2023年連云港職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第1頁(yè)
2023年連云港職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第2頁(yè)
2023年連云港職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第3頁(yè)
2023年連云港職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第4頁(yè)
2023年連云港職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第5頁(yè)
已閱讀5頁(yè),還剩38頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年連云港職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.已知拋物線x2=4y上的點(diǎn)p到焦點(diǎn)的距離是10,則p點(diǎn)坐標(biāo)是

______.答案:根據(jù)拋物線方程可求得焦點(diǎn)坐標(biāo)為(0,1)根據(jù)拋物線定義可知點(diǎn)p到焦點(diǎn)的距離與到準(zhǔn)線的距離相等,∴yp+1=10,求得yp=9,代入拋物線方程求得x=±6∴p點(diǎn)坐標(biāo)是(±6,9)故為:(±6,9)2.求原點(diǎn)至3x+4y+1=0的距離?答案:由原點(diǎn)坐標(biāo)為(0,0),得到原點(diǎn)到已知直線的距離d=|3?0+4?0+1|32+42=15.3.甲、乙兩人進(jìn)行乒乓球比賽,比賽規(guī)則為“3局2勝”,即以先贏2局者為勝.根據(jù)經(jīng)驗(yàn),每局比賽中甲獲勝的概率為0.6,則本次比賽甲獲勝的概率是(

A.0.216

B.0.36

C.0.432

D.0.648答案:D4.在△ABC所在平面存在一點(diǎn)O使得OA+OB+OC=0,則面積S△OBCS△ABC=______.答案:∵OA+OB+OC=0,∴OB+

OC=AO,設(shè)OB+OC=OD∴O是AD的中點(diǎn),要求面積之比的兩個(gè)三角形是同底的三角形,∴面積之比等于三角形的高之比,∴比值是13,故為:13.5.向量a、b滿足|a|=1,|b|=2,且a與b的夾角為π3,則|a+2b|=______.答案:∵|a|=1,|b|=2,且a與b的夾角為π3,∴a?b=|a|?|b|?cosπ3=1因此,(a+2b)2=|a|2+4a?b+4|b|2=12+4×1+4|b|2=21∴|a+2b|=21故為:216.在區(qū)間[0,1]產(chǎn)生的隨機(jī)數(shù)x1,轉(zhuǎn)化為[-1,3]上的均勻隨機(jī)數(shù)x,實(shí)施的變換為()

A.x=3x1-1

B.x=3x1+1

C.x=4x1-1

D.x=4x1+1答案:C7.(選做題)方程ρ=cosθ與(t為參數(shù))分別表示何種曲線(

)。答案:圓,雙曲線8.Rt△ABC中,AB=3,BC=4,AC=5,將三角形繞直角邊AB旋轉(zhuǎn)一周形成一個(gè)新的幾何體,想象幾何體的結(jié)構(gòu),畫出它的三視圖,求出它的表面積和體積.答案:以繞AB邊旋轉(zhuǎn)為例,其直觀圖、正(側(cè))視圖、俯視圖依次分別為:其表面是扇形的表面,所以其表面積為S=πRL=36π,V=13×π×BC2×AB=16π.9.某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如下表:

廣告費(fèi)用x(萬(wàn)元)

2

3

4

5

銷售額y(萬(wàn)元)

27

39

48

54

根據(jù)上表可得回歸方程y=bx+a中的b為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬(wàn)元時(shí)銷售額為()

A.65.5萬(wàn)元

B.66.2萬(wàn)元

C.67.7萬(wàn)元

D.72.0萬(wàn)元答案:A10.(理)某單位有8名員工,其中有5名員工曾經(jīng)參加過一種或幾種技能培訓(xùn),另外3名員工沒有參加過任何技能培訓(xùn),現(xiàn)要從8名員工中任選3人參加一種新的技能培訓(xùn);

(I)求恰好選到1名曾經(jīng)參加過技能培訓(xùn)的員工的概率;

(Ⅱ)這次培訓(xùn)結(jié)束后,仍然沒有參加過任何技能培訓(xùn)的員工人數(shù)X是一個(gè)隨機(jī)變量,求X的分布列和數(shù)學(xué)期望.答案:(I)由題意知本題是一個(gè)等可能事件的概率,∵試驗(yàn)發(fā)生包含的事件是從8人中選3個(gè),共有C83=56種結(jié)果,滿足條件的事件是恰好選到1名曾經(jīng)參加過技能培訓(xùn)的員工,共有C51C32=15∴恰好選到1名已參加過其他技能培訓(xùn)的員工的概率P=1556(II)隨機(jī)變量X可能取的值是:0,1,2,3.P(X=0)=156P(X=1)=1556P(X=2)=1528P(X=3)=C35C38=528∴隨機(jī)變量X的分布列是X0123P15615561528528∴X的數(shù)學(xué)期望是1×1556+2×

1528+3×528=15811.某次乒乓球比賽的決賽在甲乙兩名選手之間舉行,比賽采用五局三勝制,按以往比賽經(jīng)驗(yàn),甲勝乙的概率為23.

(1)求比賽三局甲獲勝的概率;

(2)求甲獲勝的概率;

(3)設(shè)甲比賽的次數(shù)為X,求X的數(shù)學(xué)期望.答案:記甲n局獲勝的概率為Pn,n=3,4,5,(1)比賽三局甲獲勝的概率是:P3=C33(23)3=827;(2)比賽四局甲獲勝的概率是:P4=C23(23)3

(13)=827;比賽五局甲獲勝的概率是:P5=C24(13)2(23)3=1681;甲獲勝的概率是:P3+P4+P5=6481.(3)記乙n局獲勝的概率為Pn′,n=3,4,5.P3′=C33(13)3=127,P4′=C23(13)3

(23)=227;P5′=C24(13)3(23)2=881;故甲比賽次數(shù)的分布列為:X345P(X)P3+P3′P4+P4′P5+P5′所以甲比賽次數(shù)的數(shù)學(xué)期望是:EX=3(127+827)+4(827+227)+5(1681+881

)=10727.12.若A是圓x2+y2=16上的一個(gè)動(dòng)點(diǎn),過點(diǎn)A向y軸作垂線,垂足為B,則線段AB中點(diǎn)C的軌跡方程為()

A.x2+2y2=16

B.x2+4y2=16

C.2x2+y2=16

D.4x2+y2=16答案:D13.若命題P(n)對(duì)n=k成立,則它對(duì)n=k+2也成立,又已知命題P(2)成立,則下列結(jié)論正確的是()

A.P(n)對(duì)所有自然數(shù)n都成立

B.P(n)對(duì)所有正偶數(shù)n成立

C.P(n)對(duì)所有正奇數(shù)n都成立

D.P(n)對(duì)所有大于1的自然數(shù)n成立答案:B14.某幾何體的三視圖如圖所示,則這個(gè)幾何體的體積是______.答案:由三視圖可知該幾何體為是一平放的直三棱柱,底面是邊長(zhǎng)為2的正三角形,棱柱的側(cè)棱為3,也為高.V=Sh=34×22

×3=33故為:33.15.已知數(shù)列{an}中,a1=1,an+1=an+n,若利用如圖所示的種序框圖計(jì)算該數(shù)列的第10項(xiàng),則判斷框內(nèi)的條件是()

A.n≤8?

B.n≤9?

C.n≤10?

D.n≤11?

答案:B16.已知橢圓(a>b>0)的焦點(diǎn)分別為F1,F(xiàn)2,b=4,離心率e=過F1的直線交橢圓于A,B兩點(diǎn),則△ABF2的周長(zhǎng)為()

A.10

B.12

C.16

D.20答案:D17.如圖,已知圓中兩條弦AB與CD相交于點(diǎn)F,E是AB延長(zhǎng)線上一點(diǎn),且

DF=CF=2,AF:FB:BE=4:2:1.若CE與圓相切,則CE的長(zhǎng)為.答案:設(shè)AF=4k,BF=2k,BE=k,由DF?FC=AF?BF,得2=8k2,即k=12,∴AF=2,BF=1,BE=12,AE=72,由切割定理得CE2=BE?EA=12×72=74∴CE=7218.如圖,在正方體ABCD-A1B1C1D1中,E為AB的中點(diǎn).

(1)求異面直線BD1與CE所成角的余弦值;

(2)求二面角A1-EC-A的余弦值.答案:以D為原點(diǎn),DC為y軸,DA為x軸,DD1為Z軸建立空間直角坐標(biāo)系,…(1分)則A1(1,0,1),B(1,1,0),C(0,1,0),D1(0,0,1),E(1,12,0),…(2分)(1)BD1=(-1,-1,1),CE=(1,-12,0)…(1分)cos<BD1,CE>=-1515,…(1分)所以所求角的余弦值為1515…(1分)(2)D1D⊥平面AEC,所以D1D為平面AEC的法向量,D1D=(0,0,1)…(1分)設(shè)平面A1EC法向量為n=(x,y,z),又A1E=(0,12,-1),A1C=(-1,1,-1),n?A1E=0n?A1C=0即12y-z=0-x+y-z=0,取n=(1,2,1),…(3分)所以cos<DD1,n>=66…(2分)19.若不等式(﹣1)na<2+對(duì)任意n∈N*恒成立,則實(shí)數(shù)a的取值范圍是

[

]A.[﹣2,)

B.(﹣2,)

C.[﹣3,)

D.(﹣3,)答案:A20.過橢圓4x2+y2=1的一個(gè)焦點(diǎn)F1的直線與橢圓交于A,B兩點(diǎn),則A與B和橢圓的另一個(gè)焦點(diǎn)F1構(gòu)成的△ABF2的周長(zhǎng)為()

A.2

B.2

C.4

D.8答案:C21.某程序圖如圖所示,該程序運(yùn)行后輸出的結(jié)果是______.答案:由圖知運(yùn)算規(guī)則是對(duì)S=2S,故第一次進(jìn)入循環(huán)體后S=21,第二次進(jìn)入循環(huán)體后S=22=4,第三次進(jìn)入循環(huán)體后S=24=16,第四次進(jìn)入循環(huán)體后S=216>2012,退出循環(huán).故該程序運(yùn)行后輸出的結(jié)果是:k=4+1=5.故為:522.如圖,設(shè)P,Q為△ABC內(nèi)的兩點(diǎn),且AP=25AB+15AC,AQ=23AB+14AC,則△ABP的面積與△ABQ的面積之比為______.答案:設(shè)AM=25AB,AN=15AC則AP=AM+AN由平行四邊形法則知NP∥AB

所以△ABP的面積△ABC的面積=|AN||AC|=15同理△ABQ的面積△ABC的面積=14故△ABP的面積△ABQ的面積=45故為:4523.已知=(1,2),=(x,1),當(dāng)(+2)⊥(2-)時(shí),實(shí)數(shù)x的值為(

A.6

B.2

C.-2

D.或-2答案:D24.如圖,在直角坐標(biāo)系中,A,B,C三點(diǎn)在x軸上,原點(diǎn)O和點(diǎn)B分別是線段AB和AC的中點(diǎn),已知AO=m(m為常數(shù)),平面上的點(diǎn)P滿足PA+PB=6m.

(1)試求點(diǎn)P的軌跡C1的方程;

(2)若點(diǎn)(x,y)在曲線C1上,求證:點(diǎn)(x3,y22)一定在某圓C2上;

(3)過點(diǎn)C作直線l,與圓C2相交于M,N兩點(diǎn),若點(diǎn)N恰好是線段CM的中點(diǎn),試求直線l的方程.答案:(1)由題意可得點(diǎn)P的軌跡C1是以A,B為焦點(diǎn)的橢圓.…(2分)且半焦距長(zhǎng)c=m,長(zhǎng)半軸長(zhǎng)a=3m,則C1的方程為x29m2+y28m2=1.…(5分)(2)若點(diǎn)(x,y)在曲線C1上,則x29m2+y28m2=1.設(shè)x3=x0,y22=y0,則x=3x0,y=22y0.…(7分)代入x29m2+y28m2=1,得x02+y02=m2,所以點(diǎn)(x3,y22)一定在某一圓C2上.…(10分)(3)由題意C(3m,0).…(11分)設(shè)M(x1,y1),則x12+y12=m2.…①因?yàn)辄c(diǎn)N恰好是線段CM的中點(diǎn),所以N(x1+3m2,y12).代入C2的方程得(x1+3m2)2+(y12)2=m2.…②聯(lián)立①②,解得x1=-m,y1=0.…(15分)故直線l有且只有一條,方程為y=0.…(16分)(若只寫出直線方程,不說(shuō)明理由,給1分)25.在方程(θ為參數(shù)且θ∈R)表示的曲線上的一個(gè)點(diǎn)的坐標(biāo)是()

A.(,)

B.(,)

C.(2,-7)

D.(1,0)答案:B26.比較大?。篴=0.20.5,b=0.50.2,則()

A.0<a<b<1

B.0<b<a<1

C.1<a<b

D.1<b<a答案:A27.若點(diǎn)M到定點(diǎn)F和到定直線l的距離相等,則下列說(shuō)法正確的是______.

①點(diǎn)M的軌跡是拋物線;

②點(diǎn)M的軌跡是一條與x軸垂直的直線;

③點(diǎn)M的軌跡是拋物線或一條直線.答案:當(dāng)點(diǎn)F不在直線l上時(shí),點(diǎn)M的軌跡是以F為焦點(diǎn)、l為準(zhǔn)線的拋物線;而當(dāng)點(diǎn)F在直線l上時(shí),點(diǎn)M的軌跡是一條過點(diǎn)F,且與l垂直的直線.故為:③28.用秦九韶算法求多項(xiàng)式

在的值.答案:.解析:可根據(jù)秦九韶算法原理,將所給多項(xiàng)式改寫,然后由內(nèi)到外逐次計(jì)算即可.

而,所以有,,,,,.即.【名師指引】利用秦九韶算法計(jì)算多項(xiàng)式值關(guān)鍵是能正確地將所給多項(xiàng)式改寫,然后由內(nèi)到外逐次計(jì)算,由于后項(xiàng)計(jì)算需用到前項(xiàng)的結(jié)果,故應(yīng)認(rèn)真、細(xì)心,確保中間結(jié)果的準(zhǔn)確性.29.5位同學(xué)報(bào)名參加兩個(gè)課外活動(dòng)小組,每位同學(xué)限報(bào)其中的一個(gè)小組,則不同的報(bào)名方法共有()

A.10種

B.20種

C.25種

D.32種答案:D30.設(shè)F1,F(xiàn)2分別是橢圓E:x2+y2b2=1(0<b<1)的左、右焦點(diǎn),過F1的直線l與E相交于A,B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列,則|AB|的長(zhǎng)為______.答案:∵|AF2|,|AB|,|BF2|成等差數(shù)列∴|AF2|+|BF2|=2|AB|,又橢圓E:x2+y2b2=1(0<b<1)中a=1∴|AF2|+|AB|+|BF2|=4,∴3|AB|=4,∴|AB|=43故為:4331.

已知拋物線y2=2px(p>0)的焦點(diǎn)為F,過F的直線交y軸正半軸于點(diǎn)P,交拋物線于A,B兩點(diǎn),其中點(diǎn)A在第一象限,若,,,則μ的取值范圍是()

A.[1,]

B.[,2]

C.[2,3]

D.[3,4]答案:B32.設(shè)O是正方形ABCD的中心,向量,,,是(

A.平行向量

B.有相同終點(diǎn)的向量

C.相等向量

D.模相等的向量答案:D33.若點(diǎn)P(-1,3)在圓x2+y2=m2上,則實(shí)數(shù)m=______.答案:∵點(diǎn)P(-1,3)在圓x2+y2=m2上,∴點(diǎn)P坐標(biāo)代入,得(-1)2+(3)2=m2,即m2=4,解之得m=±2.故為:±234.一牧場(chǎng)有10頭牛,因誤食含有病毒的飼料而被感染,已知該病的發(fā)病率為0.02.設(shè)發(fā)病的牛的頭數(shù)為ξ,則Dξ=______;.答案:∵由題意知該病的發(fā)病率為0.02,且每次實(shí)驗(yàn)結(jié)果都是相互獨(dú)立的,∴ξ~B(10,0.02),∴由二項(xiàng)分布的方差公式得到Dξ=10×0.02×0.98=0.196.故為:0.19635.已知:如圖,⊙O1與⊙O2外切于C點(diǎn),AB一條外公切線,A、B分別為切點(diǎn),連接AC、BC.設(shè)⊙O1的半徑為R,⊙O2的半徑為r,若tan∠ABC=,則的值為()

A.

B.

C.2

D.3

答案:C36.若兩直線l1,l2的傾斜角分別為α1,α2,則下列四個(gè)命題中正確的是()

A.若α1<α2,則兩直線斜率k1<k2

B.若α1=α2,則兩直線斜率k1=k2

C.若兩直線斜率k1<k2,則α1<α2

D.若兩直線斜率k1=k2,則α1=α2答案:D37.O、B、C為空間四個(gè)點(diǎn),又、、為空間的一個(gè)基底,則()

A.O、A、B、C四點(diǎn)不共線

B.O、A、B、C四點(diǎn)共面,但不共線

C.O、A、B、C四點(diǎn)中任意三點(diǎn)不共線

D.O、A、B、C四點(diǎn)不共面答案:D38.若命題p:2是偶數(shù);命題q:2是5的約數(shù),則下列命題中為真命題的是()A.p∧qB.(¬p)∧(¬q)C.¬pD.p∨q答案:∵2是偶數(shù),∴命題p為真命題∵2不是5的約數(shù),∴命題q為假命題∴p或q為真命題故選D39.化簡(jiǎn):AB+CD+BC=______.答案:如圖:AB+CD+BC=AB+BC+CD=AC+CD=AD.故為:AD.40.用A、B、C三類不同的元件連接成兩個(gè)系統(tǒng)N1、N2當(dāng)元件A、B、C都正常工作時(shí),系統(tǒng)N1正常工作,當(dāng)元件A正常工作且元件B、C至少有一個(gè)正常工作時(shí),系統(tǒng)N2正常工作。已知元件A、B、C正常工作的概率依次為0.80,0.90,0.90,分別求系統(tǒng)N1、N2正常工作的概率.

答案:0.792解析:解:分別記三個(gè)元件A、B、C能正常工作為事件A、B、C,由題意,這三個(gè)事件相互獨(dú)立,系統(tǒng)N1正常工作的概率為P(A·B·C)=P(A)·P(B)·P(C)=0.8′0.9′0.9=0.648系統(tǒng)N2中,記事件D為B、C至少有一個(gè)正常工作,則P(D)=1–P()="1–"P()·P()=1–(1–0.9)′(1–0.9)=0.99系統(tǒng)N2正常工作的概率為P(A·D)=P(A)·P(D)=0.8′0.99=0.792。41.已知復(fù)數(shù)z=2+i,則z2對(duì)應(yīng)的點(diǎn)在第()象限.A.ⅠB.ⅡC.ⅢD.Ⅳ答案:由z=2+i,則z2=(2+i)2=22+4i+i2=3+4i.所以,復(fù)數(shù)z2的實(shí)部等于3,虛部等于4.所以z2對(duì)應(yīng)的點(diǎn)在第Ⅰ象限.故選A.42.對(duì)于函數(shù)f(x),在使f(x)≤M成立的所有常數(shù)M中,我們把M的最小值稱為函數(shù)f(x)的“上確界”則函數(shù)f(x)=(x+1)2x2+1的上確界為()A.14B.12C.2D.4答案:因?yàn)閒(x)=(x+1)2x2+1=x2+2x+1x2+1=1+2xx2+1又因?yàn)閤2+1=|x|2+1≥2|x|≥2x∴2xx2+1≤1.∴f(x)≤2.即在使f(x)≤M成立的所有常數(shù)M中,M的最小值為2.故選C.43.盒中裝有形狀、大小完全相同的5個(gè)球,其中紅色球3個(gè),黃色球2個(gè).若從中隨機(jī)取出2個(gè)球,則所取出的2個(gè)球顏色不同的概率等于______.答案:從中隨機(jī)取出2個(gè)球,每個(gè)球被取到的可能性相同,是古典概型從中隨機(jī)取出2個(gè)球,所有的取法共有C52=10所取出的2個(gè)球顏色不同,所有的取法有C31?C21=6由古典概型概率公式知P=610=35故為3544.有一批機(jī)器,編號(hào)為1,2,3,…,112,為調(diào)查機(jī)器的質(zhì)量問題,打算抽取10臺(tái),問此樣本若采用簡(jiǎn)單的隨機(jī)抽樣方法將如何獲得?答案:本題可以采用抽簽法來(lái)抽取樣本,首先把該校學(xué)生都編上號(hào)001,002,112…用抽簽法做112個(gè)形狀、大小相同的號(hào)簽,然后將這些號(hào)簽放到同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí),每次從中抽一個(gè)號(hào)簽,連續(xù)抽取10次,就得到一個(gè)容量為10的樣本.45.對(duì)于任意空間四邊形,試證明它的一組對(duì)邊中點(diǎn)的連線與另一組對(duì)邊可平行于同一平面.答案:證明:如圖所示,空間四邊形ABCD,E、F分別為AB、CD的中點(diǎn),利用多邊形加法法則可得①又E、F分別是AB、CD的中點(diǎn),故有②將②代入①后,兩式相加得即與共面,∴EF與AD、BC可平行于同一平面.46.已知,,那么P(B|A)等于()

A.

B.

C.

D.答案:B47.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|=()

A.

B.

C.

D.4答案:C48.設(shè)a、b∈R+且a+b=3,求證1+a+1+b≤10.答案:證明:證法一:(綜合法)∵(1+a+1+b)2=2+a+b+2(1+a)?(1+b)≤5+(1+a+1+b)=10∴1+a+1+b≤10證法二:(分析法)∵a、b∈R+且a+b=3,∴欲證1+a+1+b≤10只需證(1+a+1+b)2≤10即證2+a+b+2(1+a)?(1+b)≤10即證2(1+a)?(1+b)≤5只需證4(1+a)?(1+b)≤25只需證4(1+a)?(1+b)≤25即證4(1+a+b+ab)≤25只需證4ab≤9即證ab≤94∵ab≤(a+b2)2=(32)2=94成立∴1+a+1+b≤10成立49.考慮坐標(biāo)平面上以O(shè)(0,0),A(3,0),B(0,4)為頂點(diǎn)的三角形,令C1,C2分別為△OAB的外接圓、內(nèi)切圓.請(qǐng)問下列哪些選項(xiàng)是正確的?

(1)C1的半徑為2

(2)C1的圓心在直線y=x上

(3)C1的圓心在直線4x+3y=12上

(4)C2的圓心在直線y=x上

(5)C2的圓心在直線4x+3y=6上.答案:O,A,B三點(diǎn)的位置如右圖所示,C1,C2為△OAB的外接圓與內(nèi)切圓,∵△OAB為直角三角形,∴C1為以線段AB為直徑的圓,故半徑為12|AB|=52,所以(1)選項(xiàng)錯(cuò)誤;又C1的圓心為線段AB的中點(diǎn)(32,2),此點(diǎn)在直線4x+3y=12上,所以選項(xiàng)(2)錯(cuò)誤,選項(xiàng)(3)正確;如圖,P為△OAB的內(nèi)切圓C2的圓心,故P到△OAB的三邊距離相等均為圓C2的半徑r.連接PA,PB,PC,可得:S△OAB=S△POA+S△PAB+S△POB?12×3×4=12×3×r+12×5×r+12×4×r?r=1故P的坐標(biāo)為(1,1),此點(diǎn)在y=x上.所以選項(xiàng)(4)正確,選項(xiàng)(5)錯(cuò)誤,綜上,正確的選項(xiàng)有(3)、(4).50.點(diǎn)P(2,5)關(guān)于直線x+y=1的對(duì)稱點(diǎn)的坐標(biāo)是(

)。答案:(-4,-1)第2卷一.綜合題(共50題)1.(選修4-4:坐標(biāo)系與參數(shù)方程)

在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為x=3-22ty=5+22t(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=25sinθ.

(Ⅰ)求圓C的直角坐標(biāo)方程;

(Ⅱ)設(shè)圓C與直線l交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為(3,5),求|PA|+|PB|.答案:(Ⅰ)∵圓C的方程為ρ=25sinθ.∴x2+y2-25y=0,即圓C的直角坐標(biāo)方程:x2+(y-5)2=5.(Ⅱ)(3-22t)2+(22t)2=5,即t2-32t+4=0,由于△=(32)2-4×4=2>0,故可設(shè)t1,t2是上述方程的兩實(shí)根,所以t1+t2=32t1t2=4,又直線l過點(diǎn)P(3,5),故|PA|+|PB|=|t1|+|t2|=t1+t2=322.一個(gè)完整的程序框圖至少應(yīng)該包含______.答案:完整程序框圖必須有起止框,用來(lái)表示程序的開始和結(jié)束,還要包括處理框,用來(lái)處理程序的執(zhí)行.故為:起止框、處理框.3.如果圓x2+y2+Gx+Ey+F=0與x軸相切于原點(diǎn),那么()A.F=0,G≠0,E≠0B.E=0,F(xiàn)=0,G≠0C.G=0,F(xiàn)=0,E≠0D.G=0,E=0,F(xiàn)≠0答案:圓與x軸相切于原點(diǎn),則圓心在y軸上,G=0,圓心的縱坐標(biāo)的絕對(duì)值等于半徑,F(xiàn)=0,E≠0.故選C.4.如圖,設(shè)P,Q為△ABC內(nèi)的兩點(diǎn),且AP=25AB+15AC,AQ=23AB+14AC,則△ABP的面積與△ABQ的面積之比為______.答案:設(shè)AM=25AB,AN=15AC則AP=AM+AN由平行四邊形法則知NP∥AB

所以△ABP的面積△ABC的面積=|AN||AC|=15同理△ABQ的面積△ABC的面積=14故△ABP的面積△ABQ的面積=45故為:455.點(diǎn)P(x0,y0)在圓x2+y2=r2內(nèi),則直線x0x+y0y=r2和已知圓的公共點(diǎn)的個(gè)數(shù)為(

A.0

B.1

C.2

D.不能確定答案:A6.有四個(gè)游戲盤,將它們水平放穩(wěn)后,在上面扔一顆玻璃小球,若小球落在陰影部分,則可中獎(jiǎng),小明要想增加中獎(jiǎng)機(jī)會(huì),應(yīng)選擇的游戲盤的序號(hào)______

答案:(1)游戲盤的中獎(jiǎng)概率為

38,(2)游戲盤的中獎(jiǎng)概率為

14,(3)游戲盤的中獎(jiǎng)概率為

26=13,(4)游戲盤的中獎(jiǎng)概率為

13,(1)游戲盤的中獎(jiǎng)概率最大.故為:(1).7.雙曲線x2a2-y2b2=1,(a>0,b>0)的一條漸近線方程是y=3x,坐標(biāo)原點(diǎn)到直線AB的距離為32,其中A(a,0),B(0,-b).

(1)求雙曲線的方程;

(2)若B1是雙曲線虛軸在y軸正半軸上的端點(diǎn),過點(diǎn)B作直線交雙曲線于點(diǎn)M,N,求B1M⊥B1N時(shí),直線MN的方程.答案:(1)∵A(a,0),B(0,-b),∴設(shè)直線AB:xa-yb=1∴ba=3aba2+b2=32,∴a=3b=3,∴雙曲線方程為:x23-y29=1.(2)∵雙曲線方程為:x23-y29=1,∴A1(-3,0),A2(3,0),設(shè)P(x0,y0),∴kPA1=y0x0+3,kPA2=y0x0-3,∴k1k2=y02x02-3=3x02-9x02-3=3.B(0,-3)B1(0,3),設(shè)M(x1,y1),N(x2,y2)∴設(shè)直線l:y=kx-3,∴y=kx-33x2-y2=9,∴3x2-(kx-3)2=9.(3-k2)x2+6kx-18=0,∴x1+x2=6kk2-3

y1+y2=k(x1+x2)-6=18k2-3x1x2=18k2-3

y1y2=k2(x1x2)-3k(x1+x2)+9∵B1M=(x1,y1-3)

B1N=(x2,y2-3)∵B1M?B1N=0∴x1x2+y1y2-3(y1+y2)+9=018k2-3+9-54k2-3+9=0k2=5,即k=±5代入(1)有解,∴l(xiāng)MN:y=±5x-3.8.已知函數(shù)y=f(x)是R上的奇函數(shù),其零點(diǎn)為x1,x2,…,x2011,則x1+x2+…+x2011=______.答案:∵f(x)是R上的奇函數(shù),∴0是函數(shù)y=f(x)的零點(diǎn).其他非0的零點(diǎn)關(guān)于原點(diǎn)對(duì)稱.∴x1+x2+…+x2011=0.故為:0.9.已知O是△ABC所在平面內(nèi)一點(diǎn),D為BC邊中點(diǎn),且,那么(

A.

B.

C.

D.2

答案:A10.已知向量=(1,1,-2),=(2,1,),若≥0,則實(shí)數(shù)x的取值范圍為()

A.(0,)

B.(0,]

C.(-∞,0)∪[,+∞)

D.(-∞,0]∪[,+∞)答案:C11.現(xiàn)有一個(gè)關(guān)于平面圖形的命題:如圖,同一個(gè)平面內(nèi)有兩個(gè)邊長(zhǎng)都是a的正方形,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方形重疊部分的面積恒為a24.類比到空間,有兩個(gè)棱長(zhǎng)均為a的正方體,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方體重疊部分的體積恒為______.答案:∵同一個(gè)平面內(nèi)有兩個(gè)邊長(zhǎng)都是a的正方形,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方形重疊部分的面積恒為a24,類比到空間有兩個(gè)棱長(zhǎng)均為a的正方體,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方體重疊部分的體積恒為a38,故為a38.12.直線和圓交于兩點(diǎn),則的中點(diǎn)

坐標(biāo)為(

)A.B.C.D.答案:D解析:,得,中點(diǎn)為13.到兩互相垂直的異面直線的距離相等的點(diǎn),在過其中一條直線且平行于另一條直線的平面內(nèi)的軌跡是()

A.直線

B.橢圓

C.拋物線

D.雙曲線答案:D14.直線l1:x+ay=2a+2與直線l2:ax+y=a+1平行,則a=______.答案:直線l1:x+ay=2a+2即x+ay-2a-2=0;直線l2:ax+y=a+1即ax+y-a-1=0,∵直線l1與直線l2互相平行∴當(dāng)a≠0且a≠-1時(shí),1a=a1≠-2a-2-a-1,解之得a=1當(dāng)a=0時(shí),兩條直線垂直;當(dāng)a=-1時(shí),兩條直線重合故為:115.已知f(x)=,a≠b,

求證:|f(a)-f(b)|<|a-b|.答案:證明略解析:方法一

∵f(a)=,f(b)=,∴原不等式化為|-|<|a-b|.∵|-|≥0,|a-b|≥0,∴要證|-|<|a-b|成立,只需證(-)2<(a-b)2.即證1+a2+1+b2-2<a2-2ab+b2,即證2+a2+b2-2<a2-2ab+b2.只需證2+2ab<2,即證1+ab<.當(dāng)1+ab<0時(shí),∵>0,∴不等式1+ab<成立.從而原不等式成立.當(dāng)1+ab≥0時(shí),要證1+ab<,只需證(1+ab)2<()2,即證1+2ab+a2b2<1+a2+b2+a2b2,即證2ab<a2+b2.∵a≠b,∴不等式2ab<a2+b2成立.∴原不等式成立.方法二

∵|f(a)-f(b)|=|-|==,又∵|a+b|≤|a|+|b|=+<+,∴<1.∵a≠b,∴|a-b|>0.∴|f(a)-f(b)|<|a-b|.16.設(shè)F1,F(xiàn)2為定點(diǎn),|F1F2|=6,動(dòng)點(diǎn)M滿足|MF1|+|MF2|=6,則動(dòng)點(diǎn)M的軌跡是()A.橢圓B.直線C.圓D.線段答案:對(duì)于在平面內(nèi),若動(dòng)點(diǎn)M到F1、F2兩點(diǎn)的距離之和等于6,而6正好等于兩定點(diǎn)F1、F2的距離,則動(dòng)點(diǎn)M的軌跡是以F1,F(xiàn)2為端點(diǎn)的線段.故選D.17.某商人將彩電先按原價(jià)提高40%,然后在廣告中寫上“大酬賓,八折優(yōu)惠”,結(jié)果是每臺(tái)彩電比原價(jià)多賺了270元,則每臺(tái)彩電原價(jià)是______元.答案:設(shè)每臺(tái)彩電的原價(jià)是x元,則有:(1+40%)x×0.8-x=270,解得:x=2250,故為:2250.18.下列表述正確的是()

①歸納推理是由部分到整體的推理;

②歸納推理是由一般到一般的推理;

③演繹推理是由一般到特殊的推理;

④類比推理是由特殊到一般的推理;

⑤類比推理是由特殊到特殊的推理.

A.①②③

B.②③④

C.②④⑤

D.①③⑤答案:D19.滿足條件|z|=|3+4i|的復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)點(diǎn)的軌跡是______.答案:|z|=5,即點(diǎn)Z到原點(diǎn)O的距離為5∴z所對(duì)應(yīng)點(diǎn)的軌跡為以(0,0)為圓心,5為半徑的圓.20.已知sint+cost=1,設(shè)s=cost+isint,求f(s)=1+s+s2+…sn.答案:sint+cost=1∴(sint+cost)2=1+2sint?cost=1∴2sint?cost=sin2t=0則cost=0,sint=1或cost=1,sint=0,當(dāng)cost=0,sint=1時(shí),s=cost+isint=i則f(s)=1+s+s2+…sn=1+i,n=4k+1i,n=4k+20,n=4k+31,n=4(k+1)(k∈N+)當(dāng)cost=1,sint=0時(shí),s=cost+isint=1則f(s)=1+s+s2+…sn=n+121.不等式lgxx<0的解集是______.答案:∵lgx的定義域?yàn)椋?,+∞)∴x>0∵lgxx<0∴l(xiāng)gx<0=lg1即0<x<1∴不等式lgxx<0的解集是{x|0<x<1}故為:{x|0<x<1}22.用WHILE語(yǔ)句求1+2+22+23+…+263的值.答案:程序如下:i=0S=0While

i<=63s=s+2^ii=i+1WendPrint

send23.△ABC中,若有一個(gè)內(nèi)角不小于120°,求證:最長(zhǎng)邊與最短邊之比不小于3.答案:設(shè)最大角為∠A,最小角為∠C,則最大邊為a,最小邊為c因?yàn)锳≥120°,所以B+C≤60°,且C≤B,所以2C≤B+C≤60°,C≤30°.所以ac=sinAsinC=sin(B+C)sinC≥sin2CsinC=2cosC≥3.24.若不等式的解集,則實(shí)數(shù)=___________.答案:-425.下列物理量中,不能稱為向量的是()A.質(zhì)量B.速度C.位移D.力答案:既有大小,又有方向的量叫做向量;質(zhì)量只有大小沒有方向,因此質(zhì)量不是向量.而速度、位移、力既有大小,又有方向,因此它們都是向量.故選A.26.四名男生三名女生排成一排,若三名女生中有兩名相鄰,但三名女生不能連排,則不同的排法數(shù)有()A.3600B.3200C.3080D.2880答案:由題意知本題需要利用分步計(jì)數(shù)原理來(lái)解,∵三名女生有且僅有兩名相鄰,∴把這兩名女生看做一個(gè)元素,與另外一名女生作為兩個(gè)元素,有C32A22種結(jié)果,把男生排列有A44,把女生在男生所形成的5個(gè)空位中排列有A52種結(jié)果,共有C32A22A44A52=2880種結(jié)果,故選D.27.點(diǎn)P(2,1)到直線

3x+4y+10=0的距離為()A.1B.2C.3D.4答案:由P(2,1),直線方程為3x+4y+10=0,則P到直線的距離d=|6+4+10|32+42=4.故選D28.一圓形紙片的圓心為點(diǎn)O,點(diǎn)Q是圓內(nèi)異于O點(diǎn)的一定點(diǎn),點(diǎn)A是圓周上一點(diǎn).把紙片折疊使點(diǎn)A與Q重合,然后展平紙片,折痕與OA交于P點(diǎn).當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí)點(diǎn)P的軌跡是()A.圓B.橢圓C.雙曲線D.拋物線答案:如圖所示,由題意可知:折痕l為線段AQ的垂直平分線,∴|AP|=|PQ|,而|OP|+|PA|=|OA|=R,∴|PO|+|PQ|=R定值>|OQ|.∴當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí)點(diǎn)P的軌跡是以點(diǎn)O,D為焦點(diǎn),長(zhǎng)軸長(zhǎng)為R的橢圓.故選B.29.命題“三角形中最多只有一個(gè)內(nèi)角是直角”的結(jié)論的否定是()

A.有兩個(gè)內(nèi)角是直角

B.有三個(gè)內(nèi)角是直角

C.至少有兩個(gè)內(nèi)角是直角

D.沒有一個(gè)內(nèi)角是直角答案:C30.在直角坐標(biāo)系xoy

中,已知曲線C1:x=t+1y=1-2t(t為參數(shù))與曲線C2:x=asinθy=3cosθ(θ為參數(shù),a>0

有一個(gè)公共點(diǎn)在X軸上,則a等于______.答案:曲線C1:x=t+1y=1-2t(t為參數(shù))化為普通方程:2x+y-3=0,令y=0,可得x=32曲線C2:x=asinθy=3cosθ(θ為參數(shù),a>0

)化為普通方程:x2a2+y29=1∵兩曲線有一個(gè)公共點(diǎn)在x軸上,∴94a2=1∴a=32故為:3231.半徑為5,圓心在y軸上,且與直線y=6相切的圓的方程為______.答案:如圖所示,因?yàn)榘霃綖?,圓心在y軸上,且與直線y=6相切,所以可知有兩個(gè)圓,上圓圓心為(0,11),下圓圓心為(0,1),所以圓的方程為x2+(y-1)2=25或x2+(y-11)2=25.32.下列圖形中不一定是平面圖形的是()

A.三角形

B.四邊相等的四邊形

C.梯形

D.平行四邊形答案:B33.函數(shù)f(x)=2,0<x<104,10≤x<155,15≤x<20,則函數(shù)的值域是()A.[2,5]B.{2,4,5}C.(0,20)D.N答案:∵f(x)=20<x<10410≤x<15515≤x<20∴函數(shù)的值域是{2,4,5}故選B34.設(shè)a=log132,b=log1213,c=(12)0.3,則()A.a(chǎn)<b<cB.a(chǎn)<c<bC.b<c<aD.b<a<c答案:解;∵a=log132<log131=0,b=log1213>log1212=1,c=(12)0.3∈(0,1)∴b>c>a.故選B.35.設(shè)和為不共線的向量,若2-3與k+6(k∈R)共線,則k的值為()

A.k=4

B.k=-4

C.k=-9

D.k=9答案:B36.△ABC所在平面內(nèi)點(diǎn)O、P,滿足OP=OA+λ(AB+12BC),λ∈[0,+∞),則點(diǎn)P的軌跡一定經(jīng)過△ABC的()A.重心B.垂心C.內(nèi)心D.外心答案:設(shè)BC的中點(diǎn)為D,則∵OP=OA+λ(AB+12BC),∴OP=OA+λAD∴AP=λAD∴AP∥AD∵AD是△ABC的中線∴點(diǎn)P的軌跡一定經(jīng)過△ABC的重心故選A.37.已知集合A={2,x,y},B={2x,y2,2}且x,y≠0,若A=B,則實(shí)數(shù)x+y的值______.答案:因?yàn)榧螦={2,x,y},B={2x,y2,2}且x,y≠0,所以x=y2y=2x,解得x=14y=12,所以x+y=34.故為:34.38.棱長(zhǎng)為a的正四面體中,AB?BC+AC?BD=______.答案:棱長(zhǎng)為a的正四面體中,AB=BC=a,且AB與BC的夾角為120°,AC⊥BD.∴AB?BC+AC?BD=a?acos120°+0=-a22,故為:-12.39.下面的結(jié)論正確的是()A.一個(gè)程序的算法步驟是可逆的B.一個(gè)算法可以無(wú)止境地運(yùn)算下去的C.完成一件事情的算法有且只有一種D.設(shè)計(jì)算法要本著簡(jiǎn)單方便的原則答案:算法需每一步都按順序進(jìn)行,并且結(jié)果唯一,不能保證可逆,故A不正確;一個(gè)算法必須在有限步內(nèi)完成,不然就不是問題的解了,故B不正確;一般情況下,完成一件事情的算法不止一個(gè),但是存在一個(gè)比較好的,故C不正確;設(shè)計(jì)算法要盡量運(yùn)算簡(jiǎn)單,節(jié)約時(shí)間,故D正確,故選D.40.已知a為常數(shù),a>0且a≠1,指數(shù)函數(shù)f(x)=ax和對(duì)數(shù)函數(shù)g(x)=logax的圖象分別為C1與C2,點(diǎn)M在曲線C1上,線段OM(O為坐標(biāo)原點(diǎn))與曲線C1的另一個(gè)交點(diǎn)為N,若曲線C2上存在一點(diǎn)P,且點(diǎn)P的橫坐標(biāo)與點(diǎn)M的縱坐標(biāo)相等,點(diǎn)P的縱坐標(biāo)是點(diǎn)N的橫坐標(biāo)2倍,則點(diǎn)P的坐標(biāo)為______.答案:設(shè)點(diǎn)M的坐標(biāo)為(m,am),點(diǎn)N的坐標(biāo)為(n,an)∵點(diǎn)P的橫坐標(biāo)與點(diǎn)M的縱坐標(biāo)相等∴點(diǎn)P的坐標(biāo)為(am,m)∵點(diǎn)P的縱坐標(biāo)是點(diǎn)N的橫坐標(biāo)2倍,∴m=2n而O、M、N三點(diǎn)共線則amm=ann=

am2m2解得:am=4即m=loga4∴點(diǎn)P的坐標(biāo)為(4,loga4)故為:(4,loga4)41.某科目考試有30道題每小題有三個(gè)選項(xiàng),每題2分,另有20道題,每題有四個(gè)選項(xiàng)每題3分,每題只有一個(gè)答案,某人隨機(jī)去選答案,則平均能得______分.答案:由題意,30道題每小題有三個(gè)選項(xiàng),每題2分,每題只有一個(gè),某人隨機(jī)去選,則可得2×30×13=20分;20道題,每題有四個(gè)選項(xiàng)每題3分,每題只有一個(gè),某人隨機(jī)去選,則可得3×20×14=15分故平均能得35分故為:35分.42.已知四邊形ABCD,

點(diǎn)E、

F、

G、

H分別是AB、BC、CD、DA的中點(diǎn),

求證:

EF=HG.答案:證明:∵E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),∴HG=12AC,EF=12AC,∴EF=HG.43.如圖,已知△ABC,過頂點(diǎn)A的圓與邊BC切于BC的中點(diǎn)P,與邊AB、AC分別交于點(diǎn)M、N,且CN=2BM,點(diǎn)N平分AC.則AM:BM=()

A.2

B.4

C.6

D.7

答案:D44.一個(gè)水平放置的平面圖形,其斜二測(cè)直觀圖是一個(gè)等腰梯形,其底角為45°,腰和上底均為1(如圖),則平面圖形的實(shí)際面積為______.答案:恢復(fù)后的原圖形為一直角梯形,上底為1,高為2,下底為1+2,S=12(1+2+1)×2=2+2.故為:2+245.直角三角形兩直角邊邊長(zhǎng)分別為3和4,將此三角形繞其斜邊旋轉(zhuǎn)一周,求得到的旋轉(zhuǎn)體的表面積和體積.答案:根據(jù)題意,所求旋轉(zhuǎn)體由兩個(gè)同底的圓錐拼接而成它的底面半徑等于直角三角形斜邊上的高,高分別等于兩條直角邊在斜邊的射影長(zhǎng)∵兩直角邊邊長(zhǎng)分別為3和4,∴斜邊長(zhǎng)為32+42=5,由面積公式可得斜邊上的高為h=3×45=125可得所求旋轉(zhuǎn)體的底面半徑r=125因此,兩個(gè)圓錐的側(cè)面積分別為S上側(cè)面=π×125×4=48π5;S下側(cè)面=π×125×3=36π5∴旋轉(zhuǎn)體的表面積S=48π5+36π5=84π5由錐體的體積公式,可得旋轉(zhuǎn)體的體積為V=13π×(125)2×5=48π546.已知拋物線x2=4y上的點(diǎn)p到焦點(diǎn)的距離是10,則p點(diǎn)坐標(biāo)是

______.答案:根據(jù)拋物線方程可求得焦點(diǎn)坐標(biāo)為(0,1)根據(jù)拋物線定義可知點(diǎn)p到焦點(diǎn)的距離與到準(zhǔn)線的距離相等,∴yp+1=10,求得yp=9,代入拋物線方程求得x=±6∴p點(diǎn)坐標(biāo)是(±6,9)故為:(±6,9)47.已知a=(a1,a2),b=(b1,b2),丨a丨=5,丨b丨=6,a?b=30,則a1+a2b1+b2=______.答案:因?yàn)樨璦丨=5,丨b丨=6,a?b=30,又a?b=|a|?|b|cos<a,b>=30,即cos<a,b>=1,所以a,b同向共線.設(shè)b=ka,(k>0).則b1=ka1,b2=ka2,所以|b|=k|a|,所以k=65,所以a1+a2b1+b2=a1+a2k(a1+a2)=1k=56.故為:56.48.現(xiàn)有編號(hào)分別為1,2,3,4,5,6,7,8,9的九道不同的數(shù)學(xué)題,某同學(xué)從這九道題中一次隨機(jī)抽取兩道題,每題被抽到的概率是相等的,用符號(hào)(x,y)表示事件“抽到兩題的編號(hào)分別為x,y,且x<y”.

(1)共有多少個(gè)基本事件?并列舉出來(lái).

(2)求該同學(xué)所抽取的兩道題的編號(hào)之和小于17但不小于11的概率.答案:(1)共有36種基本事件,列舉如下:(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9);(2)設(shè)事件A=“兩道題的編號(hào)之和小于17但不小于11”則事件A包含事件有:(2,9),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9)共15種.∴P(A)=1536=512.49.用反證法證明:“方程ax2+bx+c=0,且a,b,c都是奇數(shù),則方程沒有整數(shù)根”正確的假設(shè)是方程存在實(shí)數(shù)根x0為()

A.整數(shù)

B.奇數(shù)或偶數(shù)

C.正整數(shù)或負(fù)整數(shù)

D.自然數(shù)或負(fù)整數(shù)答案:A50.長(zhǎng)為3的線段AB的端點(diǎn)A、B分別在x軸、y軸上移動(dòng),,則點(diǎn)C的軌跡是()

A.線段

B.圓

C.橢圓

D.雙曲線答案:C第3卷一.綜合題(共50題)1.”m>n>0”是”方程mx2+ny2=1表示焦點(diǎn)在y軸上的橢圓”的()

A.充分而不必要條件

B.必要而不充分條件

C.充要條件

D.既不充分也不必要條件答案:C2.一個(gè)公司共有240名員工,下設(shè)一些部門,要采用分層抽樣方法從全體員工中抽取一個(gè)容量為20的樣本.已知某部門有60名員工,那么從這一部門抽取的員工人數(shù)是______.答案:每個(gè)個(gè)體被抽到的概率是

20240=112,那么從甲部門抽取的員工人數(shù)是60×112=5,故為:5.3.如圖,在梯形ABCD中,對(duì)角線AC和BD交于點(diǎn)O,E、F分別是AC和BD的中點(diǎn),分別寫出

(1)圖中與EF、CO共線的向量;

(2)與EA相等的向量.答案:(1)由圖可知,與EF共線的向量有:CD、AB;與CO共線的向量有:CE、CA、OE、OA、EA;(2)由E為CA的中點(diǎn)可知,CE=EA,即與EA相等的向量為CE;4.已知點(diǎn)M在平面ABC內(nèi),并且對(duì)空間任意一點(diǎn)O,有OM=xOA+13OB+13OC,則x的值為()A.1B.0C.3D.13答案:解∵OM=xOA+13OB+13OC,且M,A,B,C四點(diǎn)共面,∴必有x+13+13=1,解之可得x=13,故選D5.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a、b、c三個(gè)向量共面,則實(shí)數(shù)λ等于

A.

B.

C.

D.答案:D6.拋物線y2=4px(p>0)的準(zhǔn)線與x軸交于M點(diǎn),過點(diǎn)M作直線l交拋物線于A、B兩點(diǎn).

(1)若線段AB的垂直平分線交x軸于N(x0,0),求證:x0>3p;

(2)若直線l的斜率依次為p,p2,p3,…,線段AB的垂直平分線與x軸的交點(diǎn)依次為N1,N2,N3,…,當(dāng)0<p<1時(shí),求1|N1N2|+1|N2N3|+…+1|N10N11|的值.答案:(1)證明:設(shè)直線l方程為y=k(x+p),代入y2=4px.得k2x2+(2k2p-4p)x+k2p2=0.△=4(k2p-2p)2-4k2?k2p2>0,得0<k2<1.令A(yù)(x1,y1)、B(x2,y2),則x1+x2=-2k2p-4pk2,y1+y2=k(x1+x2+2p)=4pk,AB中點(diǎn)坐標(biāo)為(2P-k2Pk2,2pk).AB垂直平分線為y-2pk=-1k(x-2P-k2Pk2).令y=0,得x0=k2P+2Pk2=p+2Pk2.由上可知0<k2<1,∴x0>p+2p=3p.∴x0>3p.(2)∵l的斜率依次為p,p2,p3,時(shí),AB中垂線與x軸交點(diǎn)依次為N1,N2,N3,(0<p<1).∴點(diǎn)Nn的坐標(biāo)為(p+2p2n-1,0).|NnNn+1|=|(p+2p2n-1)-(p+2p2n+1)|=2(1-p2)p2n+1,1|NnNn+1|=p2n+12(1-p2),所求的值為12(1-p2)[p3+p4++p21]=p3(1-p19)2(1-p)2(1+p).7.有一矩形紙片ABCD,按圖所示方法進(jìn)行任意折疊,使每次折疊后點(diǎn)B都落在邊AD上,將B的落點(diǎn)記為B′,其中EF為折痕,點(diǎn)F也可落在邊CD上,過B′作B′H∥CD交EF于點(diǎn)H,則點(diǎn)H的軌跡為()A.圓的一部分B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:由題意知:點(diǎn)H到定點(diǎn)B的距離以及到定直線AD的距離相等,根據(jù)拋物線的定義可知:點(diǎn)H的軌跡為:拋物線,(拋物線的一部分)故選D.8.某工程隊(duì)有6項(xiàng)工程需要單獨(dú)完成,其中工程乙必須在工程甲完成后才能進(jìn)行,工程丙必須在工程乙完成后才能進(jìn)行,有工程丁必須在工程丙完成后立即進(jìn)行.那么安排這6項(xiàng)工程的不同排法種數(shù)是______.(用數(shù)字作答)答案:依題意,乙必須在甲后,丙必須在乙后,丙丁必相鄰,且丁在丙后,只需將剩余兩個(gè)工程依次插在由甲、乙、丙丁四個(gè)工程之間即可,第一個(gè)插入時(shí)有4種,第二個(gè)插入時(shí)共5個(gè)空,有5種方法;可得有5×4=20種不同排法.故為:209.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),滿足條件(c-a)?(2b)=-2,則x=______.答案:c-a=(0,0,1-x),(c-a)?(2b)

=(2,4,2)?(0,0,1-x)=2(1-x)=-2,解得x=2,故為2.10.若向量的起點(diǎn)與終點(diǎn)M、A、B、C互不重合且無(wú)三點(diǎn)共線,且滿足下列關(guān)系(O為空間任一點(diǎn)),則能使向量成為空間一組基底的關(guān)系是()

A.

B.

C.

D.答案:C11.如圖,圓O上一點(diǎn)C在直徑AB上的射影為D.AD=2,AC=25,則AB=______.答案:∵AB是直徑,∴△ABC是直角三角形,∵C在直徑AB上的射影為D,∴CD⊥AB,∴AC2=AD?AB,∴AB=AC2AD=202=10,故為:1012.如圖,P-ABCD是正四棱錐,ABCD-A1B1C1D1是正方體,其中AB=2,PA=6.

(1)求證:PA⊥B1D1;

(2)求平面PAD與平面BDD1B1所成銳二面角的余弦值.答案:以D1為原點(diǎn),D1A1所在直線為x軸,D1C1所在直線為y軸,D1D所在直線為z軸建立空間直角坐標(biāo)系,則D1(0,0,0),A1(2,0,0),B1(2,2,0),C1(0,2,0),D(0,0,2),A(2,0,2),B(2,2,2),C(0,2,2),P(1,1,4).(1)證明:∵AP=(-1,1,2),D1B1=(2,2,0),∴AP?D1B1=-2+2+0=0,∴PA⊥B1D1.(2)平面BDD1B1的法向量為AC=(-2,2,0).DA=(2,0,0),OP=(1,1,2).設(shè)平面PAD的法向量為n=(x,y,z),則n⊥DA,n⊥DP.∴2x=0x+y+2z=0∴x=0y=-2z.取n=(0,-2,1),設(shè)所求銳二面角為θ,則cosθ=|n?AC||n|?|AC|=|0-4+0|22×5=105.13.已知命題p:“有的實(shí)數(shù)沒有平方根.”,則非p是______.答案:∵命題p:“有的實(shí)數(shù)沒有平方根.”,是一個(gè)特稱命題,非P是它的否定,應(yīng)為全稱命題“所有實(shí)數(shù)都有平方根”故為:所有實(shí)數(shù)都有平方根.14.(本題10分)設(shè)函數(shù)的定義域?yàn)锳,的定義域?yàn)锽.(1)求A;

(2)若,求實(shí)數(shù)a的取值范圍答案:(1);(2)。解析:略15.(坐標(biāo)系與參數(shù)方程選做題)過點(diǎn)(2,π3)且平行于極軸的直線的極坐標(biāo)方程為______.答案:法一:先將極坐標(biāo)化成直角坐標(biāo)表示,(2,π3)化為(1,3),過(1,3)且平行于x軸的直線為y=3,再化成極坐標(biāo)表示,即ρsinθ=3.法二:在極坐標(biāo)系中,直接構(gòu)造直角三角形由其邊角關(guān)系得方程ρsinθ=3.設(shè)A(ρ,θ)是直線上的任一點(diǎn),A到極軸的距離AH=2sinπ3=3,直接構(gòu)造直角三角形由其邊角關(guān)系得方程ρsinθ=3.故為:ρsinθ=316.設(shè)函數(shù)f(x)是定義在[a,b]上的奇函數(shù),則f(a+b)=______.答案:因?yàn)楹瘮?shù)f(x)是定義在[a,b]上的奇函數(shù),所以定義域關(guān)于原點(diǎn)對(duì)稱,所以a+b=0,且f(0)=0.所以f(a+b)=f(0)=0.故為:0.17.設(shè)點(diǎn)P(+,1)(t>0),則||(O為坐標(biāo)原點(diǎn))的最小值是()

A.

B.

C.5

D.3答案:A18.已知a=5-12,則不等式logax>loga5的解集是______.答案:∵0<a<1,∴f(x)=logax在(0,+∞)上單調(diào)遞減∵logax>loga5∴0<x<5故為:(0,5)19.已知直線l的方程為x=2-4

ty=1+3

t,則直線l的斜率為______.答案:直線x=2-4

ty=1+3

t,所以直線的普通方程為:(y-1)=-34(x-2);所以直線的斜率為:-34;故為:-34.20.在畫兩個(gè)變量的散點(diǎn)圖時(shí),下面哪個(gè)敘述是正確的()

A.預(yù)報(bào)變量x軸上,解釋變量y軸上

B.解釋變量x軸上,預(yù)報(bào)變量y軸上

C.可以選擇兩個(gè)變量中任意一個(gè)變量x軸上

D.可以選擇兩個(gè)變量中任意一個(gè)變量y軸上答案:B21.已知集合A={x|x>1},則(CRA)∩N的子集有()A.1個(gè)B.2個(gè)C.4個(gè)D.8個(gè)答案:∵集合A={x|x>1},∴CRA={x|x≤1},∴(CRA)∩N={0,1},∴(CRA)∩N的子集有22=4個(gè),故選C.22.方程y=ax+b和a2x2+y2=b2(a>b>1)在同一坐標(biāo)系中的圖形可能是()A.

B.

C.

D.

答案:∵a>b>1,∴方程y=ax+b的圖象與y軸交于y軸的正半軸,且函數(shù)是增函數(shù),由此排除選項(xiàng)B和D,∵a>b>1,a2x2+y2=b2?x2(ba)2+y2b2=1,∴橢圓焦點(diǎn)在y軸,由此排除A.故選C.23.已知函數(shù)y=f(n),滿足f(1)=2,且f(n+1)=3f(n),n∈N+,則

f(3)的值為______.答案:∵f(1)=2,且f(n+1)=3f(n),n∈N+,∴f(2)=3f(1)=6,f(3)=f(2+1)=3f(2)=18,故為18.24.已知圓的極坐標(biāo)方程ρ=2cosθ,直線的極坐標(biāo)方程為ρcosθ-2ρsinθ+7=0,則圓心到直線距離為

______.答案:由ρ=2cosθ?ρ2=2ρcosθ?x2+y2-2x=0?(x-1)2+y2=1,ρcosθ-2ρsinθ+7=0?x-2y+7=0,∴圓心到直線距離為:d=1-2×0+712+22=855.故為:855.25.拋擲3顆質(zhì)地均勻的骰子,求點(diǎn)數(shù)和為8的概率______.答案:由題意總的基本事件數(shù)為6×6×6=216種點(diǎn)數(shù)和為8的事件包含了向上的點(diǎn)的情況有(1,1,6),(1,2,5),(2,2,4),(2,3,3)有四種情況向上點(diǎn)數(shù)分別為(1,1,6)的事件包含的基本事件數(shù)有3向上點(diǎn)數(shù)分別為(1,2,5)的事件包含的基本事件數(shù)有6向上點(diǎn)數(shù)分別為(2,2,4)的事件包含的基本事件數(shù)有3向上點(diǎn)數(shù)分別為(2,3,3)的事件包含的基本事件數(shù)有3所以點(diǎn)數(shù)和為8的事件包含基本事件數(shù)是3+6+3+3=15種點(diǎn)數(shù)和為8的事件的概率是15216=572故為:572.26.若(1+2)5=a+b2(a,b為有理數(shù)),則a+b=()A.45B.55C.70D.80答案:解析:由二項(xiàng)式定理得:(1+2)5=1+C512+C52(2)2+C53(2)3+C54(2)4+C55?(2)5=1+52+20+202+20+42=41+292,∴a=41,b=29,a+b=70.故選C27.棱長(zhǎng)為a的正四面體中,AB?BC+AC?BD=______.答案:棱長(zhǎng)為a的正四面體中,AB=BC=a,且AB與BC的夾角為120°,AC⊥BD.∴AB?BC+AC?BD=a?acos120°+0=-a22,故為:-12.28.已知集合M={2,a,b},N={2a,2,b2}且M=N.求a、b的值.答案:由M=N及集合中元素的互異性,得a=2ab=b2

①或a=b2b=2a

②解①得:a=0b=1或a=0b=0,解②得:a=14b=12,當(dāng)a=0b=0時(shí),違背了集合中元素的互異性,所以舍去,故a、b的值為a=0b=1或a=14b=12.29.關(guān)于直線a,b,c以及平面M,N,給出下面命題:

①若a∥M,b∥M,則a∥b

②若a∥M,b⊥M,則b⊥a

③若a∥M,b⊥M,且c⊥a,c⊥b,則c⊥M

④若a⊥M,a∥N,則M⊥N,

其中正確命題的個(gè)數(shù)為()

A.0個(gè)

B.1個(gè)

C.2個(gè)

D.3個(gè)答案:C30.在下列條件中,使M與不共線三點(diǎn)A、B、C,一定共面的是

[

]答案:C31.質(zhì)地均勻的正四面體玩具的4個(gè)面上分別刻著數(shù)字1,2,3,4,將4個(gè)這樣的玩具同時(shí)拋擲于桌面上.

(1)求與桌面接觸的4個(gè)面上的4個(gè)數(shù)的乘積不能被4整除的概率;

(2)設(shè)ξ為與桌面接觸的4個(gè)面上數(shù)字中偶數(shù)的個(gè)數(shù),求ξ的分歧布列及期望Eξ.答案:(1)不能被4整除的有兩種情形;①4個(gè)數(shù)均為奇數(shù),概率為P1=(12)4=116②4個(gè)數(shù)中有3個(gè)奇數(shù),另一個(gè)為2,概率為P2=C34(12)3?14=18這兩種情況是互斥的,故所求的概率為P=116+18=316(2)ξ為與桌面接觸的4個(gè)面上數(shù)字中偶數(shù)的個(gè)數(shù),由題意知ξ的可能取值是0,1,2,3,4,根據(jù)符合二項(xiàng)分布,得到P(ξ=k)=Ck4(12)4(k=0,1,2,3,4),ξ的分布列為∵ξ服從二項(xiàng)分布B(4,12),∴Eξ=4×12=2.32.在某路段檢測(cè)點(diǎn)對(duì)200輛汽車的車速進(jìn)行檢測(cè),檢測(cè)結(jié)果表示為如圖所示的頻率分布直方圖,則車速不小于90km/h的汽車有輛.()A.60B.90C.120D.150答案:頻率=頻率組距×組距=(0.02+0.01)×10=0.3,頻數(shù)=頻率×樣本總數(shù)=200×0.3=60(輛).故選A.33.到兩互相垂直的異面直線的距離相等的點(diǎn),在過其中一條直線且平行于另一條直線的平面內(nèi)的軌跡是()

A.直線

B.橢圓

C.拋物線

D.雙曲線答案:D34.BC是Rt△ABC的斜邊,AP⊥平面ABC,PD⊥BC于點(diǎn)D,則圖中共有直角三角形的個(gè)數(shù)是()A.8B.7C.6D.5答案:∵AP⊥平面ABC,BC?平面ABC,∴PA⊥BC,又PD⊥BC于D,連接AD,PD∩PA=A,∴BC⊥平面PAD,AD?平面PAD,∴BC⊥AD;又BC是Rt△ABC的斜邊,∴∠BAC為直角,∴圖中的直角三角形有:△ABC,△PAC,△PAB,△PAD,△PDC,△PDB,△ADC,△ADB.故為:8.35.證明:已知a與b均為有理數(shù),且a和b都是無(wú)理數(shù),證明a+b也是無(wú)理數(shù).答案:證明:假設(shè)a+b是有理數(shù),則(a+b)(a-b)=a-b由a>0,b>0則a+b>0即a+b≠0∴a-b=a-ba+b∵a,b?Q且a+b∈Q∴a-ba+b∈Q即(a-b)∈Q這樣(a+b)+(a-b)=2a∈Q從而a?Q(矛盾)∴a+b

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論