2023年贛西科技職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年贛西科技職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年贛西科技職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年贛西科技職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年贛西科技職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩42頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年贛西科技職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.若e1、e2、e3是三個(gè)不共面向量,則向量a=3e1+2e2+e3,b=-e1+e2+3e3,c=2e1-e2-4e3是否共面?請(qǐng)說明理由.答案:解:設(shè)c=1a+2b,則即∵a、b不共線,向量a、b、c共面.2.如圖,彎曲的河流是近似的拋物線C,公路l恰好是C的準(zhǔn)線,C上的點(diǎn)O到l的距離最近,且為0.4千米,城鎮(zhèn)P位于點(diǎn)O的北偏東30°處,|OP|=10千米,現(xiàn)要在河岸邊的某處修建一座碼頭,并修建兩條公路,一條連接城鎮(zhèn),一條垂直連接公路l,以便建立水陸交通網(wǎng).

(1)建立適當(dāng)?shù)淖鴺?biāo)系,求拋物線C的方程;

(2)為了降低修路成本,必須使修建的兩條公路總長最小,請(qǐng)給出修建方案(作出圖形,在圖中標(biāo)出此時(shí)碼頭Q的位置),并求公路總長的最小值(精確到0.001千米)答案:(1)過點(diǎn)O作準(zhǔn)線的垂線,垂足為A,以O(shè)A所在直線為x軸,OA的垂直平分線為y軸,建立平面直角坐標(biāo)系…(2分)由題意得,p2=0.4…(4分)所以,拋物線C:y2=1.6x…(6分)(2)設(shè)拋物線C的焦點(diǎn)為F由題意得,P(5,53)…(8分)根據(jù)拋物線的定義知,公路總長=|QF|+|QP|≥|PF|≈9.806…(12分)當(dāng)Q為線段PF與拋物線C的交點(diǎn)時(shí),公路總長最小,最小值為9.806千米…(16分)3.已知雙曲線的兩個(gè)焦點(diǎn)為F1(-,0),F2(,0),P是此雙曲線上的一點(diǎn),且PF1⊥PF2,|PF1|?|PF2|=2,則該雙曲線的方程是()

A.

B.

C.

D.答案:C4.若雙曲線的漸近線方程為y=±3x,它的一個(gè)焦點(diǎn)是(10,0),則雙曲線的方程是______.答案:因?yàn)殡p曲線的漸近線方程為y=±3x,則設(shè)雙曲線的方程是x2-y29=λ,又它的一個(gè)焦點(diǎn)是(10,0)故λ+9λ=10∴λ=1,x2-y29=1故為:x2-y29=15.從拋物線y2=4x上一點(diǎn)P引拋物線準(zhǔn)線的垂線,垂足為M,且|PM|=5,設(shè)拋物線的焦點(diǎn)為F,則△MPF的面積為()

A.6

B.8

C.10

D.15答案:C6.對(duì)某種電子元件進(jìn)行壽命跟蹤調(diào)查,所得樣本頻率分布直方圖如圖,由圖可知:一批電子元件中,壽命在100~300小時(shí)的電子元件的數(shù)量與壽命在300~600小時(shí)的電子元件的數(shù)量的比大約是()A.12B.13C.14D.16答案:由于已知的頻率分布直方圖中組距為100,壽命在100~300小時(shí)的電子元件對(duì)應(yīng)的矩形的高分別為:12000,32000則壽命在100~300小時(shí)的電子元件的頻率為:100?(12000+32000)=0.2壽命在300~600小時(shí)的電子元件對(duì)應(yīng)的矩形的高分別為:1400,1250,32000則壽命在300~600小時(shí)子元件的頻率為:100?(1400+1250+32000)=0.8則壽命在100~300小時(shí)的電子元件的數(shù)量與壽命在300~600小時(shí)的電子元件的數(shù)量的比大約是0.2:0.8=14故選C7.將6位志愿者分成4組,每組至少1人,分赴世博會(huì)的四個(gè)不同場館服務(wù),不同的分配方案有______種(用數(shù)字作答).答案:由題意,六個(gè)人分為四組,若有三個(gè)人一組,則四組人數(shù)為3,1,1,1,則不同的分法為C63=20種,若存在兩人一組,則分法為2,2,1,1,不同的分法有C26×C24A22=45分赴世博會(huì)的四個(gè)不同場館服務(wù),不同的分配方案有(20+45)×A44=1560種故為:1560.8.如圖所示的多面體,它的正視圖為直角三角形,側(cè)視圖為矩形,俯視圖為直角梯形(尺寸如圖所示)

(1)求證:AE∥平面DCF;

(2)若M是AE的中點(diǎn),AB=3,∠CEF=90°,求證:平面AEF⊥平面BMC.答案:(1)證法1:過點(diǎn)E作EG⊥CF交CF于G,連結(jié)DG,可得四邊形BCGE為矩形,又四邊形ABCD為矩形,所以AD=EG,從而四邊形ADGE為平行四邊形故AE∥DG

因?yàn)锳E?平面DCF,DG?平面DCF,所以AE∥平面DCF

證法2:(面面平行的性質(zhì)法)因?yàn)樗倪呅蜝EFC為梯形,所以BE∥CF.又因?yàn)锽E?平面DCF,CF?平面DCF,所以BE∥平面DCF.因?yàn)樗倪呅蜛BCD為矩形,所以AB∥DC.同理可證AB∥平面DCF.又因?yàn)锽E和AB是平面ABE內(nèi)的兩相交直線,所以平面ABE∥平面DCF.又因?yàn)锳E?平面ABE,所以AE∥平面DCF.(2)在Rt△EFG中,∠CEF=90°,EG=3,EF=2.∴∠GEF=30°,GF=12EF=1.在RT△CEG中,∠CEG=60°,∴CG=EGtan60°=3,BE=3.∵AB=3,M是AE中點(diǎn),∴BM⊥AE,由側(cè)視圖是矩形,俯視圖是直角梯形,得BC⊥AB,BC⊥BE,∵AB∩BM=B,∴AE⊥平面BCM又∵AE?平面ACE,∴平面ACE⊥平面BCM.9.根據(jù)學(xué)過的知識(shí),試把“推理與證明”這一章的知識(shí)結(jié)構(gòu)圖畫出來.答案:根據(jù)“推理與證明”這一章的知識(shí)可得結(jié)構(gòu)圖,如圖所示.10.在z軸上與點(diǎn)A(-4,1,7)和點(diǎn)B(3,5,-2)等距離的點(diǎn)C的坐標(biāo)為

______.答案:由題意設(shè)C(0,0,z),∵C與點(diǎn)A(-4,1,7)和點(diǎn)B(3,5,-2)等距離,∴|AC|=|BC|,∴16+1+(7-z)2=9+25+(z+2)2,∴18z=28,∴z=149,∴C點(diǎn)的坐標(biāo)是(0,0,149)故為:(0,0,149)11.“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當(dāng)它醒來時(shí),發(fā)現(xiàn)烏龜快到終點(diǎn)了,于是急忙追趕,但為時(shí)已晚,烏龜還是先到達(dá)了終點(diǎn)…,用S1、S2分別表示烏龜和兔子所行的路程,t為時(shí)間,則下圖與故事情節(jié)相吻合的是()

A.

B.

C.

D.

答案:B12.有外形相同的球分裝三個(gè)盒子,每盒10個(gè).其中,第一個(gè)盒子中7個(gè)球標(biāo)有字母A、3個(gè)球標(biāo)有字母B;第二個(gè)盒子中有紅球和白球各5個(gè);第三個(gè)盒子中則有紅球8個(gè),白球2個(gè).試驗(yàn)按如下規(guī)則進(jìn)行:先在第一號(hào)盒子中任取一球,若取得標(biāo)有字母A的球,則在第二號(hào)盒子中任取一個(gè)球;若第一次取得標(biāo)有字母B的球,則在第三號(hào)盒子中任取一個(gè)球.如果第二次取出的是紅球,則稱試驗(yàn)成功,那么試驗(yàn)成功的概率為()

A.0.59

B.0.54

C.0.8

D.0.15答案:A13.5顆骰子同時(shí)擲出,共擲100次則至少一次出現(xiàn)全為6點(diǎn)的概率為(

)A.B.C.D.答案:C解析:5顆骰子同時(shí)擲出,沒有全部出現(xiàn)6點(diǎn)的概率是,共擲100次至少一次出現(xiàn)全為6點(diǎn)的概率是.14.將函數(shù)="2x"+1的圖像按向量平移得函數(shù)=的圖像則

A=(1)B=(1,1)C=()

D(1,1)答案:C解析:分析:本小題主要考查函數(shù)圖象的平移與向量的關(guān)系問題.依題由函數(shù)y=2x+1的圖象得到函數(shù)y=2x+1的圖象,需將函數(shù)y=2x+1的圖象向左平移1個(gè)單位,向下平移1個(gè)單位;故=(-1,-1).解:設(shè)=(h,k)則函數(shù)y=2x+1的圖象平移向量后所得圖象的解析式為y=2x-h+1+k∴∴∴=(-1,-1)故答案為:C.15.已知數(shù)列{an}中,a1=1,an+1=an+n,若利用如圖所示的種序框圖計(jì)算該數(shù)列的第10項(xiàng),則判斷框內(nèi)的條件是()

A.n≤8?

B.n≤9?

C.n≤10?

D.n≤11?

答案:B16.已知直線l的參數(shù)方程為x=-4+4ty=-1-2t(t為參數(shù)),圓C的極坐標(biāo)方程為ρ=22cos(θ+π4),則圓心C到直線l的距離是______.答案:直線l的普通方程為x+2y+6=0,圓C的直角坐標(biāo)方程為x2+y2-2x+2y=0.所以圓心C(1,-1)到直線l的距離d=|1-2+6|5=5.故為5.17.如圖,△ABC中,∠C=90°,∠A=30°,BC=1.在三角形內(nèi)挖去半圓(圓心O在邊AC上,半圓與BC、AB相切于點(diǎn)C、M,與AC交于N,見圖中非陰影部分),則該半圓的半徑長為______.答案:連接OM,則OM⊥AB.設(shè)⊙O的半徑OM=OC=r.在Rt△OAM中,OA=OMsin30°=2r.在Rt△ABC中,AC=BCtan30°=3,∴3=AC=OA+OC=3r,∴r=33.故為33.18.書架上有5本數(shù)學(xué)書,4本物理書,5本化學(xué)書,從中任取一本,不同的取法有()A.14B.25C.100D.40答案:由題意,∵書架上有5本數(shù)學(xué)書,4本物理書,5本化學(xué)書,∴從中任取一本,不同的取法有5+4+5=14種故選A.19.圓心為(-2,3),且與y軸相切的圓的方程是()A.x2+y2+4x-6y+9=0B.x2+y2+4x-6y+4=0C.x2+y2-4x+6y+9=0D.x2+y2-4x+6y+4=0答案:根據(jù)圓心坐標(biāo)(-2,3)到y(tǒng)軸的距離d=|-2|=2,則所求圓的半徑r=d=2,所以圓的方程為:(x+2)2+(y-3)2=4,化為一般式方程得:x2+y2+4x-6y+9=0.故選A20.某校選修乒乓球課程的學(xué)生中,高一年級(jí)有40名,高二年級(jí)有50名,現(xiàn)用分層抽樣的方法在這90名學(xué)生中抽取一個(gè)樣本,已知在高一年級(jí)的學(xué)生中抽取了8名,則在高二年級(jí)的學(xué)生中應(yīng)抽取的人數(shù)為______.答案:∵高一年級(jí)有40名學(xué)生,在高一年級(jí)的學(xué)生中抽取了8名,∴每個(gè)個(gè)體被抽到的概率是

840=15∵高二年級(jí)有50名學(xué)生,∴要抽取50×15=10名學(xué)生,故為:10.21.平面內(nèi)有兩定點(diǎn)A、B及動(dòng)點(diǎn)P,設(shè)命題甲是:“|PA|+|PB|是定值”,命題乙是:“點(diǎn)P的軌跡是以A.B為焦點(diǎn)的橢圓”,那么()A.甲是乙成立的充分不必要條件B.甲是乙成立的必要不充分條件C.甲是乙成立的充要條件D.甲是乙成立的非充分非必要條件答案:命題甲是:“|PA|+|PB|是定值”,命題乙是:“點(diǎn)P的軌跡是以A.B為焦點(diǎn)的橢圓∵當(dāng)一個(gè)動(dòng)點(diǎn)到兩個(gè)頂點(diǎn)距離之和等于定值時(shí),再加上這個(gè)和大于兩個(gè)定點(diǎn)之間的距離,可以得到動(dòng)點(diǎn)的軌跡是橢圓,沒有加上的條件不一定推出,而點(diǎn)P的軌跡是以A.B為焦點(diǎn)的橢圓,一定能夠推出|PA|+|PB|是定值,∴甲是乙成立的必要不充分條件故選B.22.設(shè)a,b,λ都為正數(shù),且a≠b,對(duì)于函數(shù)y=x2(x>0)圖象上兩點(diǎn)A(a,a2),B(b,b2).

(1)若AC=λCB,則點(diǎn)C的坐標(biāo)是______;

(2)過點(diǎn)C作x軸的垂線,交函數(shù)y=x2(x>0)的圖象于D點(diǎn),由點(diǎn)C在點(diǎn)D的上方可得不等式:______.答案:(1)設(shè)點(diǎn)C(x,y),因?yàn)辄c(diǎn)A(a,a2),B(b,b2),AC=λCB,則(x-a,y-a2)=λ(b-x,b2-y),所以:x=a+λb1+λ,y=a2+λb21+λ(2)因?yàn)辄c(diǎn)C在點(diǎn)D的上方,則y>yD,所以a2+λb21+λ>(a+λb1+λ)223.解不等式|2x-1|<|x|+1.答案:根據(jù)題意,對(duì)x分3種情況討論:①當(dāng)x<0時(shí),原不等式可化為-2x+1<-x+1,解得x>0,又x<0,則x不存在,此時(shí),不等式的解集為?.②當(dāng)0≤x<12時(shí),原不等式可化為-2x+1<x+1,解得x>0,又0≤x<12,此時(shí)其解集為{x|0<x<12}.③當(dāng)x≥12

時(shí),原不等式可化為2x-1<x+1,解得12≤x<2,又由x≥12,此時(shí)其解集為{x|12≤x<2},?∪{x|0<x<12

}∪{x|12≤x<2

}={x|0<x<2};綜上,原不等式的解集為{x|0<x<2}.24.如圖為△ABC和一圓的重迭情形,此圓與直線BC相切于C點(diǎn),且與AC交于另一點(diǎn)D.若∠A=70°,∠B=60°,則的度數(shù)為何()

A.50°

B.60°

C.100°

D.120°

答案:C25.已知O是△ABC所在平面內(nèi)一點(diǎn),D為BC邊中點(diǎn),且,那么(

A.

B.

C.

D.2

答案:A26.橢圓的短軸長是2,一個(gè)焦點(diǎn)是(3,0),則橢圓的標(biāo)準(zhǔn)方程是______.答案:∵橢圓的一個(gè)焦點(diǎn)是(3,0),∴c=3,又∵短軸長是2,∴2b=2.b=1,∴a2=4∵焦點(diǎn)在x軸上,∴橢圓的標(biāo)準(zhǔn)方程是x24+y2=1故為x24+y2=127.曲線(θ為參數(shù))上的點(diǎn)到原點(diǎn)的最大距離為()

A.1

B.

C.2

D.答案:C28.數(shù)據(jù):1,1,3,3的眾數(shù)和中位數(shù)分別是()

A.1或3,2

B.3,2

C.1或3,1或3

D.3,3答案:A29.若施化肥量x與小麥產(chǎn)量y之間的回歸方程為y=250+4x(單位:kg),當(dāng)施化肥量為50kg時(shí),預(yù)計(jì)小麥產(chǎn)量為______kg.答案:根據(jù)回歸方程為y=250+4x,當(dāng)施化肥量為50kg,即x=50kg時(shí),y=250+4x=250+200=450kg故為:45030.在直徑為4的圓內(nèi)接矩形中,最大的面積是()

A.4

B.2

C.6

D.8答案:D31.已知隨機(jī)變量X的分布列為:P(X=k)=,k=1,2,…,則P(2<X≤4)等于()

A.

B.

C.

D.答案:A32.直線l1:x+ay=2a+2與直線l2:ax+y=a+1平行,則a=______.答案:直線l1:x+ay=2a+2即x+ay-2a-2=0;直線l2:ax+y=a+1即ax+y-a-1=0,∵直線l1與直線l2互相平行∴當(dāng)a≠0且a≠-1時(shí),1a=a1≠-2a-2-a-1,解之得a=1當(dāng)a=0時(shí),兩條直線垂直;當(dāng)a=-1時(shí),兩條直線重合故為:133.給出以下四個(gè)對(duì)象,其中能構(gòu)成集合的有()

①教2011屆高一的年輕教師;

②你所在班中身高超過1.70米的同學(xué);

③2010年廣州亞運(yùn)會(huì)的比賽項(xiàng)目;

④1,3,5.A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)答案:解析:因?yàn)槲匆?guī)定年輕的標(biāo)準(zhǔn),所以①不能構(gòu)成集合;由于②③④中的對(duì)象具備確定性、互異性,所以②③④能構(gòu)成集合.故選C.34.甲,乙兩個(gè)工人在同樣的條件下生產(chǎn),日產(chǎn)量相等,每天出廢品的情況如下表所列,則有結(jié)論:()

工人

廢品數(shù)

0

1

2

3

0

1

2

3

概率

0.4

0.3

0.2

0.1

0.3

0.5

0.2

0

A.甲的產(chǎn)品質(zhì)量比乙的產(chǎn)品質(zhì)量好一些

B.乙的產(chǎn)品質(zhì)量比甲的產(chǎn)品質(zhì)量好一些

C.兩人的產(chǎn)品質(zhì)量一樣好

D.無法判斷誰的質(zhì)量好一些答案:B35.若函數(shù)y=f(x)是函數(shù)y=ax(a>0且a≠1)的反函數(shù),且y=f(x)的圖象過點(diǎn)(2,1),則f(x)=______.答案:因?yàn)楹瘮?shù)y=f(x)是函數(shù)y=ax(a>0且a≠1)的反函數(shù),且y=f(x)的圖象過點(diǎn)(2,1),所以函數(shù)y=ax經(jīng)過(1,2),所以a=2,所以函數(shù)y=f(x)=log2x.故為:log2x.36.如圖,已知雙曲線以長方形ABCD的頂點(diǎn)A,B為左、右焦點(diǎn),且過C,D兩頂點(diǎn).若AB=4,BC=3,則此雙曲線的標(biāo)準(zhǔn)方程為______.答案:由題意可得點(diǎn)OA=OB=2,AC=5設(shè)雙曲線的標(biāo)準(zhǔn)方程是x2a2-y2b2=1.則2a=AC-BC=5-3=2,所以a=1.所以b2=c2-a2=4-1=3.所以雙曲線的標(biāo)準(zhǔn)方程是x2-y23=1.故為:x2-y23=137.已知雙曲線的焦點(diǎn)在y軸,實(shí)軸長為8,離心率e=2,過雙曲線的弦AB被點(diǎn)P(4,2)平分;

(1)求雙曲線的標(biāo)準(zhǔn)方程;

(2)求弦AB所在直線方程;

(3)求直線AB與漸近線所圍成三角形的面積.答案:(1)∵雙曲線的焦點(diǎn)在y軸,∴設(shè)雙曲線的標(biāo)準(zhǔn)方程為y2a2-x2b2=1;∵實(shí)軸長為8,離心率e=2,∴a=4,c=42,∴b2=c2-a2=16.或∵實(shí)軸長為8,離心率e=2,∴雙曲線為等軸雙曲線,a=b=4.∴雙曲線的標(biāo)準(zhǔn)方程為y216-x216=1.(2)設(shè)弦AB所在直線方程為y-2=k(x-4),A,B的坐標(biāo)為A(x1,y1),B(x2,y2).∴k=y1-y2x1-x2,x1+x22=4,y1+y22=2;∴y1216-x1216=1

y2216-x2216=1?y12-y2216-x12-x2216=0?(y1-y2)(y1+y2)16-(x1-x2)(x1+x2)16=0代入x1+x2=8,y1+y2=4,得(y1-y2)×416-(x1-x2)×816=0,∴y1-y2x1-x2×14-12=0,∴14k-12=0,∴k=2;所以弦AB所在直線方程為y-2=2(x-4),即2x-y-6=0.(3)等軸雙曲線y216-x216=1的漸近線方程為y=±x.∴直線AB與漸近線所圍成三角形為直角三角形.又漸近線與弦AB所在直線的交點(diǎn)坐標(biāo)分別為(6,6),(2,-2),∴直角三角形兩條直角邊的長度分別為62、22;∴直線AB與漸近線所圍成三角形的面積S=12×62×22=12.38.與直線3x+4y-3=0平行,并且距離為3的直線方程為______.答案:設(shè)所求直線上任意一點(diǎn)P(x,y),由題意可得點(diǎn)P到所給直線的距離等于3,即|3x+4y-3|5=3,∴|3x+4y-3|=15,∴3x+4y-3=±15,即3x+4y-18=0或3x+4y+12=0.故為3x+4y-18=0或3x+4y+12=0.39.半徑為R的球內(nèi)接一個(gè)正方體,則該正方體的體積為()A.22RB.4π3R3C.893R3D.193R3答案:∵半徑為R的球內(nèi)接一個(gè)正方體,設(shè)正方體棱長為a,正方體的對(duì)角線過球心,可得正方體對(duì)角線長為:a2+a2+a2=2R,可得a=2R3,∴正方體的體積為a3=(2R3)3=83R39,故選C;40.在極坐標(biāo)系中,曲線ρ=4sinθ和ρcosθ=1相交于點(diǎn)A、B,則|AB|=______.答案:將其化為直角坐標(biāo)方程為x2+y2-4y=0,和x=1,代入得:y2-4y+1=0,則|AB|=|y1-y2|=(y1+y2)2-4y1y1=(4)2-4=23.故為:23.41.三段論:“①船準(zhǔn)時(shí)啟航就能準(zhǔn)時(shí)到達(dá)目的港,②這艘船準(zhǔn)時(shí)到達(dá)了目的港,③這艘船是準(zhǔn)時(shí)啟航的”中,“小前提”是______.(填序號(hào))答案:三段論:“①船準(zhǔn)時(shí)啟航就能準(zhǔn)時(shí)到達(dá)目的港;②這艘船準(zhǔn)時(shí)到達(dá)了目的港,③這艘船是準(zhǔn)時(shí)啟航的,我們易得大前提是①,小前提是②,結(jié)論是③,故為:②.42.已知兩點(diǎn)P1(2,-1)、P2(0,5),點(diǎn)P在P1P2延長線上,且滿足P1P2=-2PP2,則P點(diǎn)的坐標(biāo)為______.答案:設(shè)分點(diǎn)P(x,y),P1(2,-1)、P2(0,5),∴P1P2=(-2,6),PP2=(-x,5-y),∵P1P2=-2PP2,∴(-2,6)=-2(-x,5-y)-2=-2x,6=2y-10,∴x=-1,y=8∴P(-1,8).43.下列各個(gè)對(duì)應(yīng)中,從A到B構(gòu)成映射的是()A.

B.

C.

D.

答案:按照映射的定義,A中的任何一個(gè)元素在集合B中都有唯一確定的元素與之對(duì)應(yīng).而在選項(xiàng)A和選項(xiàng)B中,前一個(gè)集合中的元素2在后一個(gè)集合中沒有元素與之對(duì)應(yīng),故不符合映射的定義.選項(xiàng)C中,前一個(gè)集合中的元素1在后一集合中有2個(gè)元素和它對(duì)應(yīng),也不符合映射的定義,只有選項(xiàng)D滿足映射的定義,故選D.44.已知集合M={2,a,b},N={2a,2,b2}且M=N.求a、b的值.答案:由M=N及集合中元素的互異性,得a=2ab=b2

①或a=b2b=2a

②解①得:a=0b=1或a=0b=0,解②得:a=14b=12,當(dāng)a=0b=0時(shí),違背了集合中元素的互異性,所以舍去,故a、b的值為a=0b=1或a=14b=12.45.如圖是《集合》一章的知識(shí)結(jié)構(gòu)圖,如果要加入“交集”,則應(yīng)該放在()

A.“集合”的下位

B.“概念”的下位

C.“表示”的下位

D.“基本運(yùn)算”的下位

答案:D46.已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=x,x∈R},則集合A∩B中的元素個(gè)數(shù)為(

)

A.0個(gè)

B.1個(gè)

C.2個(gè)

D.無窮多個(gè)答案:C47.執(zhí)行程序框圖,如果輸入的n是5,則輸出的p是()

A.1

B.2

C.3

D.5

答案:D48.為了評(píng)價(jià)某個(gè)電視欄目的改革效果,在改革前后分別從居民點(diǎn)抽取了100位居民進(jìn)行調(diào)查,經(jīng)過計(jì)算K2≈0.99,根據(jù)這一數(shù)據(jù)分析,下列說法正確的是()

A.有99%的人認(rèn)為該欄目優(yōu)秀

B.有99%的人認(rèn)為該欄目是否優(yōu)秀與改革有關(guān)系

C.有99%的把握認(rèn)為電視欄目是否優(yōu)秀與改革有關(guān)系

D.沒有理由認(rèn)為電視欄目是否優(yōu)秀與改革有關(guān)系答案:D49.已知集合{2x,x+y}={7,4},則整數(shù)x=______,y=______.答案:∵{2x,x+y}={7,4},∴2x=4x+y=7或2x=7x+y=4解得x=2y=5或x=3.5y=0.5不是整數(shù),舍去故為:2,550.設(shè)有三個(gè)命題:“①0<12<1.②函數(shù)f(x)=log

12x是減函數(shù).③當(dāng)0<a<1時(shí),函數(shù)f(x)=logax是減函數(shù)”.當(dāng)它們構(gòu)成三段論時(shí),其“小前提”是______(填序號(hào)).答案:三段話寫成三段論是:大前提:當(dāng)0<a<1時(shí),函數(shù)f(x)=logax是減函數(shù),小前提:0<12<1,結(jié)論:函數(shù)f(x)=log

12x是減函數(shù).其“小前提”是①.故為:①.第2卷一.綜合題(共50題)1.某醫(yī)療研究所為了檢驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計(jì)算得Χ2≈3.918,經(jīng)查對(duì)臨界值表知P(Χ2≥3.841)≈0.05.則下列結(jié)論中,正確結(jié)論的序號(hào)是______

(1)有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”

(2)若某人未使用該血清,那么他在一年中有95%的可能性得感冒

(3)這種血清預(yù)防感冒的有效率為95%

(4)這種血清預(yù)防感冒的有效率為5%答案:查對(duì)臨界值表知P(Χ2≥3.841)≈0.05,故有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”950/0僅是指“血清與預(yù)防感冒”可信程度,但也有“在100個(gè)使用血清的人中一個(gè)患感冒的人也沒有”的可能.故為:(1).2.函數(shù)f(x)=11+x2(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]答案:∵函數(shù)f(x)=11+x2(x∈R),∴1+x2≥1,所以原函數(shù)的值域是(0,1],故選B.3.一個(gè)箱中原來裝有大小相同的

5

個(gè)球,其中

3

個(gè)紅球,2

個(gè)白球.規(guī)定:進(jìn)行一次操

作是指“從箱中隨機(jī)取出一個(gè)球,如果取出的是紅球,則把它放回箱中;如果取出的是白

球,則該球不放回,并另補(bǔ)一個(gè)紅球放到箱中.”

(1)求進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)為

4

的概率;

(2)求進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)的分布列和數(shù)學(xué)期望.答案:(1)設(shè)A1表示事件“第一次操作從箱中取出的是紅球”,B1表示事件“第一次操作從箱中取出的是白球”,A2表示事件“第二次操作從箱中取出的是紅球”,B2表示事件“第二次操作從箱中取出的是白球”.則A1B2表示事件“第一次操作從箱中取出的是紅球,第二次操作從箱中取出的是白球”.由條件概率計(jì)算公式得P(A1B2)=P(A1)P(B2|A1)=35×25=625.B1A2表示事件“第一次操作從箱中取出的是白球,第二次操作從箱中取出的是紅球”.由條件概率計(jì)算公式得P(B1A2)=P(B1)P(A2|B1)=25×45=825.A1B2+B1A2表示“進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)為

4”,又A1B2與B1A2是互斥事件.∴P(A1B2+B1A2)=P(A1B2)+P(B1A2)=625+825=1425.(2)設(shè)進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)為X,則X=3,4,5.P(X=3)35×35=925,P(X=4)=1425,P(X=5)=25×15=225.進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)X的分布列為:進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)X的數(shù)學(xué)期望EX=3×925+4×1425+5×225=9325.4.已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F,拋物線上一點(diǎn)A的橫坐標(biāo)為x1(x1>0),過點(diǎn)A作拋物線C的切線l1交x軸于點(diǎn)D,交y軸于點(diǎn)Q,交直線l:y=p2于點(diǎn)M,當(dāng)|FD|=2時(shí),∠AFD=60°.

(1)求證:△AFQ為等腰三角形,并求拋物線C的方程;

(2)若B位于y軸左側(cè)的拋物線C上,過點(diǎn)B作拋物線C的切線l2交直線l1于點(diǎn)P,交直線l于點(diǎn)N,求△PMN面積的最小值,并求取到最小值時(shí)的x1值.答案:(1)設(shè)A(x1,x122p),則A處的切線方程為l1:y=x1px-x122p,可得:D(x12,0),Q(0,-x212p)∴|FQ|=p2+x212p=|AF|;∴△AFQ為等腰三角形.由點(diǎn)A,Q,D的坐標(biāo)可知:D為線段AQ的中點(diǎn),∴|AF|=4,得:p2+x212p=4x21+p2=16∴p=2,C:x2=4y.(2)設(shè)B(x2,y2)(x2<0),則B處的切線方程為y=x22x-x224聯(lián)立y=x22x-x224y=x12x-x214得到點(diǎn)P(x1+x22,x1x24),聯(lián)立y=x12x-x214y=1得到點(diǎn)M(x12+2x1,1).同理N(x22+2x2,1),設(shè)h為點(diǎn)P到MN的距離,則S△=12|MN|?h=12×(x12+2x1-x22-2x2)(1-x1x24)=(x2-x1)(4-x1x2)216x1x2

①設(shè)AB的方程為y=kx+b,則b>0,由y=kx+bx2=4y得到x2-4kx-4b=0,得x1+x2=4kx1x2=-4b代入①得:S△=16k2+16b(4+4b)264b=(1+b)2k2+bb,要使面積最小,則應(yīng)k=0,得到S△=(1+b)2bb②令b=t,得S△(t)=(1+t2)2t=t3+2t+1t,則S′△(t)=(3t2-1)(t2+1)t2,所以當(dāng)t∈(0,33)時(shí),S(t)單調(diào)遞減;當(dāng)t∈(33,+∞)時(shí),S(t)單調(diào)遞增,所以當(dāng)t=33時(shí),S取到最小值為1639,此時(shí)b=t2=13,k=0,所以y1=13,解得x1=233.故△PMN面積取得最小值時(shí)的x1值為233.5.關(guān)于斜二測畫法畫直觀圖說法不正確的是()

A.在實(shí)物圖中取坐標(biāo)系不同,所得的直觀圖有可能不同

B.平行于坐標(biāo)軸的線段在直觀圖中仍然平行于坐標(biāo)軸

C.平行于坐標(biāo)軸的線段長度在直觀圖中仍然保持不變

D.斜二測坐標(biāo)系取的角可能是135°答案:C6.已知集合A={x|log2x<1},B={x|0<x<c,其中c>0},若A=B,則c=______.答案:集合A={x|log2x<1}={x|0<x<2},B={x|0<x<c,其中c>0},若A=B,則c=2,故為2.7.AB是圓O的直徑,EF切圓O于C,AD⊥EF于D,AD=2,AB=6,則AC長為()

A.

B.3

C.2

D.2答案:A8.不等式的解集是(

A.(-∞,-1)∪(-1,2]

B.[-1,2]

C.(-∞,-1)∪[2,+∞)

D.(-1,2]答案:D9.隨機(jī)地向某個(gè)區(qū)域拋撒了100粒種子,在面積為10m2的地方有2粒種子發(fā)芽,假設(shè)種子的發(fā)芽率為100%,則整個(gè)撒種區(qū)域的面積大約有______m2.答案:設(shè)整個(gè)撒種區(qū)域的面積大約xm2,由于假設(shè)種子的發(fā)芽率為100%,所以在面積為10m2的地方有2粒種子發(fā)芽,意味著在面積為10m2的地方有2粒種子,從而有:100x=210,∴x=500,故為:500.10.(1+2x)6的展開式中x4的系數(shù)是______.答案:展開式的通項(xiàng)為Tr+1=2rC6rxr令r=4得展開式中x4的系數(shù)是24C64=240故為:24011.“a>2且b>2”是“a+b>4且ab>4”的()A.充分非必要條件B.必要非充分條件C.充要條件D.既不充分也不必要條件答案:若a>2且b>2,則必有a+b>4且ab>4成立,故充分性易證若a+b>4且ab>4,如a=8,b=1,此時(shí)a+b>4且ab>4成立,但不能得出a>2且b>2,故必要性不成立由上證明知“a>2且b>2”是“a+b>4且ab>4”的充分不必要條件,故選A12.若a2+b2=4,則兩圓(x-a)2+y2=1和x2+(y-b)2=1的位置關(guān)系是______.答案:若a2+b2=4,由于兩圓(x-a)2+y2=1和x2+(y-b)2=1的圓心距為(a-0)2+(0-b)2=a2+b2=2,正好等于兩圓的半徑之和,故兩圓相外切,故為相外切.13.給出的下列幾個(gè)命題:

①向量共面,則它們所在的直線共面;

②零向量的方向是任意的;

③若則存在唯一的實(shí)數(shù)λ,使

其中真命題的個(gè)數(shù)為()

A.0

B.1

C.2

D.3答案:B14.

如圖,平面內(nèi)向量,的夾角為90°,,的夾角為30°,且||=2,||=1,||=2,若=λ+2

,則λ等()

A.

B.1

C.

D.2

答案:D15.從裝有兩個(gè)白球和兩個(gè)黃球的口袋中任取2個(gè)球,以下給出了三組事件:

①至少有1個(gè)白球與至少有1個(gè)黃球;

②至少有1個(gè)黃球與都是黃球;

③恰有1個(gè)白球與恰有1個(gè)黃球.

其中互斥而不對(duì)立的事件共有()組.

A.0

B.1

C.2

D.3答案:A16.用反證法證明某命題時(shí),對(duì)結(jié)論:“自然數(shù)a,b,c中恰有一個(gè)偶數(shù)”正確的假設(shè)為()

A.a(chǎn),b,c都是奇數(shù)

B.a(chǎn),b,c都是偶數(shù)

C.a(chǎn),b,c中至少有兩個(gè)偶數(shù)

D.a(chǎn),b,c中至少有兩個(gè)偶數(shù)或都是奇數(shù)答案:D17.設(shè)函數(shù)g(x)=ex

x≤0lnx,x>0,則g(g(12))=______.答案:g(g(12))

=g(ln12)

=eln12=12故為:12.18.已知a,b,c,d都是正數(shù),S=aa+b+d+bb+c+a+cc+d+a+dd+a+c,則S的取值范圍是______.答案:∵a,b,c,d都是正數(shù),∴S=aa+b+d+bb+c+a+cc+d+a+dd+a+c>aa+b+c+d+ba+b+c+d+ca+b+c+d+da+b+c+d=a+b+c+da+b+c+d=1;S=aa+b+d+bb+c+a+cc+d+a+dd+a+c<aa+b+bb+a+cc+d+dd+c=2∴1<S<2.故為:(1,2)19.已知|a|=3,|b|=2,a與b的夾角為300,則|a+b|等于()A.13B.15C.17D.19答案:∵|a|=3,|b|=2,a與b的夾角為300,∴a?b=|a||b|cos30°=2×3×32=3則|a+b|=a2+2a?b+b2=13故選A20.點(diǎn)A(-,1)關(guān)于y軸的對(duì)稱點(diǎn)A′的坐標(biāo)為(

A.(-,-1)

B.(,-1)

C.(-,1)

D.(,1)答案:D21.已知正方體ABCD-A1B1C1D1,點(diǎn)E,F(xiàn)分別是上底面A1C1和側(cè)面CD1的中心,求下列各式中的x,y的值:

(1)AC1=x(AB+BC+CC1),則x=______;

(2)AE=AA1+xAB+yAD,則x=______,y=______;

(3)AF=AD+xAB+yAA1,則x=______,y=______.答案:(1)根據(jù)向量加法的首尾相連法則,x=1;(2)由向量加法的三角形法則得,AE=AA1+A1E,由四邊形法則和向量相等得,A1E=12(A1B1+A1D1)=12(AB+AD);∴AE=AA1+12AB+12AD,∴x=y=12;(3)由向量加法的三角形法則得,AF=AD+DF,由四邊形法則和向量相等得,DF=12(DC+DD1)=12(AB+AA1);∴AF=AD+12AB+12AA1,∴x=y=12.22.大家知道,在數(shù)列{an}中,若an=n,則sn=1+2+3+…+n=12n2+12n,若an=n2,則

sn=12+22+32+…+n2=13n3+12n2+16n,于是,猜想:若an=n3,則sn=13+23+33+…+n3=an4+bn3+cn2+dn.

問:(1)這種猜想,你認(rèn)為正確嗎?

(2)不管猜想是否正確,這個(gè)結(jié)論是通過什么推理方法得到的?

(3)如果結(jié)論正確,請(qǐng)用數(shù)學(xué)歸納法給予證明.答案:(1)猜想正確;(2)這是一種類比推理的方法;(3)由類比可猜想,a=14,n=1時(shí),a+b+c+d=1;n=2時(shí),16a+8b+4c+d=9;n=3時(shí),81a+27b+9c+d=36故解得a=14,b=12,c=14,∴sn=13+23+33+…+n3=14n4+12n3+14n2用數(shù)學(xué)歸納法證明:①n=1時(shí),結(jié)論成立;②假設(shè)n=k時(shí),結(jié)論成立,即13+23+33+…+k3=14k4+12k3+14k2=[k(k+1)2]2則n=k+1時(shí),左邊=13+23+33+…+k3+(k+1)3=14k4+12k3+14k2+(k+1)3=[k(k+1)2]2+(k+1)3=(k+12)2(k2+4k+4)=[(k+1)(k+2)2]2=右邊,結(jié)論成立由①②可知,sn=13+23+33+…+n3=14n4+12n3+14n2,成立23.在坐標(biāo)平面內(nèi),與點(diǎn)A(1,2)距離為1,且與點(diǎn)B(3,1)距離為2的直線共有()A.1條B.2條C.3條D.4條答案:分別以A、B為圓心,以1、2為半徑作圓,兩圓的公切線有兩條,即為所求.故選B.24.設(shè)集合A={1,3},集合B={1,2,4,5},則集合A∪B=()A.{1,3,1,2,4,5}B.{1}C.{1,2,3,4,5}D.{2,3,4,5}答案:∵集合A={1,3},集合B={1,2,4,5},∴集合A∪B={1,2,3,4,5}.故選C.25.點(diǎn)B是點(diǎn)A(1,2,3)在坐標(biāo)平面yOz內(nèi)的正投影,則|OB|等于()

A.

B.

C.

D.答案:B26.已知兩條直線a1x+b1y+1=0和a2x+b2y+1=0都過點(diǎn)A(2,3),則過兩點(diǎn)P1(a1,b1),P2(a2,b2)的直線方程為______.答案:∵A(2,3)是直線a1x+b1y+1=0和a2x+b2y+1=0的公共點(diǎn),∴2a1+3b1+1=0,且2a2+3b2+1=0,即兩點(diǎn)P1(a1,b1),P2(a2,b2)的坐標(biāo)都適合方程2x+3y+1=0,∴兩點(diǎn)(a1,b1)和(a2,b2)都在同一條直線2x+3y+1=0上,故點(diǎn)(a1,b1)和(a2,b2)所確定的直線方程是2x+3y+1=0,故為:2x+3y+1=0.27.如果方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有實(shí)數(shù)解,求a的值.答案:設(shè)方程的實(shí)根為x0,則方程(1+i)x2-2(a+i)x+5-3i=0可化為(x20-2ax0+5)+(x20-2x0-3)i=0由復(fù)數(shù)相等的充要條件可得x20-2ax0+5=0①x20-2x0-3=0

②由②得x0=3或-1,代入①得a=73或-3∴a=73或-328.從甲、乙兩人手工制作的圓形產(chǎn)品中,各自隨機(jī)抽取6件,測得其直徑如下(單位:cm):

甲:9.00,9.20,9.00,8.50,9.10,9.20

乙:8.90,9.60,9.50,8.54,8.60,8.90

據(jù)以上數(shù)據(jù)估計(jì)兩人的技術(shù)穩(wěn)定性,結(jié)論是()

A.甲優(yōu)于乙

B.乙優(yōu)于甲

C.兩人沒區(qū)別

D.無法判斷答案:A29.若3π2<α<2π,則直線xcosα+ysinα=1必不經(jīng)過()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:令x=0,得y=sinα<0,令y=0,得x=cosα>0,直線過(0,sinα),(cosα,0)兩點(diǎn),因而直線不過第二象限.故選B30.某學(xué)校為了解高一男生的百米成績,隨機(jī)抽取了50人進(jìn)行調(diào)查,如圖是這50名學(xué)生百米成績的頻率分布直方圖.根據(jù)該圖可以估計(jì)出全校高一男生中百米成績?cè)赱13,14]內(nèi)的人數(shù)大約是140人,則高一共有男生______人.

答案:第三和第四個(gè)小矩形面積之和為(0.72+0.68)×0.5=0.7,即百米成績?cè)赱13,14]內(nèi)的頻率為:0.7,因?yàn)楦鶕?jù)該圖可以估計(jì)出全校高一男生中百米成績?cè)赱13,14]內(nèi)的人數(shù)大約是140人,則高一共有男生1400.7=200人.故為:200.31.已知直線的傾斜角為α,且cosα=45,則此直線的斜率是______.答案:∵直線l的傾斜角為α,cosα=45,∴α的終邊在第一象限,故sinα=35故l的斜率為tanα=sinαcosα=34故為:3432.“所有9的倍數(shù)(M)都是3的倍數(shù)(P),某奇數(shù)(S)是9的倍數(shù)(M),故此奇數(shù)(S)是3的倍數(shù)(P)”,上述推理是()

A.小前提錯(cuò)

B.結(jié)論錯(cuò)

C.正確的

D.大前提錯(cuò)答案:C33.已知:集合A={x,y},B={2,2y},若A=B,則x+y=______.答案:∵集合A={x,y},B={2,2y},而A=B∴x=2y=0或x=2yy=2即x=4y=2∴x+y=2或6故為:2或634.已知向量OC=(2,2),CA=(2cosa,2sina),則向量.OA的模的最大值是()A.3B.32C.2D.18答案:∵OA=OC+CA=(2+2cosa,2+2sina)|OA|=(2+2cosa)2+(2+2sina)2=10+8sin(a+π4)∴|OA|≤18=32故選B.35.在如圖所示的莖葉圖中,甲、乙兩組數(shù)據(jù)的中位數(shù)分別是______.答案:由莖葉圖可得甲組共有9個(gè)數(shù)據(jù)中位數(shù)為45乙組共9個(gè)數(shù)據(jù)中位數(shù)為46故為45、4636.已知兩個(gè)力F1,F(xiàn)2的夾角為90°,它們的合力大小為10N,合力與F1的夾角為60°,那么F2的大小為()A.53NB.5NC.10ND.52N答案:由題意可知:對(duì)應(yīng)向量如圖由于α=60°,∴F2的大小為|F合|?sin60°=10×32=53.故選A.37.已知隨機(jī)變量ξ~N(3,22),若ξ=2η+3,則Dη=()

A.0

B.1

C.2

D.4答案:B38.橢圓的短軸長是2,一個(gè)焦點(diǎn)是(3,0),則橢圓的標(biāo)準(zhǔn)方程是______.答案:∵橢圓的一個(gè)焦點(diǎn)是(3,0),∴c=3,又∵短軸長是2,∴2b=2.b=1,∴a2=4∵焦點(diǎn)在x軸上,∴橢圓的標(biāo)準(zhǔn)方程是x24+y2=1故為x24+y2=139.參數(shù)方程(θ為參數(shù))化為普通方程是()

A.2x-y+4=0

B.2x+y-4=0

C.2x-y+4=0,x∈[2,3]

D.2x+y-4=0,x∈[2,3]答案:D40.已知l1、l2是過點(diǎn)P(-2,0)的兩條互相垂直的直線,且l1、l2與雙曲線y2-x2=1各有兩個(gè)交點(diǎn),分別為A1、B1和A2、B2.

(1)求l1的斜率k1的取值范圍;

(2)若|A1B1|=5|A2B2|,求l1、l2的方程.答案:(1)顯然l1、l2斜率都存在,否則l1、l2與曲線不相交.設(shè)l1的斜率為k1,則l1的方程為y=k1(x+2).聯(lián)立得y=k1(x+2),y2-x2=1,消去y得(k12-1)x2+22k12x+2k12-1=0.①根據(jù)題意得k12-1≠0,②△1>0,即有12k12-4>0.③完全類似地有1k21-1≠0,④△2>0,即有12?1k21-4>0,⑤從而k1∈(-3,-33)∪(33,3)且k1≠±1.(2)由弦長公式得|A1B1|=1+k2112k21-4(k21-1)2.⑥完全類似地有|A2B2|=1+1k2112-4k21(k21-1)2.⑦∵|A1B1|=5|A2B2|,∴k1=±2,k2=.+22.從而l1:y=2(x+2),l2:y=-22(x+2)或l1:y=-2(x+2),l2:y=22(x+2).41.設(shè)點(diǎn)P對(duì)應(yīng)的復(fù)數(shù)為-3+3i,以原點(diǎn)為極點(diǎn),實(shí)軸正半軸為極軸建立極坐標(biāo)系,則點(diǎn)P的極坐標(biāo)為()

A.(3,π)

B.(-3,π)

C.(3,π)

D.(-3,π)答案:A42.求由曲線圍成的圖形的面積.答案:面積為解析:當(dāng),時(shí),方程化成,即.上式表示圓心在,半徑為的圓.所以,當(dāng),時(shí),方程表示在第一象限的部分以及軸,軸負(fù)半軸上的點(diǎn),.同理,當(dāng),時(shí),方程表示在第四象限的部分以及軸負(fù)半軸上的點(diǎn);當(dāng),時(shí),方程表示圓在第二象限的部分以及軸負(fù)半軸上的點(diǎn);當(dāng),時(shí),方程表示圓在第三象限部分.以上合起來構(gòu)成如圖所示的圖形,面積為.43.某批n件產(chǎn)品的次品率為1%,現(xiàn)在從中任意地依次抽出2件進(jìn)行檢驗(yàn),問:

(1)當(dāng)n=100,1000,10000時(shí),分別以放回和不放回的方式抽取,恰好抽到一件次品的概率各是多少?(精確到0.00001)

(2)根據(jù)(1),談?wù)勀銓?duì)超幾何分布與二項(xiàng)分布關(guān)系的認(rèn)識(shí).答案:(1)當(dāng)n=100時(shí),如果放回,這是二項(xiàng)分布.抽到的2件產(chǎn)品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.100件產(chǎn)品中次品數(shù)為1,正品數(shù)是99,從100件產(chǎn)品里抽2件,總的可能是C1002,次品的可能是C11C991.所以概率為C11C199C2100=0.2.當(dāng)n=1000時(shí),如果放回,這是二項(xiàng)分布.抽到的2件產(chǎn)品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.1000件產(chǎn)品中次品數(shù)為10,正品數(shù)是990,從1000件產(chǎn)品里抽2件,總的可能是C10002,次品的可能是C101C9901.所以概率為是C110C1990C21000≈0.0198.如果放回,這是二項(xiàng)分布.抽到的2件產(chǎn)品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.10000件產(chǎn)品中次品數(shù)為1000,正品數(shù)是9000,從10000件產(chǎn)品里抽2件,總的可能是C100002,次品的可能是C1001C99001.所以概率為C1100?C19900C210000≈0.0198.(2)對(duì)超幾何分布與二項(xiàng)分布關(guān)系的認(rèn)識(shí):共同點(diǎn):每次試驗(yàn)只有兩種可能的結(jié)果:成功或失敗.不同點(diǎn):1、超幾何分布是不放回抽取,二項(xiàng)分布是放回抽?。?/p>

2、超幾何分布需要知道總體的容量,二項(xiàng)分布不需要知道總體容量,但需要知道“成功率”;聯(lián)系:當(dāng)產(chǎn)品的總數(shù)很大時(shí),超幾何分布近似于二項(xiàng)分布.44.已知正方形ABCD的邊長為1,=,=,=,則|++|等于(

A.0

B.2

C.

D.3答案:B45.若某簡單組合體的三視圖(單位:cm)如圖所示,說出它的幾何結(jié)構(gòu)特征,并求該幾何體的表面積。答案:解:該幾何體由球和圓臺(tái)組成。球的半徑為1,圓臺(tái)的上下底面半徑分別為1、4,高為4,母線長為5,S球=4πcm2,S臺(tái)=π(12+42+1×5+4×5)=42πcm2,故S表=S球+S臺(tái)=46πcm2。46.如圖,D、E分別在AB、AC上,下列條件不能判定△ADE與△ABC相似的有()

A.∠AED=∠B

B.

C.

D.DE∥BC

答案:C47.若圖中的直線l1、l2、l3的斜率分別為k1、k2、k3,則()A.k1<k2<k3B.k2<k1<k3C.k3<k2<k1D.k1<k3<k2答案:因?yàn)橹本€的斜率是其傾斜角的正切值,當(dāng)傾斜角大于90°小于180°時(shí),斜率為負(fù)值,當(dāng)傾斜角大于0°小于90°時(shí)斜率為正值,且正切函數(shù)在(0°,90°)上為增函數(shù),由圖象三條直線的傾斜角可知,k2<k1<k3.故選C.48.”m>n>0”是”方程mx2+ny2=1表示焦點(diǎn)在y軸上的橢圓”的()

A.充分而不必要條件

B.必要而不充分條件

C.充要條件

D.既不充分也不必要條件答案:C49.若向量的起點(diǎn)與終點(diǎn)M、A、B、C互不重合且無三點(diǎn)共線,且滿足下列關(guān)系(O為空間任一點(diǎn)),則能使向量成為空間一組基底的關(guān)系是()

A.

B.

C.

D.答案:C50.已知直線l的方程為x=2-4

ty=1+3

t,則直線l的斜率為______.答案:直線x=2-4

ty=1+3

t,所以直線的普通方程為:(y-1)=-34(x-2);所以直線的斜率為:-34;故為:-34.第3卷一.綜合題(共50題)1.正方形ABCD中,AB=1,分別以A、C為圓心作兩個(gè)半徑為R、r(R>r)的圓,當(dāng)R、r滿足條件______時(shí),⊙A與⊙C有2個(gè)交點(diǎn)(

A.R+r>

B.R-r<<R+r

C.R-r>

D.0<R-r<答案:B2.圓ρ=5cosθ-5sinθ的圓心的極坐標(biāo)是()

A.(-5,-)

B.(-5,)

C.(5,)

D.(-5,)答案:A3.已知邊長為1的正方形ABCD,則|AB+BC+CD|=______.答案:利用向量加法的幾何性質(zhì),得AB+BC=AC∴AB+BC+CD=AD因?yàn)檎叫蔚倪呴L等于1所以|AB+BC+CD|=|AD|

=1故為:14.若a>0,b>0,則不等式-b<aA.<x<0或0<x<

答案:D解析:試題分析:5.直線過原點(diǎn)且傾角的正弦值是45,則直線方程為______.答案:因?yàn)閮A斜角α的范圍是:0≤α<π,又由題意:sinα=45所以:tanα=±43x直線過原點(diǎn),由直線的點(diǎn)斜式方程得到:y=±43x故為:y=±43x6.設(shè)、、是三角形的邊長,求證:

≥答案:證明見解析解析:證明:由不等式的對(duì)稱性,不防設(shè)≥≥,則≥左式-右式≥≥≥07.若向量a=(3,0),b=(2,2),則a與b夾角的大小是()

A.0

B.

C.

D.答案:B8.已知空間四邊形OABC,M,N分別是OA,BC的中點(diǎn),且OA=a,OB=b,OC=c,用a,b,c表示向量MN為()A.12a+12b+12cB.12a-12b+12cC.-12a+12b+12cD.-12a+12b-12c答案:如圖所示,連接ON,AN,則ON=12(OB+OC)=12(b+c),AN=12(AC+AB)=12(OC-2OA+OB)=12(-2a+b+c)=-a+12b+12c,所以MN=12(ON+AN)=-12a+12b+12c.故選C.9.一個(gè)袋子里裝有大小相同的3個(gè)紅球和2個(gè)黃球,從中同時(shí)取出2個(gè)球,則其中含紅球個(gè)數(shù)的數(shù)學(xué)期望是

______.答案:設(shè)含紅球個(gè)數(shù)為ξ,ξ的可能取值是0、1、2,當(dāng)ξ=0時(shí),表示從中取出2個(gè)球,其中不含紅球,當(dāng)ξ=1時(shí),表示從中取出2個(gè)球,其中1個(gè)紅球,1個(gè)黃球,當(dāng)ξ=2時(shí),表示從中取出2個(gè)球,其中2個(gè)紅球,∴P(ξ=0)=C22C25=0.1,P(ξ=1)=C12C13C25=0.6P(ξ=2)=C23C25=0.3∴Eξ=0×0.1+1×0.6+2×0.3=1.2.故為:1.2.10.直線L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1∥L2,則a的值為(

A.-3

B.2

C.-3或2

D.3或-2答案:A11.若圖中直線l1,l2,l3的斜率分別為k1,k2,k3,則()A.k2<k1<k3B.k3<k2<k1C.k2<k3<k1D.k1<k3<k2答案:∵直線l2的傾斜角為鈍角,∴k2<0.直線l1,l3的傾斜角為銳角,且直線l1的傾斜角小于l3的傾斜角,∴0<k1<k3.故選A.12.若關(guān)于x的不等式xa2-2xa-3<0在[-1,1]上恒成立,則實(shí)數(shù)a的取值范圍是

A.[-1,1]

B.[-1,3]

C.(-1,1)

D.(-1,3)答案:D13.已知直線l1:y=kx+(k<0=被圓x2+y2=4截得的弦長為,則l1與直線l2:y=(2+)x的夾角的大小是()

A.30°

B.45°

C.60°

D.75°答案:B14.若直線l經(jīng)過原點(diǎn)和點(diǎn)A(-2,-2),則它的斜率為()

A.-1

B.1

C.1或-1

D.0答案:B15.國旗上的正五角星的每一個(gè)頂角是多少度?答案:由圖可知:∠AFG=∠C+∠E=2∠C,∠AGF=∠B+∠D=2∠B,∴∠A+∠AFG+∠AGF=∠A+2∠C+2∠B=5∠A∴5∠A=180°,∴∠A=36°.16.閱讀如圖所示的程序框,若輸入的n是100,則輸出的變量S的值是()A.5051B.5050C.5049D.5048答案:根據(jù)流程圖所示的順序,該程序的作用是累加并輸出S=100+99+98+…+2,∵100+99+98+…+2=5049,故選C.17.2008年9月25日下午4點(diǎn)30分,“神舟七號(hào)”載人飛船發(fā)射升空,其運(yùn)行的軌道是以地球的中心F為一個(gè)焦點(diǎn)的橢圓,若這個(gè)橢圓的長軸長為2a,離心率為e,則“神舟七號(hào)”飛船到地球中心的最大距離為______.答案:如圖,根據(jù)橢圓的幾何性質(zhì)可知,頂點(diǎn)B到橢圓的焦點(diǎn)F的距離最大.最大為a+c=a+ae.故為:a+ae.18.已知0<a<2,復(fù)數(shù)z的實(shí)部為a,虛部為1,則|z|的取值范圍是()A.(1,5)B.(1,3)C.(1,5)D.(1,3)答案:|z|=a2+1,而0<a<2,∴1<|z|<5,故選C.19.已知|a|=1,|b|=2,<a,b>=60°,則|2a+b|=______.答案:∵|a|=1,|b|=2,<a,b>=60°,∴a?b=|a|×|b|cos60°=1由此可得(2a+b)2=4a2+4a?b+b2=4×12+4×1+22=12∴|2a+b|=(2a+b)2=23故為:2320.已知=(3,4),=(5,12),與則夾角的余弦為()

A.

B.

C.

D.答案:A21.設(shè)點(diǎn)P(,1)(t>0),則||(O為坐標(biāo)原點(diǎn))的最小值是()

A.3

B.5

C.

D.答案:D22.在空間直角坐標(biāo)系中,點(diǎn)P(2,-4,6)關(guān)于y軸對(duì)稱點(diǎn)P′的坐標(biāo)為P′(-2,-4,-6)P′(-2,-4,-6).答案:∵在空間直角坐標(biāo)系中,點(diǎn)(2,-4,6)關(guān)于y軸對(duì)稱,∴其對(duì)稱點(diǎn)為:(-2,-4,-6),故為:(-2,-4,-6).23.命題:“若a>0,則a2>0”的否命題是()A.若a2>0,則a>0B.若a<0,則a2<0C.若a≤0,則a2≤0D.若a≤0,則a2≤0答案:否命題是將條件,結(jié)論同時(shí)否定,∴若a>0,則a2>0”的否命題是若a≤0,則a2≤0,故為:C24.函數(shù)y=f(x)對(duì)任意實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)+2xy.

(1)求f(0)的值;

(2)若f(1)=1,求f(2),f(3),f(4)的值,猜想f(n)的表達(dá)式并用數(shù)學(xué)歸納法證明你的結(jié)論;

(3)若f(1)≥1,求證:f(12n)>0(n∈N*).答案:(1)令x=y=0得f(0+0)=f(0)+f(0)+2×0×0?f(0)=0(2)f(1)=1,f(2)=f(1+1)=1+1+2=4f(3)=f(2+1)=4+1+2×2×1=9f(4)=f(3+1)=9+1+2×3×1=16猜想f(n)=n2,下用數(shù)學(xué)歸納法證明之.①當(dāng)n=1時(shí)猜想成立.②假設(shè)n=k時(shí)猜想成立,即:f(k)=k2,那么f(k+1)=f(k)+f(1)+2k=k2+2k+1=(k+1)2.這就是說n=k+1時(shí)猜想也成立.對(duì)于一切n≥1,n∈N+猜想都成立.(3)f(1)≥1,則f(1)=2f(12)+2×12×12≥1?f(12)≥14>0假設(shè)n=k(k∈N*)時(shí)命題成立,即f(12k)≥122k>0,則f(12k)=2f(12k+1)+2×12k+1×12k+1≥122k?f(12k+1)≥122(k+1),由上知,則f(12n)>0(n∈N*).25.若(1+2)5=a+b2(a,b為有理數(shù)),則a+b=()A.45B.55C.70D.80答案:解析:由二項(xiàng)式定理得:(1+2)5=1+C512+C52(2)2+C53(2)3+C54(2)4+C55?(2)5=1+52+20+202+20+42=41+292,∴a=41,b=29,a+b=70.故選C26.過點(diǎn)P(2,3)且以a=(1,3)為方向向量的直線l的方程為______.答案:設(shè)直線l的另一個(gè)方向向量為a=(1,k),其中k是直線的斜率可得a=(1,3)與a=(1,k)互相平行∴11=k3?k=3,所以直線l的點(diǎn)斜式方程為:y-3=3(x-2)化成一般式:3x-y-3=0故為:3x-y-3=0.27.已知直線l過點(diǎn)P(2,1)且與x軸、y軸的正半軸分別交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),則三角形OAB面積的最小值為______.答案:設(shè)A(a,0)、B(0,b),a>0,b>0,AB方程為xa+

yb=1,點(diǎn)P(2,1)代入得2a+1b=1≥22ab,∴ab≥8

(當(dāng)且僅當(dāng)a=4,b=2時(shí),等號(hào)成立),故三角形OAB面積S=12

ab≥4,故為4.28.在空間直角坐標(biāo)系中,已知A,B兩點(diǎn)的坐標(biāo)分別是A(2,3,5),B(3,1,4),則這兩點(diǎn)間的距離|AB|=______.答案:∵A,B兩點(diǎn)的坐標(biāo)分別是A(2,3,5),B(3,1,4),∴|AB|=(3-2)2+(1-3)2+(4-5)2,=1+4+1=6,故為:6.29.畫出《數(shù)學(xué)3》第一章“算法初步”的知識(shí)結(jié)構(gòu)圖.答案:《數(shù)學(xué)3》第一章“算法初步”的知識(shí)包括:算法、程序框圖、算法的三種基本邏輯結(jié)構(gòu)和框圖表示、基本算法語句.算法的三種基本邏輯結(jié)構(gòu)和框圖表示就是順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu),基本算法語句是指輸入語句、輸出語句、賦值語句、條件語句和循環(huán)語句.故《數(shù)學(xué)3》第一章“算法初步”的知識(shí)結(jié)構(gòu)圖示意圖如下:30.若0<x<1,則2x,(12)x,(0.2)x之間的大小關(guān)系為()A.2x<(0.2)x<(12)xB.2x<(12)x<(0.2)xC.(12)x<(0.2)x<2xD.(0.2)x<(12)x<2x答案:由題意考察冪函數(shù)y=xn(0<n<1),利用冪函數(shù)的性質(zhì),∵0<n<1,∴冪函數(shù)y=xn在第一象限是增函數(shù),又2>12>0.2∴2x>(12)x>(0.2)x故選D31.(文)不等式的解集是(

)A.B.C.D.答案:D解析:【思路分析】:原不等式可化為,得,故選D.【命題分析】考查不等式的解法,要求同解變形.32.若向量=(1,λ,2),=(-2,1,1),,夾角的余弦值為,則λ等于()

A.1

B.-1

C.±1

D.2答案:A33.化簡下列各式:

(1)AB+DF+CD+BC+FA=______;

(2)(AB+MB)+(BO+BC)+OM=______.答案:(1)AB+DF+CD+BC+FA=(AB+BC+CD+DF)+FA=AF+FA=0;(2)(AB+MB)+(BO+BC)+OM=(AB+BC)+MB+(BO+OM)=AC+MB+BM=AC+(MB+BM)=AC+0=AC,故為:(1)0;(2)AC34.直線ax+by=1與圓x2+y2=1有兩不同

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論