2023年海南健康管理職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年海南健康管理職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年海南健康管理職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年海南健康管理職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年海南健康管理職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩41頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年海南健康管理職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.極坐標(biāo)方程pcosθ=表示()

A.一條平行于x軸的直線

B.一條垂直于x軸的直線

C.一個圓

D.一條拋物線答案:B2.已知f(x+1)=x2+2x+3,則f(2)的值為______.答案:由f(x+1)=x2+2x+3,得f(1+1)=12+2×1+3=6,故為:6.3.如圖,若直線l1,l2,l3的斜率分別為k1,k2,k3,則k1,k2,k3三個數(shù)從小到大的順序依次是______.答案:由函數(shù)的圖象可知直線l1,l2,l3的斜率滿足k1<0<k3<k2所以k1,k2,k3三個數(shù)從小到大的順序依次是k1,k3,k2故為:k1,k3,k2.4.給出以下變量①吸煙,②性別,③宗教信仰,④國籍,其中屬于分類變量的有______.答案:①因為吸煙不是分類變量,是否吸煙才是分類變量,其他②③④屬于分類變量.故為:②③④.5.“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當(dāng)它醒來時,發(fā)現(xiàn)烏龜快到終點了,于是急忙追趕,但為時已晚,烏龜還是先到達(dá)了終點…,用S1、S2分別表示烏龜和兔子所行的路程,t為時間,則下圖與故事情節(jié)相吻合的是()

A.

B.

C.

D.

答案:B6.在極坐標(biāo)系中,曲線ρ=2cosθ所表示圖形的面積為______.答案:將原極坐標(biāo)方程為p=2cosθ,化成:p2=2ρcosθ,其直角坐標(biāo)方程為:∴x2+y2=2x,是一個半徑為1的圓,其面積為π.故填:π.7.已知命題p、q,若命題“p∨q”與命題“¬p”都是真命題,則()A.命題q一定是真命題B.命題q不一定是真命題C.命題p不一定是假命題D.命題p與命題q的真值相等答案:∵命題“¬p”與命題“p∨q”都是真命題,∴命題p為假命題,q為真命題.故選A.8.在空間直角坐標(biāo)系中,已知點A(1,0,2),B(1,-3,1),點M在y軸上,且M到A與到B的距離相等,則M的坐標(biāo)是______.答案:設(shè)M(0,y,0)由12+y2+4=1+(y+3)2+1可得y=-1故M(0,-1,0)故為:(0,-1,0).9.三個數(shù)a=0.52,b=log20.5,c=20.5之間的大小關(guān)系是()A.a(chǎn)<c<bB.b<c<aC.a(chǎn)<b<cD.b<a<c答案:∵0<a=0.52<1,b=log20.5<log21=0,c=20.5>20=1,∴b<a<c故選D.10.設(shè)直線l與平面α相交,且l的方向向量為a,α的法向量為n,若<a,n>=,則l與α所成的角為()

A.

B.

C.

D.答案:C11.用數(shù)學(xué)歸納法證明不等式成立,起始值至少應(yīng)取為()

A.7

B.8

C.9

D.10答案:B12.某學(xué)院有四個飼養(yǎng)房,分別養(yǎng)有18,54,24,48只白鼠供實驗用,某項實驗需要抽取24只白鼠,你認(rèn)為最合適的抽樣方法是()A.在每個飼養(yǎng)房各抽取6只B.把所以白鼠都編上號,用隨機(jī)抽樣法確定24只C.在四個飼養(yǎng)房應(yīng)分別抽取3,9,4,8只D.先確定這四個飼養(yǎng)房應(yīng)分別抽取3,9,4,8只樣品,再由各飼養(yǎng)房將白鼠編號,用簡單隨機(jī)抽樣確定各自要抽取的對象答案:A中對四個飼養(yǎng)房平均攤派,但由于各飼養(yǎng)房所養(yǎng)數(shù)量不一,反而造成了各個個體入選概率的不均衡,是錯誤的方法.B中保證了各個個體入選概率的相等,但由于沒有注意到處在四個不同環(huán)境中會產(chǎn)生差異,不如采用分層抽樣可靠性高,且統(tǒng)一編號統(tǒng)一選擇加大了工作量.C中總體采用了分層抽樣,但在每個層次中沒有考慮到個體的差層(如健壯程度,靈活程度),貌似隨機(jī),實則各個個體概率不等.故選D.13.設(shè)集合A={1,2,3,4},集合B={1,3,5,7},則集合A∪B=()A.{1,3}B.{1,2,3,4,5,7}C.{5,7}D.{2,4,5,7}答案:∵A={1,2,3,4},B={1,3,5,7},∴A∪B={1,2,3,4,5,7},故選B.14.已知復(fù)數(shù)z0=1-mi(m>0),z=x+yi和w=x'+y'i,其中x,y,x',y'均為實數(shù),i為虛數(shù)單位,且對于任意復(fù)數(shù)z,有w=.z0?.z,|w|=2|z|.

(Ⅰ)試求m的值,并分別寫出x'和y'用x、y表示的關(guān)系式;

(Ⅱ)將(x、y)作為點P的坐標(biāo),(x'、y')作為點Q的坐標(biāo),上述關(guān)系可以看作是坐標(biāo)平面上點的一個變換:它將平面上的點P變到這一平面上的點Q,當(dāng)點P在直線y=x+1上移動時,試求點P經(jīng)該變換后得到的點Q的軌跡方程;

(Ⅲ)是否存在這樣的直線:它上面的任一點經(jīng)上述變換后得到的點仍在該直線上?若存在,試求出所有這些直線;若不存在,則說明理由.答案:(Ⅰ)由題設(shè),|w|=|.z0?.z|=|z0||z|=2|z|,∴|z0|=2,于是由1+m2=4,且m>0,得m=3,…(3分)因此由x′+y′i=.(1-3i)?.(x+yi)=x+3y+(3x-y)i,得關(guān)系式x′=x+3yy′=3x-y…(5分)(Ⅱ)設(shè)點P(x,y)在直線y=x+1上,則其經(jīng)變換后的點Q(x',y')滿足x′=(1+3)x+3y′=(3x-1)x-1,…(7分)消去x,得y′=(2-3)x′-23+2,故點Q的軌跡方程為y=(2-3)x-23+2…(10分)(3)假設(shè)存在這樣的直線,∵平行坐標(biāo)軸的直線顯然不滿足條件,∴所求直線可設(shè)為y=kx+b(k≠0),…(12分)[解法一]∵該直線上的任一點P(x,y),其經(jīng)變換后得到的點Q(x+3y,3x-y)仍在該直線上,∴3x-y=k(x+3y)+b,即-(3k+1)y=(k-3)x+b,當(dāng)b≠0時,方程組-(3k+1)=1k-3=k無解,故這樣的直線不存在.

…(16分)當(dāng)b=0時,由-(3k+1)1=k-3k,得3k2+2k-3=0,解得k=33或k=-3,故這樣的直線存在,其方程為y=33x或y=-3x,…(18分)[解法二]取直線上一點P(-bk,0),其經(jīng)變換后的點Q(-bk,-3bk)仍在該直線上,∴-3bk=k(-bk)+b,得b=0,…(14分)故所求直線為y=kx,取直線上一點P(0,k),其經(jīng)變換后得到的點Q(1+3k,3-k)仍在該直線上.∴3-k=k(1+3k),…(16分)即3k2+2k-3=0,得k=33或k=-3,故這樣的直線存在,其方程為y=33x或y=-3x,…(18分)15.若一個橢圓長軸的長度、短軸的長度和焦距成等差數(shù)列,則該橢圓的離心率是(

A.

B.

C.

D.答案:B16.P為橢圓x225+y216=1上一點,F(xiàn)1,F(xiàn)2分別為其左,右焦點,則△PF1F2周長為______.答案:由題意知△PF1F2周長=2a+2c=10+6=16.17.如圖,AB是半圓O的直徑,C、D是半圓上的兩點,半圓O的切線PC交AB的延長線于點P,∠PCB=25°,則∠ADC為()

A.105°

B.115°

C.120°

D.125°

答案:B18.如圖是某賽季甲、乙兩名籃球運動員每場比賽得分的莖葉圖,中間的數(shù)字表示得分的十位數(shù),下列對乙運動員的判斷錯誤的是()A.乙運動員得分的中位數(shù)是28B.乙運動員得分的眾數(shù)為31C.乙運動員的場均得分高于甲運動員D.乙運動員的最低得分為0分答案:根據(jù)題意,可得甲的得分?jǐn)?shù)據(jù):8,14,16,13,23,26,28,30,30,39可得甲得分的平均數(shù)是22.7乙的得分?jǐn)?shù)據(jù):12,15,25,24,21,31,36,31,37,44可得乙得分的平均數(shù)是27.6,31出現(xiàn)了兩次,可得乙得分的眾數(shù)是1將乙得分?jǐn)?shù)據(jù)按從小到大的順序排列,位于中間的兩個數(shù)是25和31,故中位數(shù)是12(25+31)=28由以上的數(shù)據(jù),可得:乙運動員得分的中位數(shù)是28,A項是正確的;乙運動員得分的眾數(shù)為31,B項是正確的;乙運動員的場均得分高于甲運動員,C各項是正確的.而D項因為乙運動員的得分沒有0分,故D項錯誤故選:D19.用長為4、寬為2的矩形做側(cè)面圍成一個高為2的圓柱,此圓柱的軸截面面積為()A.8B.8πC.4πD.2π答案:∵用長為4、寬為2的矩形做側(cè)面圍成一個圓柱,且圓柱高為h=2∴底面圓周由長為4的線段圍成,可得底面圓直徑2r=4π∴此圓柱的軸截面矩形的面積為S=2r×h=8π故選:B20.已知sint+cost=1,設(shè)s=cost+isint,求f(s)=1+s+s2+…sn.答案:sint+cost=1∴(sint+cost)2=1+2sint?cost=1∴2sint?cost=sin2t=0則cost=0,sint=1或cost=1,sint=0,當(dāng)cost=0,sint=1時,s=cost+isint=i則f(s)=1+s+s2+…sn=1+i,n=4k+1i,n=4k+20,n=4k+31,n=4(k+1)(k∈N+)當(dāng)cost=1,sint=0時,s=cost+isint=1則f(s)=1+s+s2+…sn=n+121.若向量a=(4,2,-4),b=(6,-3,2),則(2a-3b)?(a+2b)=______.答案:∵2a-3b=(-10,13,-14),a+2b=(16,-4,0)∴(2a-3b)?(a+2b)=-10×16+13×(-4)=-212故為-21222.若{、、}為空間的一組基底,則下列各項中,能構(gòu)成基底的一組向量是[

]A.,+,﹣

B.,+,﹣

C.,+,﹣

D.+,﹣,+2答案:C23.以橢圓上一點和橢圓兩焦點為頂點的三角形的面積最大值為1時,橢圓長軸的最小值為()

A.

B.

C.2

D.2

答案:D24.如圖,AB是⊙O的直徑,AD是⊙O的切線,點C在⊙O上,BC∥OD,AB=2,OD=3,則BC的長為______.答案:∵OD∥BC,∴∠AOD=∠B;∵AD是⊙O的切線,∴BA⊥AD,即∠OAD=∠ACB=90°,∴Rt△AOD∽Rt△CBA,∴BCOA=ABOD,即BC1=23,故BC=23.25.已知正方形的邊長為2,AB=a,BC=b,AC=c,則|a+b+c|=()A.0B.2C.2D.4答案:由題意可得:AB+BC=AC,所以c=a+b,所以|a+b+c|=2|c|.因為正方形的邊長為2,所以|AC|=|c|=2,所以|a+b+c|=2|c|=4.故選D.26.四名志愿者和兩名運動員排成一排照相,要求兩名運動員必須站在一起,則不同的排列方法為()A.A44A22B.A55A22C.A55D.A66A22答案:根據(jù)題意,要求兩名運動員站在一起,所以使用捆綁法,兩名運動員站在一起,有A22種情況,將其當(dāng)做一個元素,與其他四名志愿者全排列,有A55種情況,結(jié)合分步計數(shù)原理,其不同的排列方法為A55A22種,故選B.27.如圖表示空間直角坐標(biāo)系的直觀圖中,正確的個數(shù)為()

A.1個

B.2個

C.3個

D.4個答案:C28.大熊貓活到十歲的概率是0.8,活到十五歲的概率是0.6,若現(xiàn)有一只大熊貓已經(jīng)十歲了,則他活到十五歲的概率是()

A.0.8

B.0.75

C.0.6

D.0.48答案:B29.在正方體ABCD-A1B1C1D1中,直線BC1與平面A1BD所成角的余弦值是______.答案:分別以DA、DC、DD1為x、y、z軸建立如圖所示空間直角坐標(biāo)系設(shè)正方體的棱長等于1,可得D(0,0,0),B(1,1,0),C1(0,1,1),A1(1,0,1),∴BC1=(-1,0,1),A1D=(-1,0,-1),BD=(-1,-1,0)設(shè)n=(x,y,z)是平面A1BD的一個法向量,則n?A1D=-x-z=0n?BD=-x-y=0,取x=1,得y=z=-1∴平面A1BD的一個法向量為n=(1,-1,-1)設(shè)直線BC1與平面A1BD所成角為θ,則sinθ=|cos<BC1,n>|=BC1?n|BC1|?n=63∴cosθ=1-sin2θ=33,即直線BC1與平面A1BD所成角的余弦值是33故為:3330.在極坐標(biāo)系中,若點A(ρ0,π3)(ρ0≠0)是曲線ρ=2cosθ上的一點,則ρ0=______.答案:∵點A(ρ0,π3)(ρ0≠0)是曲線ρ=2cosθ上的一點,∴ρ0=2cosπ3.∴ρ0=2×12=1.故為:1.31.已知命題p:“有的實數(shù)沒有平方根.”,則非p是______.答案:∵命題p:“有的實數(shù)沒有平方根.”,是一個特稱命題,非P是它的否定,應(yīng)為全稱命題“所有實數(shù)都有平方根”故為:所有實數(shù)都有平方根.32.如圖,已知點P在正方體ABCD-A′B′C′D′的對角線BD′上,∠PDA=60°.

(Ⅰ)求DP與CC′所成角的大小;

(Ⅱ)求DP與平面AA′D′D所成角的大小.答案:方法一:如圖,以D為原點,DA為單位長建立空間直角坐標(biāo)系D-xyz.則DA=(1,0,0),CC′=(0,0,1).連接BD,B'D'.在平面BB'D'D中,延長DP交B'D'于H.設(shè)DH=(m,m,1)(m>0),由已知<DH,DA>=60°,由DA?DH=|DA||DH|cos<DA,DH>可得2m=2m2+1.解得m=22,所以DH=(22,22,1).(4分)(Ⅰ)因為cos<DH,CC′>=22×0+22×0+1×11×2=22,所以<DH,CC′>=45°.即DP與CC'所成的角為45°.(8分)(Ⅱ)平面AA'D'D的一個法向量是DC=(0,1,0).因為cos<DH,DC>=22×0+22×1+1×01×2=12,所以<DH,DC>=60°.可得DP與平面AA'D'D所成的角為30°.(12分)方法二:如圖,以D為原點,DA為單位長建立空間直角坐標(biāo)系D-xyz.則DA=(1,0,0),CC′=(0,0,1),BD′=(-1,-1,1).設(shè)P(x,y,z)則BP=λBD′,∴(x-1,y-1,z)=(-λ,-λ,λ)∴x=1-λy=1-λz=λ,則DP=(1-λ,1-λ,λ),由已知,<DP,DA>=60°,∴λ2-4λ+2=0,解得λ=2-2,∴DP=(2-1,2-1,2-2)(4分)(Ⅰ)因為cos<DP,CC′>=2-22(2-1)=22,所以<DP,CC′>=45°.即DP與CC'所成的角為45°.(8分)(Ⅱ)平面AA'D'D的一個法向量是DC=(0,1,0).因為cos<DP,DC>=2-12(2-1)=12,所以<DP,DC>=60°.可得DP與平面AA'D'D所成的角為30°.(12分)33.如圖是一個空間幾何體的三視圖,試用斜二測畫法畫出它的直觀圖.(尺寸不作嚴(yán)格要求,但是凡是未用鉛筆作圖不得分,隨手畫圖也不得分)答案:由題可知題目所述幾何體是正六棱臺,畫法如下:畫法:(1)、畫軸畫x軸、y軸、z軸,使∠x′O′y′=45°,∠x′O′z′=90°

(圖1)(2)、畫底面以O(shè)′為中心,在XOY坐標(biāo)系內(nèi)畫正六棱臺下底面正方形的直觀圖ABCDEF.在z′軸上取線段O′O1等于正六棱臺的高;過O1

畫O1M、O1N分別平行O’x′、O′y′,再以O(shè)1為中心,畫正六棱臺上底面正方形的直觀圖A′B′C′E′F′(3)、成圖連接AA′、BB′、CC′、DD′、EE′、FF′,并且加以整理,就得到正六棱臺的直觀圖

(如圖2).34.函數(shù)y=2x的值域為______.答案:因為:x≥0,所以:y=2x≥20=1.∴函數(shù)y=2x的值域為:[1,+∞).故為:[1,+∞).35.已知雙曲線的焦點在y軸,實軸長為8,離心率e=2,過雙曲線的弦AB被點P(4,2)平分;

(1)求雙曲線的標(biāo)準(zhǔn)方程;

(2)求弦AB所在直線方程;

(3)求直線AB與漸近線所圍成三角形的面積.答案:(1)∵雙曲線的焦點在y軸,∴設(shè)雙曲線的標(biāo)準(zhǔn)方程為y2a2-x2b2=1;∵實軸長為8,離心率e=2,∴a=4,c=42,∴b2=c2-a2=16.或∵實軸長為8,離心率e=2,∴雙曲線為等軸雙曲線,a=b=4.∴雙曲線的標(biāo)準(zhǔn)方程為y216-x216=1.(2)設(shè)弦AB所在直線方程為y-2=k(x-4),A,B的坐標(biāo)為A(x1,y1),B(x2,y2).∴k=y1-y2x1-x2,x1+x22=4,y1+y22=2;∴y1216-x1216=1

y2216-x2216=1?y12-y2216-x12-x2216=0?(y1-y2)(y1+y2)16-(x1-x2)(x1+x2)16=0代入x1+x2=8,y1+y2=4,得(y1-y2)×416-(x1-x2)×816=0,∴y1-y2x1-x2×14-12=0,∴14k-12=0,∴k=2;所以弦AB所在直線方程為y-2=2(x-4),即2x-y-6=0.(3)等軸雙曲線y216-x216=1的漸近線方程為y=±x.∴直線AB與漸近線所圍成三角形為直角三角形.又漸近線與弦AB所在直線的交點坐標(biāo)分別為(6,6),(2,-2),∴直角三角形兩條直角邊的長度分別為62、22;∴直線AB與漸近線所圍成三角形的面積S=12×62×22=12.36.要證明,可選擇的方法有以下幾種,其中最合理的是()

A.綜合法

B.分析法

C.反證法

D.歸納法答案:B37.在△ABC中,已知A(2,3),B(8,-4),點G(2,-1)在中線AD上,且|AG|=2|GD|,則C的坐標(biāo)為______.答案:設(shè)C(x,y),則D(8+x2,-4+y2),再由AG=2GD,得(0,-4)=2(4+x2,-2+y2),∴4+x=0,-2+y=-4,即C(-4,-2)故為:(-4,-2).38.過點(0,2)且與圓x2+y2=4只有一個交點的直線方程是______.答案:∵圓x2+y2=4的圓心是O(0,0),半徑r=2,點(0,2)到圓心O(0,0)的距離是d=0+4=2=r,∴點(0,2)在圓x2+y2=4上,∴過點(0,2)且與圓x2+y2=4只有一個交點的直線方程是0x+2y=4,即y=2.故為:y=2.39.給出下列說法:①球的半徑是球面上任意一點與球心的連線段;②球的直徑是球面上任意兩點的連線段;③用一個平面截一個球面,得到的是一個圓;④球常用表示球心的字母表示.其中說法正確的是______.答案:根據(jù)球的定義直接判斷①正確;②錯誤;;③用一個平面截一個球面,得到的是一個圓;可以是小圓,也可能是大圓,正確;④球常用表示球心的字母表示.滿足球的定義正確;故為:①③④40.如圖程序框圖箭頭a指向①處時,輸出

s=______.箭頭a指向②處時,輸出

s=______.答案:程序在運行過程中各變量的情況如下表所示:(1)當(dāng)箭頭a指向①時,是否繼續(xù)循環(huán)

S

i循環(huán)前/0

1第一圈

1

2第二圈

2

3第三圈

3

4第四圈

4

5第五圈

5

6第六圈

否故最終輸出的S值為5,即m=5;(2)當(dāng)箭頭a指向②時,是否繼續(xù)循環(huán)

S

i循環(huán)前/0

1第一圈

1

2第二圈

1+2

3第三圈

1+2+3

4第四圈

1+2+3+4

5第五圈

1+2+3+4+5

6第六圈

否故最終輸出的S值為1+2+3+4+5=15;則n=15.故為:5,15.41.給出下列四個命題,其中正確的一個是()

A.在線性回歸模型中,相關(guān)指數(shù)R2=0.80,說明預(yù)報變量對解釋變量的貢獻(xiàn)率是80%

B.在獨立性檢驗時,兩個變量的2×2列聯(lián)表中對角線上數(shù)據(jù)的乘積相差越大,說明這兩個變量沒有關(guān)系成立的可能性就越大

C.相關(guān)指數(shù)R2用來刻畫回歸效果,R2越小,則殘差平方和越大,模型的擬合效果越差

D.隨機(jī)誤差e是衡量預(yù)報精確度的一個量,它滿足E(e)=0答案:D42.兩條直線l1:x-3y+2=0與l2:x-y+2=0的夾角的大小是______.答案:由于兩條直線l1:x-3y+2=0與l2:x-y+2=0的斜率分別為33、1,設(shè)兩條直線的夾角為θ,則tanθ=|k2-k11+k2?k1|=|1-331+1×33|=3-33+3=2-3,∴tan2θ=2tanθ1-tan2θ=33,∴2θ=π6,θ=π12,故為π12.43.直線(t為參數(shù))和圓x2+y2=16交于A,B兩點,則AB的中點坐標(biāo)為()

A.(3,-3)

B.(-,3)

C.(,-3)

D.(3,-)答案:D44.若矩陣M=1111,則直線x+y+2=0在M對應(yīng)的變換作用下所得到的直線方程為______.答案:設(shè)直線x+y+2=0上任意一點(x0,y0),(x',y')是所得的直線上一點,[1

1][x']=[x0][1

1][y']=[y0]∴x′+y′=x0x′+y′=y0,∴代入直線x+y+2=0方程:(x'+y')+x′+y'+2=0得到I的方程x+y+1=0故為:x+y+1=0.45.從裝有兩個白球和兩個黃球的口袋中任取2個球,以下給出了三組事件:

①至少有1個白球與至少有1個黃球;

②至少有1個黃球與都是黃球;

③恰有1個白球與恰有1個黃球.

其中互斥而不對立的事件共有()組.

A.0

B.1

C.2

D.3答案:A46.三段論:“①船準(zhǔn)時啟航就能準(zhǔn)時到達(dá)目的港,②這艘船準(zhǔn)時到達(dá)了目的港,③這艘船是準(zhǔn)時啟航的”中,“小前提”是______.(填序號)答案:三段論:“①船準(zhǔn)時啟航就能準(zhǔn)時到達(dá)目的港;②這艘船準(zhǔn)時到達(dá)了目的港,③這艘船是準(zhǔn)時啟航的,我們易得大前提是①,小前提是②,結(jié)論是③,故為:②.47.設(shè)U={三角形},M={直角三角形},N={等腰三角形},則M∩N=______.答案:∵M(jìn)={直角三角形},N={等腰三角形},∴M∩N={直角三角形且等腰三角形}={等腰直角三角形}故為{等腰直角三角形}48.在三棱錐O-ABC中,M,N分別是OA,BC的中點,點G是MN的中點,則OG可用基底{OA,OB,OC}表示成:OG=______.答案:如圖,連接ON,在△OBC中,點N是BC中點,則由平行四邊形法則得ON=12(OB+OC)在△OMN中,點G是MN中點,則由平行四邊形法則得OG=12(OM+ON)=12OM+12ON=14OA+12?12(OB+OC)14(OA+OB+OC),故為:14(OA+OB+OC).49.投擲一個質(zhì)地均勻的、每個面上標(biāo)有一個數(shù)字的正方體玩具,它的六個面中,有兩個面標(biāo)的數(shù)字是0,兩個面標(biāo)的數(shù)字是2,兩個面標(biāo)的數(shù)字是4,將此玩具連續(xù)拋擲兩次,以兩次朝上一面出現(xiàn)的數(shù)字分別作為點P的橫坐標(biāo)和縱坐標(biāo)

(1)求點P落在區(qū)域C:x2+y2≤10內(nèi)的概率;

(2)若以落在區(qū)域C上的所有點為頂點作面積最大的多邊形區(qū)域M,在區(qū)域C上隨機(jī)撒一粒豆子,求豆子落在區(qū)域M上的概率.答案:(1)點P的坐標(biāo)有:(0,0),(0,2),(0,4),(2,0),(2,2),(2,4),(4,0),(4,2),(4,4),共9種,其中落在區(qū)域C:x2+y2≤10上的點P的坐標(biāo)有:(0,0),(0,2),(2,0),(2,2),共4種D、故點P落在區(qū)域C:x2+y2≤10內(nèi)的概率為49.(2)區(qū)域M為一邊長為2的正方形,其面積為4,區(qū)域C的面積為10π,則豆子落在區(qū)域M上的概率為25π.50.在極坐標(biāo)系中,直線l經(jīng)過圓ρ=2cosθ的圓心且與直線ρcosθ=3平行,則直線l與極軸的交點的極坐標(biāo)為______.答案:由ρ=2cosθ可知此圓的圓心為(1,0),直線ρcosθ=3是與極軸垂直的直線,所以所求直線的極坐標(biāo)方程為ρcosθ=1,所以直線l與極軸的交點的極坐標(biāo)為(1,0).故為:(1,0).第2卷一.綜合題(共50題)1.已知F1、F2為橢圓x225+y216=1的左、右焦點,若M為橢圓上一點,且△MF1F2的內(nèi)切圓的周長等于3π,則滿足條件的點M有

()個.A.0B.1C.2D.4答案:設(shè)△MF1F2的內(nèi)切圓的內(nèi)切圓的半徑等于r,則由題意可得2πr=3π,∴r=32.由橢圓的定義可得

MF1+MF2=2a=10,又2c=6,∴△MF1F2的面積等于12

(MF1+MF2+2c)r=8r=12.又△MF1F2的面積等于12

2cyM=12,∴yM=4,故M是橢圓的短軸頂點,故滿足條件的點M有2個,故選

C.2.如圖,梯形ABCD內(nèi)接于⊙O,AB∥CD,AB為直徑,DO平分∠ADC,則∠DAO的度數(shù)是

______.答案:∵DO平分∠ADC,∴∠CDO=∠ODA;∵OD=OA,∴∠A=∠ADO=12∠ADC;∵AB∥CD,∴∠A+∠ADC=3∠A=180°,即∠A=∠ADO=60°.故為:60°3.在(1+2x)5的展開式中,x2的系數(shù)等于______.(用數(shù)字作答)答案:由于(1+2x)5的展開式的通項公式為Tr+1=Cr5?(2x)r,令r=2求得x2的系數(shù)等于C25×22=40,故為40.4.集合A={3,2a},B={a,b},若A∩B={2},則A∪B=______.答案:根據(jù)題意,若A∩B={2},則2∈A,2∈B,而已知A={3,2a},則必有2a=2,故a=1,又由2∈B,且a=1則b=2,故A∪B={1,2,3},故為{1,2,3}.5.過直線x+y-22=0上點P作圓x2+y2=1的兩條切線,若兩條切線的夾角是60°,則點P的坐標(biāo)是______.答案:根據(jù)題意畫出相應(yīng)的圖形,如圖所示:直線PA和PB為過點P的兩條切線,且∠APB=60°,設(shè)P的坐標(biāo)為(a,b),連接OP,OA,OB,∴OA⊥AP,OB⊥BP,PO平分∠APB,∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,又圓x2+y2=1,即圓心坐標(biāo)為(0,0),半徑r=1,∴OA=OB=1,∴OP=2AO=2BO=2,∴a2+b2=2,即a2+b2=4①,又P在直線x+y-22=0上,∴a+b-22=0,即a+b=22②,聯(lián)立①②解得:a=b=2,則P的坐標(biāo)為(2,2).故為:(2,2)6.某校高三年級舉行一次演講賽共有10位同學(xué)參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學(xué)恰好被排在一起(指演講序號相連),而二班的2位同學(xué)沒有被排在一起的概率為:()A.110B.120C.140D.1120答案:由題意知本題是一個古典概型,∵試驗發(fā)生包含的所有事件是10位同學(xué)參賽演講的順序共有:A1010;滿足條件的事件要得到“一班有3位同學(xué)恰好被排在一起而二班的2位同學(xué)沒有被排在一起的演講的順序”可通過如下步驟:①將一班的3位同學(xué)“捆綁”在一起,有A33種方法;②將一班的“一梱”看作一個對象與其它班的5位同學(xué)共6個對象排成一列,有A66種方法;③在以上6個對象所排成一列的7個間隙(包括兩端的位置)中選2個位置,將二班的2位同學(xué)插入,有A72種方法.根據(jù)分步計數(shù)原理(乘法原理),共有A33?A66?A72種方法.∴一班有3位同學(xué)恰好被排在一起(指演講序號相連),而二班的2位同學(xué)沒有被排在一起的概率為:P=A33?A66?A27A1010=120.故選B.7.在z軸上與點A(-4,1,7)和點B(3,5,-2)等距離的點C的坐標(biāo)為

______.答案:由題意設(shè)C(0,0,z),∵C與點A(-4,1,7)和點B(3,5,-2)等距離,∴|AC|=|BC|,∴16+1+(7-z)2=9+25+(z+2)2,∴18z=28,∴z=149,∴C點的坐標(biāo)是(0,0,149)故為:(0,0,149)8.下列在曲線上的點是(

A.

B.

C.

D.答案:B9.圓x2+y2=1和圓x2+y2-6y+5=0的位置關(guān)系是()

A.外切

B.內(nèi)切

C.外離

D.內(nèi)含答案:A10.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是()A.若a+b不是偶數(shù),則a,b都不是奇數(shù)B.若a+b不是偶數(shù),則a,b不都是奇數(shù)C.若a+b是偶數(shù),則a,b都是奇數(shù)D.若a+b是偶數(shù),則a,b不都是奇數(shù)答案:“a,b都是奇數(shù)”的否定是“a,b不都是奇數(shù)”,“a+b是偶數(shù)”的否定是“a+b不是偶數(shù)”,故命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.故選B.11.已知集合A={x|log2x<1},B={x|0<x<c,其中c>0},若A=B,則c=______.答案:集合A={x|log2x<1}={x|0<x<2},B={x|0<x<c,其中c>0},若A=B,則c=2,故為2.12.______稱為向量的長度(或稱為模),記作

______,______稱為零向量,記作

______,______稱為單位向量.答案:向量AB所在線段AB的長度,即向量AB的大小,稱為向量AB的長度(或成為模),記作|AB|;長度為零的向量稱為零向量,記作0;長度等于1個單位的向量稱為單位向量.故為:向量AB所在線段AB的長度,即向量AB的大小,|AB|;長度為零的向量,0;長度等于1個單位的向量.13.設(shè)求證:答案:證明見解析解析:證明:∵

∴∴,∴本題利用,對中每項都進(jìn)行了放縮,從而得到可以求和的數(shù)列,達(dá)到化簡的目的。14.滿足條件|2z+1|=|z+i|的復(fù)數(shù)z在復(fù)平面上對應(yīng)點的軌跡是______.答案:設(shè)復(fù)數(shù)z在復(fù)平面上對應(yīng)點的坐標(biāo)為(x,y),由|2z+1|=|z+i|可得(2x+1)2+(2y)2=(x)2+(y+1)2,化簡可得x2+

y2+43x

=

0,表示一個圓,故為圓.15.下列給出的輸入語句、輸出語句和賦值語句

(1)輸出語句INPUT

a;b;c

(2)輸入語句INPUT

x=3

(3)賦值語句3=B

(4)賦值語句A=B=2

則其中正確的個數(shù)是()

A.0個

B.1個

C.2個

D.3個答案:A16.已知數(shù)列{an}前n項的和為Sn,且滿足an=n2

(n∈N*).

(Ⅰ)求s1、s2、s3的值;

(Ⅱ)用數(shù)學(xué)歸納法證明sn=n(n+1)(2n+1)6

(n∈N*).答案:(Ⅰ)∵an=n2,n∈N*∴s1=a1=1,s2=a1+a2=1+4=5,s3=a1+a2+a3=1+4+9=14.…(6分)(Ⅱ)證明:(1)當(dāng)n=1時,左邊=s1=1,右邊=1×(1+1)(2+1)6=1,所以等式成立.…(8分)(2)假設(shè)n=k(k∈N*)時結(jié)論成立,即Sk=k(k+1)(2k+1)6,…(10分)那么,Sk+1=Sk+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6即n=k+1時,等式也成立.…(13分)根據(jù)(1)(2)可知對任意的正整數(shù)n∈N*都成立.…(14分)17.已知函數(shù)f(x)=2x,x≥01,

x<0,若f(1-a2)>f(2a),則實數(shù)a的取值范圍是______.答案:函數(shù)f(x)=2x,x≥01,

x<0,x<0時是常函數(shù),x≥0時是增函數(shù),由f(1-a2)>f(2a),所以2a<1-a21-a2>0,解得:-1<a<2-1,故為:-1<a<2-1.18.如圖,小圓圈表示網(wǎng)絡(luò)的結(jié)點,結(jié)點之間的連線表示它們有網(wǎng)線相聯(lián),連線標(biāo)注的數(shù)字表示該段網(wǎng)線單位時間內(nèi)可以通過的最大信息量,現(xiàn)從結(jié)點B向結(jié)點A傳遞信息,信息可以分開沿不同的路線同時傳遞,則單位時間內(nèi)傳遞的最大信息量為()

A.26

B.24

C.20

D.19

答案:D19.若向量a=(4,2,-4),b=(6,-3,2),則(2a-3b)?(a+2b)=______.答案:∵2a-3b=(-10,13,-14),a+2b=(16,-4,0)∴(2a-3b)?(a+2b)=-10×16+13×(-4)=-212故為-21220.根據(jù)給出的空間幾何體的三視圖,用斜二側(cè)畫法畫出它的直觀圖.答案:畫法:(1)畫軸如下圖,畫x軸、y軸、z軸,三軸相交于點O,使∠xOy=45°,∠xOz=90°.(2)畫圓臺的兩底面畫出底面⊙O假設(shè)交x軸于A、B兩點,在z軸上截取O′,使OO′等于三視圖中相應(yīng)高度,過O′作Ox的平行線O′x′,Oy的平行線O′y′利用O′x′與O′y′畫出底面⊙O′,設(shè)⊙O′交x′軸于A′、B′兩點.(3)成圖連接A′A、B′B,去掉輔助線,將被遮擋的部分要改為虛線,即得到給出三視圖所表示的直觀圖.21.(2x+1)5的展開式中的第3項的系數(shù)是()A.10B.40C.80D.120答案:(2x+1)5的展開式中的第3項為T3=C25(2x)3

×1=80x3,故(2x+1)5的展開式中的第3項的系數(shù)是80,故選C.22.某醫(yī)院計劃從10名醫(yī)生(7男3女)中選5人組成醫(yī)療小組下鄉(xiāng)巡診.

(I)設(shè)所選5人中女醫(yī)生的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望;

(II)現(xiàn)從10名醫(yī)生中的張強(qiáng)、李軍、王剛、趙永4名男醫(yī)生,李莉、孫萍2名女醫(yī)生共6人中選一正二副3名組長,在張強(qiáng)被選中的情況下,求李莉也被選中的概率.答案:(I)ξ的所有可能的取值為0,1,2,3,….….(2分)則P(ξ=0)=C57C510=112P(ξ=1)=C47C13C510=512P(ξ=2)=C27C23C510=512;P(ξ=3)=C27C33C510=112…(6分)ξ.的分布列為ξ0123P112512512112Eξ=1×112+2×512+3×112=32…(9分)(II)記“張強(qiáng)被選中”為事件A,“李莉也被選中”為事件B,則P(A)=C25C36=12,P(BA)=C14C36=15,所以P(B|A)=P(BA)P(A)=25…(12分)23.

(理)

在長方體ABCD-A1B1C1D1中,以為基底表示,其結(jié)果是()

A.

B.

C.

D.答案:C24.拋物線y=3x2的焦點坐標(biāo)是______.答案:化為標(biāo)準(zhǔn)方程為x2=13y,∴2p=13,∴p2=

112,∴焦點坐標(biāo)是(0,112).故為(0,112)25.某醫(yī)療研究所為了檢驗?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計算得Χ2≈3.918,經(jīng)查對臨界值表知P(Χ2≥3.841)≈0.05.則下列結(jié)論中,正確結(jié)論的序號是______

(1)有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”

(2)若某人未使用該血清,那么他在一年中有95%的可能性得感冒

(3)這種血清預(yù)防感冒的有效率為95%

(4)這種血清預(yù)防感冒的有效率為5%答案:查對臨界值表知P(Χ2≥3.841)≈0.05,故有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”950/0僅是指“血清與預(yù)防感冒”可信程度,但也有“在100個使用血清的人中一個患感冒的人也沒有”的可能.故為:(1).26.已知M(-2,0),N(2,0),|PM|-|PN|=3,則動點P的軌跡是()A.雙曲線B.雙曲線右支C.一條射線D.不存在答案:∵|PM|-|PN|=3,M(-2,0),N(2,0),且3<4=|MN|,根據(jù)雙曲線的定義,∴點P是以M(-2,0),N(2,0)為兩焦點的雙曲線的右支.故選B.27.把兩條直線的位置關(guān)系填入結(jié)構(gòu)圖中的M、N、E、F中,順序較為恰當(dāng)?shù)氖牵ǎ?/p>

①平行

②垂直

③相交

④斜交.

A.①②③④

B.①④②③

C.①③②④

D.②①③④

答案:C28.拋物線頂點在坐標(biāo)原點,以y軸為對稱軸,過焦點且與y軸垂直的弦長為16,則拋物線方程為______.答案:∵過焦點且與對稱軸y軸垂直的弦長等于p的2倍.∴所求拋物線方程為x2=±16y.故為:x2=±16y.29.α為第一象限角是sinαcosα>0的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:若α為第一象限角,則sinα>0,cosα>0,所以sinαcosα>0,成立.若sinαcosα>0,則①sinα>0,cosα>0,此時α為第一象限角.或②sinα<0,cosα<0,此時α為第三象限角.所以α為第一象限角是sinαcosα>0的充分不必要條件.故選A.30.有五條線段長度分別為1、3、5、7、9,從這5條線段中任取3條,則所取3條線段能構(gòu)成一個三角形的概率為()A.110B.310C.12D.710答案:由題意知本題是一個古典概型,∵試驗發(fā)生包含的所有事件是從五條線段中取三條共有C53種結(jié)果,而滿足條件的事件是3、5、7;3、7、9;5、7、9,三種結(jié)果,∴由古典概型公式得到P=3C35=310,故選B.31.在極坐標(biāo)系中,點A(2,π2)關(guān)于直線l:ρcosθ=1的對稱點的一個極坐標(biāo)為______.答案:在直角坐標(biāo)系中,A(0,2),直線l:x=1,A關(guān)于直線l的對稱點B(2,2).由于|OB|=22,OB直線的傾斜角等于π4,且點B在第一象限,故B的極坐標(biāo)為(22,π4),故為

(22,π4).32.若向量{}是空間的一個基底,則一定可以與向量構(gòu)成空間的另一個基底的向量是()

A.

B.

C.

D.答案:C33.斜二測畫法的規(guī)則是:

(1)在已知圖形中建立直角坐標(biāo)系xoy,畫直觀圖

時,它們分別對應(yīng)x′和y′軸,兩軸交于點o′,使∠x′o′y′=______,它們確定的平面表示水平平面;

(2)

已知圖形中平行于x軸或y軸的線段,在直觀圖中分別畫成

______;

(3)已知圖形中平行于x軸的線段的長度,在直觀圖中

______;平行于y軸的線段,在直觀圖中

______.答案:按照斜二測畫法的規(guī)則填空故為:(1)45°或135°;(2)平行于x′軸和y′軸;(3)長度不變;長度減半34.若a=(1,2,-2),b=(1,0,2),則(a-b)?(a+2b)=______.答案:∵a=(1,2,-2),b=(1,0,2),∴a-b=(0,2,-4),a+2b=(3,2,2).∴(a-b)?(a+2b)=0×3+2×2-4×2=-4.故為-4.35.如圖1,一個“半圓錐”的主視圖是邊長為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,這個幾何體的體積為()A.33πB.36πC.23πD.3π答案:由已知中“半圓錐”的主視圖是邊長為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,我們可以判斷出底面的半徑為1,母線長為2,則半圓錐的高為3故V=13×12×π×3=36π故選B36.已知一個四棱錐的三視圖如圖所示,則該四棱錐的體積是______.答案:因為三視圖復(fù)原的幾何體是正四棱錐,底面邊長為2,高為1,所以四棱錐的體積為13×2×2×1=43.故為:43.37.設(shè)x+y+z=1,求F=2x2+3y2+z2的最小值.答案:∵1=(x+y+z)2=(12?2x+13?3y+1?z)2≤(12+13+1)(2x2+3y2+z2)∴F=2x2+3y2+z2≥611(8分)當(dāng)且僅當(dāng)2x12=3y13=z1且x+y+z=1,x=311,y=211,z=611F有最小值611(12分)38.某市為抽查控制汽車尾氣排放的執(zhí)行情況,選擇了抽取汽車車牌號的末位數(shù)字是6的汽車進(jìn)行檢查,這樣的抽樣方式是(

A.抽簽法

B.簡單隨機(jī)抽樣

C.分層抽樣

D.系統(tǒng)抽樣答案:D39.已知函數(shù)f(x)=

-x+1,x<0x-1,x≥0,則不等式x+(x+1)f(x+1)≤1的解集是()

A.[-1,

2-1]B.(-∞,1]C.(-∞,

2-1]D.[-

2-1,

2-1]答案:C解析:由題意x+(x+1)f(x+1)=40.已知l1、l2是過點P(-2,0)的兩條互相垂直的直線,且l1、l2與雙曲線y2-x2=1各有兩個交點,分別為A1、B1和A2、B2.

(1)求l1的斜率k1的取值范圍;

(2)若|A1B1|=5|A2B2|,求l1、l2的方程.答案:(1)顯然l1、l2斜率都存在,否則l1、l2與曲線不相交.設(shè)l1的斜率為k1,則l1的方程為y=k1(x+2).聯(lián)立得y=k1(x+2),y2-x2=1,消去y得(k12-1)x2+22k12x+2k12-1=0.①根據(jù)題意得k12-1≠0,②△1>0,即有12k12-4>0.③完全類似地有1k21-1≠0,④△2>0,即有12?1k21-4>0,⑤從而k1∈(-3,-33)∪(33,3)且k1≠±1.(2)由弦長公式得|A1B1|=1+k2112k21-4(k21-1)2.⑥完全類似地有|A2B2|=1+1k2112-4k21(k21-1)2.⑦∵|A1B1|=5|A2B2|,∴k1=±2,k2=.+22.從而l1:y=2(x+2),l2:y=-22(x+2)或l1:y=-2(x+2),l2:y=22(x+2).41.平行線l1:3x-2y-5=0與l2:6x-4y+3=0之間的距離為______.答案:將l1:3x-2y-5=0化成6x-4y-10=0∴l(xiāng)1:3x-2y-5=0與l2:6x-4y+3=0之間的距離為d=|-10-3|62+(-4)2=1352=132故為:13242.若關(guān)于x的方程x2-2ax+2+a=0有兩個不相等的實根,求分別滿足下列條件的a的取值范圍.

(1)方程兩根都大于1;

(2)方程一根大于1,另一根小于1。答案:解:設(shè)f(x)=x2-2ax+2+a,(1)∵兩根都大于1,∴,解得:2<a<3;(2)∵方程一根大于1,一根小于1,∴f(1)<0,∴a>3。43.已知原命題“兩個無理數(shù)的積仍是無理數(shù)”,則:

(1)逆命題是“乘積為無理數(shù)的兩數(shù)都是無理數(shù)”;

(2)否命題是“兩個不都是無理數(shù)的積也不是無理數(shù)”;

(3)逆否命題是“乘積不是無理數(shù)的兩個數(shù)都不是無理數(shù)”;

其中所有正確敘述的序號是______.答案:(1)交換原命題的條件和結(jié)論得到逆命題:“乘積為無理數(shù)的兩數(shù)都是無理數(shù)”,正確.(2)同時否定原命題的條件和結(jié)論得到否命題:“兩個不都是無理數(shù)的積也不是無理數(shù)”,正確.(3)同時否定原命題的條件和結(jié)論,然后在交換條件和結(jié)論得到逆否命題:“乘積不是無理數(shù)的兩個數(shù)不都是無理數(shù)”.所以逆否命題錯誤.故為:(1)(2).44.一個算法的流程圖如圖所示,則輸出S的值為

.答案:根據(jù)程序框圖,題意為求:s=1+2+3+4+5+6+7+8+9,計算得:s=45,故為:45.45.設(shè)a1,a2,…,an為正數(shù),證明a1+a2+…+ann≥n1a1+1a2+…+1an.答案:證明:∵a1,a2,…,an為正數(shù),∴要證明a1+a2+…+ann≥n1a1+1a2+…+1an,只要證明(a1+a2+…+an)(1a1+1a2+…1an)≥n2∵a1+a2+…+an≥nna1a2…an,1a1+1a2+…1an≥nn1a1a2…an∴兩式相乘,可得(a1+a2+…+an)(1a1+1a2+…1an)≥n2∴原不等式成立.46.若直線按向量平移得到直線,那么(

)A.只能是(-3,0)B.只能是(0,6)C.只能是(-3,0)或(0,6)D.有無數(shù)個答案:D解析:設(shè)平移向量,直線平移之后的解析式為,即,所以,滿足的有無數(shù)多個.47.已知D是△ABC所在平面內(nèi)一點,,則()

A.

B.

C.=

D.答案:A48.在參數(shù)方程所表示的曲線上有B、C兩點,它們對應(yīng)的參數(shù)值分別為t1、t2,則線段BC的中點M對應(yīng)的參數(shù)值是()

A.

B.

C.

D.答案:B49.函數(shù)f(x)=x2+(a+1)x+2是定義在[a,b]上的偶函數(shù),則a+b=______.答案:∵函數(shù)f(x)=x2+(a+1)x+2是定義在[a,b]上的偶函數(shù),∴其定義域關(guān)于原點對稱,既[a,b]關(guān)于原點對稱.所以a與b互為相反數(shù)即a+b=0.故為:0.50.某學(xué)校高一、高二、高三共有學(xué)生3500人,其中高三學(xué)生數(shù)是高一學(xué)生數(shù)的兩倍,高二學(xué)生數(shù)比高一學(xué)生數(shù)多300人,現(xiàn)在按的抽樣比用分層抽樣的方法抽取樣本,則應(yīng)抽取高一學(xué)生數(shù)為()

A.8

B.11

C.16

D.10答案:A第3卷一.綜合題(共50題)1.如圖,已知圓中兩條弦AB與CD相交于點F,E是AB延長線上一點,且

DF=CF=2,AF:FB:BE=4:2:1.若CE與圓相切,則CE的長為.答案:設(shè)AF=4k,BF=2k,BE=k,由DF?FC=AF?BF,得2=8k2,即k=12,∴AF=2,BF=1,BE=12,AE=72,由切割定理得CE2=BE?EA=12×72=74∴CE=722.設(shè)隨機(jī)變量ξ服從正態(tài)分布N(u,9),若p(ξ>3)=p(ξ<1),則u=______.答案:∵隨機(jī)變量ξ服從正態(tài)分布N(u,9),p(ξ>3)=p(ξ<1),∴u=3+12=2故為23.已知f(x)在(0,2)上是增函數(shù),f(x+2)是偶函數(shù),那么正確的是()A.f(1)<f(52)<f(72)B.f(72)<f(1)<f(52)C.f(72)<f(52)<f(1)D.f(52)<f(1)<f(72)答案:根據(jù)函數(shù)的圖象的平移可得把f(x+2)向右平移2個單位可得f(x)的圖象f(x+2)是偶函數(shù),其圖象關(guān)于y軸對稱可知f(x)的圖象關(guān)于x=2對稱∴f(72)=f(12),f(52)=f(32)∵f(x)在(0,2)單調(diào)遞增,且12<1<32∴f(12)<f(1)<f(32)即f(72)<f(1)<f(52)故選:B4.橢圓焦點在x軸,離心率為32,直線y=1-x與橢圓交于M,N兩點,滿足OM⊥ON,求橢圓方程.答案:設(shè)橢圓方程x2a2+y2b2=1(a>b>0),∵e=32,∴a2=4b2,即a=2b.∴橢圓方程為x24b2+y2b2=1.把直線方程代入化簡得5x2-8x+4-4b2=0.設(shè)M(x1,y1)、N(x2,y2),則x1+x2=85,x1x2=15(4-4b2).∴y1y2=(1-x1)(1-x2)=1-(x1+x2)+x1x2=15(1-4b2).由于OM⊥ON,∴x1x2+y1y2=0.解得b2=58,a2=52.∴橢圓方程為25x2+85y2=1.5.現(xiàn)有一個關(guān)于平面圖形的命題:如圖,同一個平面內(nèi)有兩個邊長都是a的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為a24.類比到空間,有兩個棱長均為a的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為______.答案:∵同一個平面內(nèi)有兩個邊長都是a的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為a24,類比到空間有兩個棱長均為a的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為a38,故為a38.6.下列函數(shù)中,與函數(shù)y=1x有相同定義域的是()A.f(x)=log2xB.f(x)=1xC.f(x)=|x|D.f(x)=2x答案:∵函數(shù)y=1x定義域為x>0,又函數(shù)f(x)=log2x定義域x>0,故選A.7.直線kx-y+1=3k,當(dāng)k變動時,所有直線都通過定點

A.(0,0)

B.(0,1)

C.(3,1)

D.(2,1)答案:C8.兩封信隨機(jī)投入A、B、C三個空郵箱,則A郵箱的信件數(shù)ξ的數(shù)學(xué)期望Eξ=______;答案:由題意知ξ的取值有0,1,2,當(dāng)ξ=0時,即A郵箱的信件數(shù)為0,由分步計數(shù)原理知兩封信隨機(jī)投入A、B、C三個空郵箱,共有3×3種結(jié)果,而滿足條件的A郵箱的信件數(shù)為0的結(jié)果數(shù)是2×2,由古典概型公式得到ξ=0時的概率,同理可得ξ=1時,ξ=2時,ξ=3時的概率p(ξ=0)=2×29=49,p(ξ=1)=C12C129=49,p(ξ=2)=19,∴Eξ=0×49+1×49+2×19=23故為:23.9.刻畫數(shù)據(jù)的離散程度的度量,下列說法正確的是(

(1)應(yīng)充分利用所得的數(shù)據(jù),以便提供更確切的信息;

(2)可以用多個數(shù)值來刻畫數(shù)據(jù)的離散程度;

(3)對于不同的數(shù)據(jù)集,其離散程度大時,該數(shù)值應(yīng)越小.

A.(1)和(3)

B.(2)和(3)

C.(1)和(2)

D.都正確答案:C10.使關(guān)于的不等式有解的實數(shù)的最大值是(

)A.B.C.D.答案:D解析:令則的最大值為。選D。還可用Cauchy不等式。11.對于一組數(shù)據(jù)的兩個函數(shù)模型,其殘差平方和分別為153.4

和200,若從中選取一個擬合程度較好的函數(shù)模型,應(yīng)選殘差平方和為______的那個.答案:殘差的平方和是用來描述n個點與相應(yīng)回歸直線在整體上的接近程度殘差的平方和越小,擬合效果越好,由于153.4<200,故擬合效果較好的是殘差平方和是153.4的那個模型.故為:153.4.12.設(shè)計一個計算1×3×5×7×9×11×13的算法.圖中給出了程序的一部分,則在橫線①上不能填入的數(shù)是()

A.13

B.13.5

C.14

D.14.5答案:A13.設(shè)集合A={1,2,3,4},集合B={1,3,5,7},則集合A∪B=()A.{1,3}B.{1,2,3,4,5,7}C.{5,7}D.{2,4,5,7}答案:∵A={1,2,3,4},B={1,3,5,7},∴A∪B={1,2,3,4,5,7},故選B.14.一個水平放置的平面圖形,其斜二測直觀圖是一個等腰三角形,腰AB=AC=1,如圖,則平面圖形的實際面積為()

A.1

B.2

C.

D.

答案:A15.如圖給出的是計算1+13+15+…+12013的值的一個程序框圖,圖中空白執(zhí)行框內(nèi)應(yīng)填入i=______.答案:∵該程序的功能是計算1+13+15+…+12013的值,最后一次進(jìn)入循環(huán)的終值為2013,即小于等于2013的數(shù)滿足循環(huán)條件,大于2013的數(shù)不滿足循環(huán)條件,由循環(huán)變量的初值為1,步長為2,故執(zhí)行框中應(yīng)該填的語句是:i=i+2.故為:i+2.16.不等式|x+3|-|x-1|≤a2-3a對任意實數(shù)x恒成立,則實數(shù)a的取值范圍為()

A.(-∞,-1]∪[4,+∞)

B.(-∞,-2]∪[5,+∞)

C.[1,2]

D.(-∞,1]∪[2,+∞)答案:A17.下圖是由A、B、C、D中的哪個平面圖旋轉(zhuǎn)而得到的(

)答案:A18.“a=2”是“直線ax+2y=0平行于直線x+y=1”的()

A.充分而不必要條件

B.必要而不充分條件

C.充分必要條件

D.既不充分也不必要條件答案:C19.某小組有3名女生、4名男生,從中選出3名代表,要求至少女生與男生各有一名,共有______種不同的選法.(要求用數(shù)字作答)答案:由題意知本題是一個分類計數(shù)問題,要求至少女生與男生各有一名有兩個種不同的結(jié)果,即一個女生兩個男生和一個男生兩個女生,∴共有C31C42+C32C41=30種結(jié)果,故為:3020.將一個總體分為A、B、C三層,其個體數(shù)之比為5:3:2,若用分層抽樣的方法抽取容量為180的樣本,則應(yīng)從C中抽取樣本的個數(shù)為______個.答案:由分層抽樣的定義可得應(yīng)從B中抽取的個體數(shù)為180×25+3+2=36,故為:36.21.復(fù)數(shù)Z=arccosx-π+(-2x)i(x∈R,i是虛數(shù)單位),在復(fù)平面上的對應(yīng)點只可能位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:∵a=arccosx-π,arccosx∈[0,π],∴a<0,∵b=-2x<0,∴復(fù)數(shù)Z對應(yīng)的點的實部和虛部都小于零,∴復(fù)數(shù)在第三象限,故選C.22.①某尋呼臺一小時內(nèi)收到的尋呼次數(shù)X;

②長江上某水文站觀察到一天中的水位X;

③某超市一天中的顧客量X.

其中的X是連續(xù)型隨機(jī)變量的是()

A.①

B.②

C.③

D.①②③答案:B23.(1)已知p3+q3=2,求證p+q≤2,用反證法證明時,可假設(shè)p+q≥2;

(2)已知a,b∈R,|a|+|b|<1,求證方程x2+ax+b=0的兩根的絕對值都小于1.用反證法證明時可假設(shè)方程有一根x1的絕對值大于或等于1,即假設(shè)|x1|≥1,以下結(jié)論正確的是()

A.(1)的假設(shè)錯誤,(2)的假設(shè)正確

B.(1)與(2)的假設(shè)都正確

C.(1)的假設(shè)正確,(2)的假設(shè)錯誤

D.(1)與(2)的假設(shè)都錯誤答案:A24.已知曲線C的極坐標(biāo)方程是ρ=4cosθ.以極點為平面直角坐標(biāo)系的原點,極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是:x=22t+1y=22t,求直線l與曲線C相交所成的弦的弦長.答案:曲線C的極坐標(biāo)方程是ρ=4cosθ化為直角坐標(biāo)方程為x2+y2-4x=0,即(x-2)2+y2=4直線l的參數(shù)方程x=22t+1y=22t,化為普通方程為x-y-1=0,曲線C的圓心(2,0)到直線l的距離為12=22所以直線l與曲線C相交所成的弦的弦長24-12=14.25.已知0<α<π2,方程x2sinα+y2cosα=1表示焦點在y軸上的橢圓,則α的取值范圍______.答案:方程x2sinα+y2cosα=1化成標(biāo)準(zhǔn)形式得:x21sinα+y21cosα=1.∵方程表示焦點在y軸上的橢圓,∴1cosα>1sinα>0,解之得sinα>cosα>0∵0<α<π2,∴π4<α<π2,即α的取值范圍是(π4,π2)故為:(π4,π2)26.極坐標(biāo)系中,若A(3,π3),B(-3,π6),則s△AOB=______(其中O是極點).答案:∵極坐標(biāo)系中,A(3,π3),B(-3,π6),3cosπ3=32,3sinπ3=332;-3cosπ6=-332,-3sinπ6=-32.∴在平面直角坐標(biāo)系中,A(32,332),B(-332,-32),∴OA=(32,332),OB=(-332,-32),∴|OA|

=

3,|OB|=3,∴cos<OA,OB>=-934-93494+274=-32,∴sin<OA,OB>=1-34=12,∴S△AOB=12×3×3×12=94.故為:94.27.在500個人身上試驗?zāi)撤N血清預(yù)防感冒的作用,把一年中的記錄與另外500個未用血清的人作比較,結(jié)果如下:

未感冒

感冒

合計

試驗過

252

248

500

未用過

224

276

500

合計

476

524

1000

根據(jù)上表數(shù)據(jù),算得Χ2=3.14.以下推斷正確的是()

A.血清試驗與否和預(yù)防感冒有關(guān)

B.血清試驗與否和預(yù)防感冒無關(guān)

C.通過是否進(jìn)行血清試驗可以預(yù)測是否得感冒

D.通過是否得感冒可以推斷是否進(jìn)行了血清試驗答案:A28.已知點G是△ABC的重心,點P是△GBC內(nèi)一點,若,則λ+μ的取值范圍是()

A.

B.

C.

D.(1,2)答案:B29.某航空公司經(jīng)營A,B,C,D這四個城市之間的客運業(yè)務(wù),它們之間的直線距離的部分機(jī)票價格如下:AB為2000元;AC為1600元;AD為2500元;CD為900元;BC為1200元,若這家公司規(guī)定的機(jī)票價格與往返城市間的直線距離成正比,則BD間直線距離的票價為(設(shè)這四個城在同一水平面上)()

A.1500元

B.1400元

C.1200元

D.1000元答案:A30.如圖,CD是⊙O的直徑,AE切⊙O于點B,連接DB,若∠D=20°,則∠DBE的大小為()

A.20°

B.40°

C.60°

D.70°答案:D31.根據(jù)給出的空間幾何體的三視圖,用斜二側(cè)畫法畫出它的直觀圖.答案:畫法:(1)畫軸如下圖,畫x軸、y軸、z軸,三軸相交于點O,使∠xOy=45°,∠xOz=90°.(2)畫圓臺的兩底面畫出底面⊙O假設(shè)交x軸于A、B兩點,在z軸上截取O′,使OO′等于三視圖中相應(yīng)高度,過O′作Ox的平行線O′x′,Oy的平行線O′y′利用O′x′與O′y′畫出底面⊙O′,設(shè)⊙O′交x′軸于A′、B′兩點.(3)成圖連接A′A、B′B,去掉輔助線,將被遮擋的部分要改為虛線,即得到給出三視圖所表示的直觀圖.32.欲對某商場作一簡要審計,通過檢查發(fā)票及銷售記錄的2%來快速估計每月的銷售總額.現(xiàn)采用如下方法:從某本50張的發(fā)票存根中隨機(jī)抽一張,如15號,然后按序往后將65號,115號,165號,…發(fā)票上的銷售額組成一個調(diào)查樣本.這種抽取樣本的方法是()A.簡單隨機(jī)抽樣B.系統(tǒng)抽樣C.分層抽樣D.其它方式的抽樣答案:∵總體的個體比較多,抽樣時某本50張的發(fā)票存根中隨機(jī)抽一張,如15號,這是系統(tǒng)抽樣中的分組,然后按序往后將65號,115號,165號,…發(fā)票上的銷售額組成一個調(diào)查樣本.故選B.33.參數(shù)方程x=sin2θy=cosθ+sinθ(θ為參數(shù))的普通方程為______.答案:把參數(shù)方程x=sin2θy=cosθ+sinθ(θ為參數(shù))利用同角三角函數(shù)的基本關(guān)系消去參數(shù)化為普通方程為y2=1+x,故為y2=1+x.34.A、B、C、D、E五種不同的商品要在貨架上排成一排,其中A、B兩種商品必須排在一起,而C、D兩種商品不能排在一起,則不同的排法共有______種.答案:先把A、B進(jìn)行排列,有A22種排法,再把A、B看成一個元素,和E進(jìn)行排列,有A22種排法,最后再把C、D插入進(jìn)去,有A23種排法,根據(jù)分步計數(shù)原理可得A22A22A23=24種排法.故為:2435.已知兩直線的方程分別為l1:x+ay+b=0,l2:x+cy+d=0,它們在坐標(biāo)系中的位置如圖所示()

A.b>0,d<0,a<c

B.b>0,d<0,a>c

C.b<0,d>0,a<c

D.b<0,d>0,a>c

答案:D36.已知直線3x+4y-3=0與直線6x+my+14=0平行,則它們之間的距離是______.答案:直線3x+4y-3=0即6x+8y-6=0,它直線6x+my+14=0平行,∴m=8,則它們之間的距離是d=|c1-c2|a2+b2=|-6-14|62+82=2,故為:2.37.若A,B,C是直線存在實數(shù)x使得,實數(shù)x為()

A.-1

B.0

C.

D.答案:A38.已知x,y的取值如下表所示:

x0134y2.24.34.86.7

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論