則A∩B≠B”故選A.44.如圖,從圓O外一點P引圓O的切線PA和割線PBC,已知PA=22,PC=4,圓心O到BC的距離為3,則圓O的半徑為______.答案:∵PA為圓的切線,PBC為圓的割線,由線割線定理得:PA2=PB?PC又∵PA=22,PC=4,∴PB=2,BC=2又∵圓心O到BC的距離為3,∴R=2故為:245.如果關(guān)于x的不等式|x-4|-|x+5|≥b的解集為空集,則實數(shù)b的取值范圍為______.答案:|x-4|-|x+5|的幾何意義就是數(shù)軸上的點到4的距離與到-5的距離的差,差的最大值為9,如果關(guān)于x的不等式|x-4|-|x+5|≥b的解集為空集,則實數(shù)b的取值范圍為b>9;故為:b>9.46.如圖:已知圓上的弧
AC=
BD,過C點的圓的切線與BA的延長線交于E點,證明:
(Ⅰ)∠ACE=∠BCD.
(Ⅱ)BC2=BE×CD.答案:(Ⅰ)因為AC=BD,所以∠BCD=∠ABC.又因為EC與圓相切于點C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因為∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故BCBE=CDBC.即BC2=BE×CD.(10分)47.現(xiàn)有以下兩項調(diào)查:①某校高二年級共有15個班,現(xiàn)從中選擇2個班,檢查其清潔衛(wèi)生狀況;②某市有大型、中型與小型的商店共1500家,三者數(shù)量之比為1:5:9.為了調(diào)查全市商店每日零售額情況,抽取其中15家進(jìn)行調(diào)查.完成①、②這兩項調(diào)查宜采用的抽樣方法依次是()A.簡單隨機(jī)抽樣法,分層抽樣法B.系統(tǒng)抽樣法,簡單隨機(jī)抽樣法C.分層抽樣法,系統(tǒng)抽樣法D.系統(tǒng)抽樣法,分層抽樣法答案:從15個班中選擇2個班,檢查其清潔衛(wèi)生狀況;總體個數(shù)不多,而且差異不大,故可采用簡單隨機(jī)抽樣的方法,1500家大型、中型與小型的商店的每日零售額存在較大差異,故可采用分層抽樣的方法故完成①、②這兩項調(diào)查宜采用的抽樣方法依次是簡單隨機(jī)抽樣法,分層抽樣法故選A48.半徑為1、2、3的三個圓兩兩外切.證明:以這三個圓的圓心為頂點的三角形是直角三角形.
答案:證明:設(shè)⊙O1、⊙O2、⊙O3的半徑分別為1、2、3.因這三個圓兩兩外切,故有O1O2=1+2=3,O2O3=2+3=5,O1O3=1+3=4,則有O1O22+O1O32=32+42=52=O2O32根據(jù)勾股定理的逆定理,得到△O1O2O3為直角三角形.49.由小正方體木塊搭成的幾何體的三視圖如圖所示,則搭成該幾何體的小正方體木塊有()
A.6塊
B.7塊
C.8塊
D.9塊答案:B50.執(zhí)行如圖所示的程序框圖,輸出的S值為()
A.2
B.4
C.8
D.16
答案:C第2卷一.綜合題(共50題)1.北京期貨商會組織結(jié)構(gòu)設(shè)置如下:
(1)會員代表大會下設(shè)監(jiān)事會、會長辦公會,而會員代表大會于會長辦公會共轄理事會;
(2)會長辦公會設(shè)會長,會長管理秘書長;
(3)秘書長具體分管:秘書處、規(guī)范自律委員會、服務(wù)推廣委員會、發(fā)展創(chuàng)新委員會.
根據(jù)以上信息繪制組織結(jié)構(gòu)圖.答案:繪制組織結(jié)構(gòu)圖:2.點P從(2,0)出發(fā),沿圓x2+y2=4按逆時針方向運動弧長到達(dá)點Q,則點Q的坐標(biāo)為()
A.(-1,
)
B.(-,
-1)
C.(-1,
-)
D.(-,
1)答案:C3.已知隨機(jī)變量ξ服從正態(tài)分布N(1,δ2)(δ>0).若ξ在(0,1)內(nèi)取值的概率為0.4,則ξ在(0,2)內(nèi)取值的概率為(
)
A.
B.
C.
D.答案:D4.已知一個球與一個正三棱柱的三個側(cè)面和兩個底面相切,若這個球的體積是32π3,則這個三棱柱的體積是______.答案:由43πR3=32π3,得R=2.∴正三棱柱的高h(yuǎn)=4.設(shè)其底面邊長為a,則13?32a=2.∴a=43.∴V=34(43)2?4=483.故為:4835.直線y=3x+3的傾斜角的大小為______.答案:∵直線y=3x+3的斜率等于3,設(shè)傾斜角等于α,則0°≤α<180°,且tanα=3,∴α=60°,故為60°.6.______稱為向量的長度(或稱為模),記作
______,______稱為零向量,記作
______,______稱為單位向量.答案:向量AB所在線段AB的長度,即向量AB的大小,稱為向量AB的長度(或成為模),記作|AB|;長度為零的向量稱為零向量,記作0;長度等于1個單位的向量稱為單位向量.故為:向量AB所在線段AB的長度,即向量AB的大小,|AB|;長度為零的向量,0;長度等于1個單位的向量.7.如圖,點O是正六邊形ABCDEF的中心,則以圖中點A、B、C、D、E、F、O中的任意一點為始點,與始點不同的另一點為終點的所有向量中,除向量外,與向量共線的向量共有()
A.2個
B.3個
C.6個
D.9個
答案:D8.如圖所示,以直角三角形ABC的直角邊AC為直徑作⊙O,交斜邊AB于點D,過點D作⊙O的切線,交BC邊于點E.則BEBC=______.答案:連接CD,∵AC是⊙O的直徑,∴CD⊥AB.∵BC經(jīng)過半徑OC的端點C且BC⊥AC,∴BC是⊙O的切線,而DE是⊙O的切線,∴EC=ED.∴∠ECD=∠CDE,∴∠B=∠BDE,∴DE=BE.∴BE=CE=12BC.∴BEBC=12.故為12.9.設(shè)a=(2,2m-3,n+2),b=(4,2m+1,3n-2),且a∥b,則實數(shù)m,n的值分別為______.答案:因為a=(2,2m-3,n+2),b=(4,2m+1,3n-2),且a∥b,根據(jù)空間向量平行的坐標(biāo)表示公式,
所以24=2m-32m+124=n+23n-2,解得:m=12,n=6.故為:m=12,n=6.10.“因為對數(shù)函數(shù)y=logax是增函數(shù)(大前提),而y=logx是對數(shù)函數(shù)(小前提),所以y=logx是增函數(shù)(結(jié)論).”上面推理的錯誤是()
A.大前提錯導(dǎo)致結(jié)論錯
B.小前提錯導(dǎo)致結(jié)論錯
C.推理形式錯導(dǎo)致結(jié)論錯
D.大前提和小前提都錯導(dǎo)致結(jié)論錯答案:A11.某校在檢查學(xué)生作業(yè)時,抽出每班學(xué)號尾數(shù)為4的學(xué)生作業(yè)進(jìn)行檢查,這里主要運用的抽樣方法是()
A.分層抽樣
B.抽簽抽樣
C.隨機(jī)抽樣
D.系統(tǒng)抽樣答案:D12.設(shè)雙曲線的焦點在x軸上,兩條漸近線為y=±12x,則雙曲線的離心率e=______.答案:依題意可知ba=12,求得a=2b∴c=a2+b2=5b∴e=ca=52故為52.13.從2008名學(xué)生中選取50名學(xué)生參加數(shù)學(xué)競賽,若采用下面的方法選?。合扔煤唵坞S機(jī)抽樣從2008人中剔除8人,剩下的2000人再按系統(tǒng)抽樣的方法抽取50人,則在2008人中,每人入選的概率()
A.不全相等
B.均不相等
C.都相等,且為
D.都相等,且為答案:C14.從橢圓
x2a2+y2b2=1(a>b>0)上一點P向x軸作垂線,垂足恰為左焦點F1,又點A是橢圓與x軸正半軸的交點,點B是橢圓與y軸正半軸的交點,且AB∥OP,|F1A|=10+5,求橢圓的方程.答案:∵AB∥OP∴PF1F1O=BOOA?PF1=bca又∵PF1⊥x軸∴c2a2+y2b2=1?y=b2a∴b=c由a+c=10+5b=ca2=b2+c2解得:a=10b=5c=5∴橢圓方程為x210+y25=1.15.設(shè)0<a<1,m=loga(a2+1),n=loga(a+1),p=loga(2a),則m,n,p的大小關(guān)系是()A.n>m>pB.m>p>nC.m>n>pD.p>m>n答案:取a=0.5,則a2+1、a+1、2a的大小分別為:1.25,1.5,1,又因為0<a<1時,y=logax為減函數(shù),所以p>m>n故選D16.在極坐標(biāo)系中,若等邊三角形ABC(頂點A,B,C按順時針方向排列)的頂點A,B的極坐標(biāo)分別為(2,π6),(2,7π6),則頂點C的極坐標(biāo)為______.答案:如圖所示:由于A,B的極坐標(biāo)(2,π6),(2,7π6),故極點O為線段AB的中點.故等邊三角形ABC的邊長為4,AB邊上的高(即點C到AB的距離)OC等于23.設(shè)點C的極坐標(biāo)為(23,π6+π2),即(23,2π3),故為(23,2π3).17.若直線y=x+b與圓x2+y2=2相切,則b的值為(
)
A.±4
B.±2
C.±
D.±2
答案:B18.若方程Ax+By+C=0表示與兩條坐標(biāo)軸都相交的直線,則()
A.A≠0B≠0C≠0
B.A≠0B≠0
C.B≠0C≠0
D.A≠0C≠0答案:B19.下列各個對應(yīng)中,從A到B構(gòu)成映射的是()A.
B.
C.
D.
答案:按照映射的定義,A中的任何一個元素在集合B中都有唯一確定的元素與之對應(yīng).而在選項A和選項B中,前一個集合中的元素2在后一個集合中沒有元素與之對應(yīng),故不符合映射的定義.選項C中,前一個集合中的元素1在后一集合中有2個元素和它對應(yīng),也不符合映射的定義,只有選項D滿足映射的定義,故選D.20.在極坐標(biāo)系中,曲線p=4cos(θ-π3)上任意兩點間的距離的最大值為______.答案:將原極坐標(biāo)方程p=4cos(θ-π3),化為:ρ=2cosθ+23sinθ,∴ρ2=2ρcosθ+23ρsinθ,化成直角坐標(biāo)方程為:x2+y2-2x-23y=0,是一個半徑為2圓.圓上兩點間的距離的最大值即為圓的直徑,故填:4.21.在對兩個變量x,y進(jìn)行線性回歸分析時,有下列步驟:
①對所求出的回歸直線方程作出解釋;
②收集數(shù)據(jù)(xi,yi),i=1,2,…,n;
③求線性回歸方程;
④求相關(guān)系數(shù);
⑤根據(jù)所搜集的數(shù)據(jù)繪制散點圖.
如果根據(jù)可形性要求能夠作出變量x,y具有線性相關(guān)結(jié)論,則在下列操作順序中正確的是()
A.①②⑤③④
B.③②④⑤①
C.②④③①⑤
D.②⑤④③①答案:D22.復(fù)數(shù)Z=arccosx-π+(-2x)i(x∈R,i是虛數(shù)單位),在復(fù)平面上的對應(yīng)點只可能位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:∵a=arccosx-π,arccosx∈[0,π],∴a<0,∵b=-2x<0,∴復(fù)數(shù)Z對應(yīng)的點的實部和虛部都小于零,∴復(fù)數(shù)在第三象限,故選C.23.在15個村莊中有7個村莊交通不方便,現(xiàn)從中任意選10個村莊,用X表示這10個村莊中交通不方便的村莊數(shù),則P(X=4)=______.(用數(shù)字表示)答案:由題意P(X=4)=C47×C68C1015=7×6×53×2×1×8×72×115×14×13×12×115×4×3×2×1=140429故為:14042924.
選修1:幾何證明選講
如圖,設(shè)AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點,AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD,求證:
(1)l是⊙O的切線;
(2)PB平分∠ABD.答案:證明:(1)連接OP,因為AC⊥l,BD⊥l,所以AC∥BD.又OA=OB,PC=PD,所以O(shè)P∥BD,從而OP⊥l.因為P在⊙O上,所以l是⊙O的切線.(2)連接AP,因為l是⊙O的切線,所以∠BPD=∠BAP.又∠BPD+∠PBD=90°,∠BAP+∠PBA=90°,所以∠PBA=∠PBD,即PB平分∠ABD.25.求證:答案:證明見解析解析:證:∴26.已知在一場比賽中,甲運動員贏乙、丙的概率分別為0.8,0.7,比賽沒有平局.若甲分別與乙、丙各進(jìn)行一場比賽,則甲取得一勝一負(fù)的概率是______.答案:根據(jù)題意,甲取得一勝一負(fù)包含兩種情況,甲勝乙負(fù)丙,概率為:0.8×0.3=0.24;甲勝丙負(fù)乙,概率為:0.2×0.7=0.14;∴甲取得一勝一負(fù)的概率為0.24+0.14=0.38故為0.3827.兩封信隨機(jī)投入A、B、C三個空郵箱,則A郵箱的信件數(shù)ξ的數(shù)學(xué)期望Eξ=______;答案:由題意知ξ的取值有0,1,2,當(dāng)ξ=0時,即A郵箱的信件數(shù)為0,由分步計數(shù)原理知兩封信隨機(jī)投入A、B、C三個空郵箱,共有3×3種結(jié)果,而滿足條件的A郵箱的信件數(shù)為0的結(jié)果數(shù)是2×2,由古典概型公式得到ξ=0時的概率,同理可得ξ=1時,ξ=2時,ξ=3時的概率p(ξ=0)=2×29=49,p(ξ=1)=C12C129=49,p(ξ=2)=19,∴Eξ=0×49+1×49+2×19=23故為:23.28.已知a,b
,c滿足a+2c=b,且a⊥c,|a|=1,|c|=2,則|b|=______.答案:根據(jù)題意,a⊥c?a?c=0,則|b|2=(a+2c)2=a2+4c2=17,則|b|=17;故為17.29.函數(shù)f(x)為偶函數(shù),其圖象與x軸有四個交點,則該函數(shù)的所有零點之和為()A.4B.2C.1D.0答案:因為函數(shù)f(x)為偶函數(shù),所以函數(shù)圖象關(guān)于y軸對稱.又其圖象與x軸有四個交點,所以四個交點關(guān)于y軸對稱,不妨設(shè)四個交點的橫坐標(biāo)為x1,x2,x3,x4,則根據(jù)對稱性可知x1+x2+x3+x4=0.故選D.30.設(shè)x>0,y>0且x≠y,求證答案:證明略解析:由x>0,y>0且x≠y,要證明只需
即只需由條件,顯然成立.∴原不等式成立31.已知拋物線x2=4y上的點p到焦點的距離是10,則p點坐標(biāo)是
______.答案:根據(jù)拋物線方程可求得焦點坐標(biāo)為(0,1)根據(jù)拋物線定義可知點p到焦點的距離與到準(zhǔn)線的距離相等,∴yp+1=10,求得yp=9,代入拋物線方程求得x=±6∴p點坐標(biāo)是(±6,9)故為:(±6,9)32.已知復(fù)數(shù)z0=1-mi(m>0),z=x+yi和,其中x,y,x',y'均為實數(shù),i為虛數(shù)單位,且對于任意復(fù)數(shù)z,有w=.z0?.z,|w|=2|z|.
(Ⅰ)試求m的值,并分別寫出x'和y'用x、y表示的關(guān)系式:
(Ⅱ)將(x、y)用為點P的坐標(biāo),(x'、y')作為點Q的坐標(biāo),上述關(guān)系式可以看作是坐標(biāo)平面上點的一個變換:它將平面上的點P變到這一平面上的點Q.已知點P經(jīng)該變換后得到的點Q的坐標(biāo)為(3,2),試求點P的坐標(biāo);
(Ⅲ)若直線y=kx上的任一點經(jīng)上述變換后得到的點仍在該直線上,試求k的值.答案:(I)由題設(shè)得,|w|=|.z0?.z|=|z0||z|=2|z|,∴|z0|=2,由1+m2=4,且m>0,得m=3,∴z0=1-3i,∵w=.z0?.z,∴x′+y′i=.(1-3i)?.(x+yi))=(1+3i)(x-yi)=x+3y+(3x-y)i,由復(fù)數(shù)相等得,x′=x+3yy′=3x-y,(Ⅱ)由(I)和題意得,x+3y=33x-y=2,解得x=343y=14
,即P點的坐標(biāo)為(343,14).
(Ⅲ)∵直線y=kx上的任意點P(x,y),其經(jīng)變換后的點Q(x+3y,3x-y)仍在該直線上,∴3x-y=k(x+3y),即(3k+1)y=(3-k)x∵當(dāng)k=0時,y=0,y=3x不是同一條直線,∴k≠0,于是3k+11=3-kk,即3k2+2k-3=0,解得k=33或k=-333.已知x∈R,a=x2+12,b=2-x,c=x2-x+1,試證明a,b,c至少有一個不小于1.答案:證明:假設(shè)a,b,c均小于1,即a<1,b<1,c<1,則有a+b+c<3而a+b+c=2x2-2x+12+3=2(x-12)2+3≥3,兩者矛盾;故a,b,c至少有一個不小于1.34.若直線3x+4y+m=0與曲線x=1+cosθy=-2+sinθ(θ為參數(shù))沒有公共點,則實數(shù)m的取值范圍是
______.答案:∵曲線x=1+cosθy=-2+sinθ(θ為參數(shù))的普通方程是(x-1)2+(y+2)2=1則圓心(1,-2)到直線3x+4y+m=0的距離d=|3?1+4(-2)+m|32+42=|m-5|5,令|m-5|5>1,得m>10或m<0.故為:m>10或m<0.35.將兩粒均勻的骰子各拋擲一次,觀察向上的點數(shù),計算:
(1)共有多少種不同的結(jié)果?并試著列舉出來.
(2)兩粒骰子點數(shù)之和等于3的倍數(shù)的概率;
(3)兩粒骰子點數(shù)之和為4或5的概率.答案:(1)每一粒均勻的骰子拋擲一次,都有6種結(jié)果,根據(jù)分步計數(shù)原理,所有可能結(jié)果共有6×6=36種.
…(4分)(2)兩粒骰子點數(shù)之和等于3的倍數(shù)的有以下12種:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(5,4),(4,5),(6,6),共有12個結(jié)果,因此,兩粒骰子點數(shù)之和等于3的倍數(shù)的概率是1236=13.
…(8分)(3)兩粒骰子點數(shù)之和為4或5的有以下7種:(2,2),(1,3),(3,1),(2,3),(3,2),(1,4),(4,1),因此,兩粒骰子點數(shù)之和為4或5的概率為736.
…(12分)36.
若平面向量,,兩兩所成的角相等,||=||=1,||=3,則|++|=()
A.2
B.4
C.2或5
D.4或5答案:C37.已知向量a,b,向量c=2a+b,且|a|=1,|b|=2,a與b的夾角為60°
(1)求|c|2;(2)若向量d=ma-b,且d∥c,求實數(shù)m的值.答案:(1)∵|a|=1,|b|=2,a和b的夾角為60°∴a?b=|a||b|cos60°=1∴|c|2=(
2a+b)2=4a2+4ab+b2=4+4+4=12(2)∵d∥c∴存在實數(shù)λ使得d=λc即ma-b=λ(2a+b)又∵a,b不共線∴2λ=m,λ=-1∴m=-238.若圖中的直線l1、l2、l3的斜率分別為k1、k2、k3,則()A.k1<k2<k3B.k2<k1<k3C.k3<k2<k1D.k1<k3<k2答案:因為直線的斜率是其傾斜角的正切值,當(dāng)傾斜角大于90°小于180°時,斜率為負(fù)值,當(dāng)傾斜角大于0°小于90°時斜率為正值,且正切函數(shù)在(0°,90°)上為增函數(shù),由圖象三條直線的傾斜角可知,k2<k1<k3.故選C.39.若隨機(jī)變量X的概率分布如下表,則表中a的值為()
X
1
2
3
4
P
0.2
0.3
0.3
a
A.1
B.0.8
C.0.3
D.0.2答案:D40.已知空間三點的坐標(biāo)為A(1,5,-2),B(2,4,1),C(p,3,q+2),若A,B,C三點共線,則p=______,q=______.答案:∵A(1,5,-2),B(2,4,1),C(p,3,q+2),∴AB=(1,-1,3),AC=(p-1,-2,q+4)∵A,B,C三點共線,∴AB=λAC∴(1,-1,3)=λ(p-1,-2,q+4),∴1=λ(p-1)-1=-2λ,3=λ(q+4),∴λ=12,p=3,q=2,故為:3;241.若A為m×n階矩陣,AB=C,則B的階數(shù)可以是下列中的______.
①m×m,②m×n,③n×m,④n×n.答案:兩個矩陣只有當(dāng)前一個矩陣的列數(shù)與后一個矩陣的行數(shù)相等時,才能作乘法.矩陣A是n列矩陣,故矩陣B是n行的矩陣則B的階數(shù)可以是③n×m,④n×n故為:③④42.已知中心在原點,對稱軸為坐標(biāo)軸,長半軸長與短半軸長的和為92,離心率為35的橢圓的標(biāo)準(zhǔn)方程為______.答案:由題意可得a+b=92e=ca=35a2=b2+c2,解得a2=50b2=32.∴橢圓的標(biāo)準(zhǔn)方程為x250+y232=1或y250+x232=1.故為x250+y232=1或y250+x232=1.43.已知z=1+i,則|z|=______.答案:由z=1+i,所以|z|=12+12=2.故為2.44.執(zhí)行程序框圖,如果輸入的n是5,則輸出的p是()
A.1
B.2
C.3
D.5
答案:D45.用隨機(jī)數(shù)表法從100名學(xué)生(男生35人)中選20人作樣本,男生甲被抽到的可能性為()A.15B.2035C.35100D.713答案:由題意知,本題是一個等可能事件的概率,試驗發(fā)生包含的事件是用隨機(jī)數(shù)表法從100名學(xué)生選一個,共有100種結(jié)果,滿足條件的事件是抽取20個,∴根據(jù)等可能事件的概率公式得到P=20100=15,故選A.46.在復(fù)平面內(nèi),復(fù)數(shù)z=sin2+icos2對應(yīng)的點位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:∵sin2>0,cos2<0,∴z=sin2+icos2對應(yīng)的點在第四象限,故選D.47.“所有10的倍數(shù)都是5的倍數(shù),某數(shù)是10的倍數(shù),則該數(shù)是5的倍數(shù),”上述推理()
A.完全正確
B.推理形式不正確
C.錯誤,因為大小前提不一致
D.錯誤,因為大前提錯誤答案:A48.已知e1,e2是夾角為60°的單位向量,且a=2e1+e2,b=-3e1+2e2
(1)求a?b;
(2)求a與b的夾角<a,b>.答案:(1)求a?b=(2e1+e2)?
(-3e1+2e2)=
-6e12+e1
?e2+2e22=-6+1×1×cos60°+2=-72.(2)|a|=|2e1+e2|=(2e1+e2)2=4e12+2e1?e2+e22=7同樣地求得|b|=7.所以cos<a,b>=a?b|a||b|=-727
×7=-12,又0<<a,b><π,所以<a,b>=2π3.49.Rt△ABC中,AB=3,BC=4,AC=5,將三角形繞直角邊AB旋轉(zhuǎn)一周形成一個新的幾何體,想象幾何體的結(jié)構(gòu),畫出它的三視圖,求出它的表面積和體積.答案:以繞AB邊旋轉(zhuǎn)為例,其直觀圖、正(側(cè))視圖、俯視圖依次分別為:其表面是扇形的表面,所以其表面積為S=πRL=36π,V=13×π×BC2×AB=16π.50.|a|=4,|b|=5,|a+b|=8,則a與b的夾角為______.答案:設(shè)a與b的夾角為θ因為|a|=4,|b|=5,|a+b|=8,所以a2+2a?b+b2=64即16+2×4×5cosθ+25=64解得cosθ=2340所以θ=arccos2340故為arccos2340第3卷一.綜合題(共50題)1.下列哪組中的兩個函數(shù)是同一函數(shù)()A.y=(x)2與y=xB.y=(3x)3與y=xC.y=x2與y=(x)2D.y=3x3與y=x2x答案:A、y=x與y=x2的定義域不同,故不是同一函數(shù).B、y=(3x)3=x與y=x的對應(yīng)關(guān)系相同,定義域為R,故是同一函數(shù).C、fy=x2與y=(x)2的定義域不同,故不是同一函數(shù).D、y=3x3與y=x2x
具的定義域不同,故不是同一函數(shù).故選B.2.已知單位向量a,b的夾角為,那么|a+2b|=()
A.2
B.
C.2
D.4答案:B3.如圖,AB是⊙O的直徑,AD是⊙O的切線,點C在⊙O上,BC∥OD,AB=2,OD=3,則BC的長為______.答案:∵OD∥BC,∴∠AOD=∠B;∵AD是⊙O的切線,∴BA⊥AD,即∠OAD=∠ACB=90°,∴Rt△AOD∽Rt△CBA,∴BCOA=ABOD,即BC1=23,故BC=23.4.圓臺的一個底面周長是另一個底面周長的3倍,母線長為3,圓臺的側(cè)面積為84π,則圓臺較小底面的半徑為()A.7B.6C.5D.3答案:設(shè)上底面半徑為r,因為圓臺的一個底面周長是另一個底面周長的3倍,母線長為3,圓臺的側(cè)面積為84π,所以S側(cè)面積=π(r+3r)l=84π,r=7故選A5.編號為A、B、C、D、E的五個小球放在如圖所示的五個盒子中,要求每個盒子只能放一個小球,且A不能放1,2號,B必需放在與A相鄰的盒子中,則不同的放法有()種.A.42B.36C.30D.28答案:根據(jù)題意,A不能放1,2號,則A可以放在3、4、5號盒子,分2種情況討論:①當(dāng)A在4、5號盒子時,B有1種放法,剩下3個有A33=6種不同放法,此時,共有2×1×6=12種情況;②當(dāng)A在3號盒子時,B有3種放法,剩下3個有A33=6種不同放法,此時,共有1×3×6=18種情況;由加法原理,計算可得共有12+18=30種不同情況;故選C.6.抽樣方法有()A.隨機(jī)抽樣、系統(tǒng)抽樣和分層抽樣B.隨機(jī)數(shù)法、抽簽法和分層抽樣法C.簡單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣D.系統(tǒng)抽樣、分層抽樣和隨機(jī)數(shù)法答案:我們常用的抽樣方法有:簡單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣,而抽簽法和隨機(jī)數(shù)法,只是簡單隨機(jī)抽樣的兩種不同抽取方法故選C7.①平行向量一定相等;②不相等的向量一定不平行;③相等向量一定共線;④共線向量一定相等;⑤長度相等的向量是相等向量;⑥平行于同一個向量的兩個向量是共線向量,其中正確的命題是______.答案:∵平行向量即為共線向量其定義是方向相同或相反;相等向量的定義是模相等、方向相同;①平行向量不一定相等;故錯;②不相等的向量也可能不平行;故錯;③相等向量一定共線;正確;④共線向量不一定相等;故錯;⑤長度相等的向量方向相反時不是相等向量;故錯;⑥平行于零向量的兩個向量是不一定是共線向量,故錯.其中正確的命題是③.故為:③.8.已知f(1,1)=1,f(m,n)∈N*(m、n∈N*),且對任意m、n∈N*都有:
①f(m,n+1)=f(m,n)+2;②f(m+1,1)=2f(m,1).給出以下四個結(jié)論:
(1)f(1,2)=3;
(2)f(1,5)=9;
(3)f(5,1)=16;
(4)f(5,6)=26.其中正確的為______.答案:∵f(1,1)=1,f(m,n+1)=f(m,n)+2;f(m+1,1)=2f(m,1)(1)f(1,2)=f(1,1)+2=3;故(1)正確(2)f(1,5)=f(1,4)+2=f(1,3)+4=f(1,2)+6=f(1,1)+8=9;故(2)正確(3)f(5,1)=2f(4,1)=4f(3,1)=8f(2,1)=16f(1,1)=16;故(3)正確(4)f(5,6)=f(5,5)+2=f(5,4)+4=f(5,3)+6=f(5,2)=8=f(5,1)+10=16+10=26;故(4)正確故為(1)(2)(3)(4)9.已知三個向量a,b,c不共面,并且p=a+b-c,q=2a-3b-5c,r=-7a+18b+22c,向量p,q,r是否共面?答案:解:實數(shù)λ,μ,使p=λq+μr,則a+b-c=(2λ-7μ)a+(-3λ+18μ)b+(-5λ+22μ)c∵a,b,c不共面,∴∴即存在實數(shù),,使p=λq+μr,故向量p、q、r共面.10.已知A(3,0),B(0,3),O為坐標(biāo)原點,點C在第一象限內(nèi),且∠AOC=60°,設(shè)OC=OA+λOB
(λ∈R),則λ等于()A.33B.3C.13D.3答案:∵OC=OC=OA+λOB(λ∈R),∠AOC=60°∴|λOB|=
3tan60°=33又∵|OB|=3∴λ=3故選D.11.已知x,y之間的一組數(shù)據(jù):x1.081.121.191.28y2.252.372.402.55y與x之間的線性性回歸方y(tǒng)=bx+a必過定點______.答案:回歸直線方程一定過樣本的中心點(.x,.y),.x=1.08+1.12+1.19+1.284=1.1675,
.y=2.25+2.37+2.40+2.554=2.3925,∴樣本中心點是(1.1675,2.3925),故為(1.1675,2.3925).12.如圖,把橢圓x225+y216=1的長軸AB分成8等份,過每個分點作x軸的垂線交橢圓的上半部分于P1,P2,P3,P4,P5,P6,P7七個點,F(xiàn)是橢圓的一個焦點,則|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=______.答案:如圖,把橢圓x225+y216=1的長軸AB分成8等份,過每個分點作x軸的垂線交橢圓的上半部分于P1,P2,P3,P4,P5,P6,P7七個點,F(xiàn)是橢圓的一個焦點,則根據(jù)橢圓的對稱性知,|P1F1|+|P7F1|=|P1F1|+|P1F2|=2a,同理其余兩對的和也是2a,又|P4F1|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35,故為35.13.已知直線l1:(k-3)x+(4-k)y+1=0,與l2:2(k-3)x-2y+3=0,平行,則k的值是______.答案:當(dāng)k=3時兩條直線平行,當(dāng)k≠3時有2=-24-k≠3
所以
k=5故為:3或5.14.如圖,直線AB經(jīng)過⊙O上的點C,并且OA=OB,CA=CB,⊙O交直線OB于E、D,連接EC、CD.
(1)求證:直線AB是⊙O的切線;
(2)若tan∠CED=12,⊙O的半徑為3,求OA的長.答案:(1)如圖,連接OC,∵OA=OB,CA=CB,∴OC⊥AB.∴AB是⊙O的切線;(2)∵BC是圓O切線,且BE是圓O割線,∴BC2=BD?BE,∵tan∠CED=12,∴CDEC=12.∵△BCD∽△BEC,∴BDBC=CDEC=12,設(shè)BD=x,BC=2x.又BC2=BD?BE,∴(2x)2=x?(x+6),解得x1=0,x2=2,∵BD=x>0,∴BD=2,∴OA=OB=BD+OD=3+2=5.(10分).15.已知向量表示“向東航行1km”,向量表示“向南航行1km”,則向量表示()
A向東南航行km
B.向東南航行2km
C.向東北航行km
D.向東北航行2km答案:A16.設(shè)A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},A∩B={2}.
(1)求a的值及集合A、B;
(2)設(shè)全集U=A∪B,求(CUA)∪(CUB)的所有子集.答案:解:(1)∵A∩B={2},∴2∈A,∴8+2a+2=0,∴a=﹣5;B={2,﹣5}(2)U=A∪B=,∴CUA={﹣5},CUB=∴(CUA)∪(CUB)=∴(CUA)∪(CUB)的所有子集為:,{﹣5},{},{﹣5,}.17.已知圓C與直線x-y=0及x-y-4=0都相切,圓心在直線x+y=0上,則圓C的方程為()A.(x+1)2+(y-1)2=2B.(x-1)2+(y+1)2=2C.(x-1)2+(y-1)2=2D.(x+1)2+(y+1)2=2答案:圓心在x+y=0上,圓心的縱橫坐標(biāo)值相反,顯然能排除C、D;驗證:A中圓心(-1,1)到兩直線x-y=0的距離是|2|2=2;圓心(-1,1)到直線x-y-4=0的距離是62=32≠2.故A錯誤.故選B.18.如圖,AB是⊙O的直徑,點D在AB的延長線上,BD=OB,CD與⊙O切于C,那么∠CAB═______.答案:連接OC,BC.∵CD是切線,∴OC⊥CD.∵BD=OB,∴BC=OB=OC.∴∠ABC=60°.∵AB是直徑,∴∠ACB=90°,∴∠CAB=30°故為:30°19.設(shè)曲線C的方程是,將C沿x軸,y軸正向分別平移單位長度后,得到曲線C1.(1)寫出曲線C1的方程;(2)證明曲線C與C1關(guān)于點A(,)對稱.答案:(1)(2)證明略解析:(1)由已知得,,則平移公式是即代入方程得曲線C1的方程是(2)在曲線C上任取一點,設(shè)是關(guān)于點A的對稱點,則有,,代入曲線C的方程,得關(guān)于的方程,即可知點在曲線C1上.反過來,同樣可以證明,在曲線C1上的點關(guān)于點A的對稱點在曲線C上,因此,曲線C與C1關(guān)于點A對稱.20.若命題p的否命題是q,命題q的逆命題是r,則r是p的逆命題的()A.原命題B.逆命題C.否命題D.逆否命題答案:設(shè)命題p為“若k,則s”;則其否命題q是“若¬k,則¬s”;∴命題q的逆命題r是“若¬s,則¬k”,而p的逆命題為“若s,則k”,故r是p的逆命題的否命題.故選C.21.設(shè)F1,F(xiàn)2為定點,|F1F2|=6,動點M滿足|MF1|+|MF2|=6,則動點M的軌跡是()A.橢圓B.直線C.圓D.線段答案:對于在平面內(nèi),若動點M到F1、F2兩點的距離之和等于6,而6正好等于兩定點F1、F2的距離,則動點M的軌跡是以F1,F(xiàn)2為端點的線段.故選D.22.設(shè)A1,A2,A3,A4是平面直角坐標(biāo)系中兩兩不同的四點,若A1A3=λA1A2(λ∈R),A1A4=μA1A2(μ∈R),且1λ+1μ=2,則稱A3,A4調(diào)和分割A(yù)1,A2,已知點C(c,0),D(d,O)(c,d∈R)調(diào)和分割點A(0,0),B(1,0),則下面說法正確的是()A.C可能是線段AB的中點B.D可能是線段AB的中點C.C,D可能同時在線段AB上D.C,D不可能同時在線段AB的延長線上答案:由已知可得(c,0)=λ(1,0),(d,0)=μ(1,0),所以λ=c,μ=d,代入1λ+1μ=2得1c+1d=2(1)若C是線段AB的中點,則c=12,代入(1)d不存在,故C不可能是線段AB的中,A錯誤;同理B錯誤;若C,D同時在線段AB上,則0≤c≤1,0≤d≤1,代入(1)得c=d=1,此時C和D點重合,與條件矛盾,故C錯誤.故選D23.向量a、b滿足|a|=1,|b|=2,且a與b的夾角為π3,則|a+2b|=______.答案:∵|a|=1,|b|=2,且a與b的夾角為π3,∴a?b=|a|?|b|?cosπ3=1因此,(a+2b)2=|a|2+4a?b+4|b|2=12+4×1+4|b|2=21∴|a+2b|=21故為:2124.已知向量,,若與共線,則的值為
A
B
C
D
答案:D解析:,,由,得25.已知函數(shù)f(x)=x2+(a2-1)x+(a-2)的一個零點比1大,一個零點比1小,則實數(shù)a的取值范圍______.答案:∵函數(shù)f(x)=x2+(a2-1)x+(a-2)的一個零點比1大,一個零點比1小∴f(1)<0∴1+a2-1+a-2<0∴a2+a-2<0∴-2<a<1∴實數(shù)a的取值范圍為(-2,1)故為:(-2,1)26.如圖,四面體ABCD中,點E是CD的中點,記=(
)
A.
B.
C.
D.
答案:B27.函數(shù)f(x)=2|log2x|的圖象大致是()
A.
B.
C.
D.
答案:C28.已知原命題“兩個無理數(shù)的積仍是無理數(shù)”,則:
(1)逆命題是“乘積為無理數(shù)的兩數(shù)都是無理數(shù)”;
(2)否命題是“兩個不都是無理數(shù)的積也不是無理數(shù)”;
(3)逆否命題是“乘積不是無理數(shù)的兩個數(shù)都不是無理數(shù)”;
其中所有正確敘述的序號是______.答案:(1)交換原命題的條件和結(jié)論得到逆命題:“乘積為無理數(shù)的兩數(shù)都是無理數(shù)”,正確.(2)同時否定原命題的條件和結(jié)論得到否命題:“兩個不都是無理數(shù)的積也不是無理數(shù)”,正確.(3)同時否定原命題的條件和結(jié)論,然后在交換條件和結(jié)論得到逆否命題:“乘積不是無理數(shù)的兩個數(shù)不都是無理數(shù)”.所以逆否命題錯誤.故為:(1)(2).29.某程序框圖如圖所示,該程序運行后輸出的k的值是()A.4B.5C.6D.7答案:根據(jù)流程圖所示的順序,程序的運行過程中各變量值變化如下表:是否繼續(xù)循環(huán)
S
K循環(huán)前/0
0第一圈
是
1
1第二圈
是
3
2第三圈
是
11
3第四圈
是
20594第五圈
否∴最終輸出結(jié)果k=4故為A30.用數(shù)學(xué)歸納法證明:12+22+32+…+n2=n(n+1)(2n+1)6.答案:證明:(1)當(dāng)n=1時,左邊=12=1,右邊=1×2×36=1,等式成立.(4分)(2)假設(shè)當(dāng)n=k時,等式成立,即12+22+32+…+k2=k(k+1)(2k+1)6(6分)那么,當(dāng)n=k+1時,12+22+32+…+k2+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(2k2+7k+6)6=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6這就是說,當(dāng)n=k+1時等式也成立.(10分)根據(jù)(1)和(2),可知等式對任何n∈N*都成立.(12分)31.一圓錐側(cè)面展開圖為半圓,平面α與圓錐的軸成45°角,則平面α與該圓錐側(cè)面相交的交線為()A.圓B.拋物線C.雙曲線D.橢圓答案:設(shè)圓錐的母線長為R,底面半徑為r,則:πR=2πr,∴R=2r,∴母線與高的夾角的正弦值=rR=12,∴母線與高的夾角是30°.由于平面α與圓錐的軸成45°>30°;則平面α與該圓錐側(cè)面相交的交線為橢圓.故選D.32.在極坐標(biāo)系中,圓ρ=-2cosθ的圓心的極坐標(biāo)是()
A.(1,)
B.(1,-)
C.(1,0)
D.(1,π)答案:D33.|a|=4,a與b的夾角為30°,則a在b方向上的投影為______.答案:a在b方向上的投影為|a|cos30°=4×32=23故為:2334.設(shè)z∈C,|z|≤2,則點Z表示的圖形是()A.直線x=2的左半平面B.半徑為2的圓面C.直線x=2的右半平面D.半徑為2的圓答案:由題意z∈C,|z|≤2,由得數(shù)的幾何意義知,點Z表示的圖形是半徑為2的圓面,故選B35.在平面直角坐標(biāo)系xOy中,點A(-1,-2)、B(2,3)、C(-2,-1).
(1)求以線段AB、AC為鄰邊的平行四邊形兩條對角線的長;
(2)設(shè)實數(shù)t滿足(AB-tOC)?OC=0,求t的值.答案:(1)(方法一)由題設(shè)知AB=(3,5),AC=(-1,1),則AB+AC=(2,6),AB-AC=(4,4).所以|AB+AC|=210,|AB-AC|=42.故所求的兩條對角線的長分別為42、210.(方法二)設(shè)該平行四邊形的第四個頂點為D,兩條對角線的交點為E,則:E為B、C的中點,E(0,1)又E(0,1)為A、D的中點,所以D(1,4)故所求的兩條對角線的長分別為BC=42、AD=210;(2)由題設(shè)知:OC=(-2,-1),AB-tOC=(3+2t,5+t).由(AB-tOC)?OC=0,得:(3+2t,5+t)?(-2,-1)=0,從而5t=-11,所以t=-115.或者:AB?OC=tOC2,AB=(3,5),t=AB?OC|OC|2=-11536.點P(4,-2)與圓x2+y2=4上任一點連線的中點軌跡方程是______.答案:設(shè)圓上任意一點為A(x1,y1),AP中點為(x,y),則x=x1+42y=y1-22,∴x1=2x-4y1=2y+2代入x2+y2=4得(2x-4)2+(2y+2)2=4,化簡得(x-2)2+(y+1)2=1.故為:(x-2)2+(y+1)2=137.平面向量與的夾角為60°,=(2,0),||=1,則|+2|()
A.
B.2
C.4
D.12答案:B38.給出下列結(jié)論:
(1)在回歸分析中,可用指數(shù)系數(shù)R2的值判斷模型的擬合效果,R2越大,模型的擬合效果越好;
(2)在回歸分析中,可用殘差平方和判斷模型的擬合效果,殘差平方和越大,模型的擬合效果越好;
(3)在回歸分析中,可用相關(guān)系數(shù)r的值判斷模型的擬合效果,r越大,模型的擬合效果越好;
(4)在回歸分析中,可用殘差圖判斷模型的擬合效果,殘差點比較均勻地落在水平的帶狀區(qū)域中,說明這樣的模型比較合適.帶狀區(qū)域的寬度越窄,說明模型的擬合精度越高.
以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 藥用植物鑒賞課程設(shè)計
- 植物檢疫學(xué)課程設(shè)計
- 英文散文選讀課程設(shè)計
- 素描班幾何圖形課程設(shè)計
- 火電項目風(fēng)險與防范
- 自述機(jī)械課程設(shè)計過程
- 縣社會穩(wěn)定風(fēng)險評估工作檔案資料明細(xì)
- 《刑罰的消滅》課件
- 托班吸管創(chuàng)意課程設(shè)計
- 互聯(lián)網(wǎng)業(yè)務(wù)員用戶維護(hù)總結(jié)
- 金融模擬交易實驗報告
- 國家開放大學(xué)電大本科《古代小說戲曲專題》2023期末試題及答案(試卷號:1340)
- 加德納多元智能理論教學(xué)課件
- 北師大版數(shù)學(xué)八年級上冊全冊教案
- 現(xiàn)代文閱讀之散文
- 從業(yè)人員在安全生產(chǎn)方面的權(quán)利和義務(wù)
- 新開模具清單
- 抗菌藥物臨床應(yīng)用指導(dǎo)原則(2023年版)
- 2023年軍政知識綜合題庫
- 2023-2024學(xué)年福建省福州市小學(xué)語文 2023-2024學(xué)年六年級語文期末試卷期末評估試卷
- YY 0286.1-2019專用輸液器第1部分:一次性使用微孔過濾輸液器
評論
0/150
提交評論