2023年鄭州職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年鄭州職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年鄭州職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年鄭州職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年鄭州職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年鄭州職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.不等式的解集是

.答案:[0,2]解析:本小題主要考查根式不等式的解法,去掉根號是解根式不等式的基本思路,也考查了轉(zhuǎn)化與化歸的思想.原不等式等價于解得0≤x≤2.2.若方程2ax2-x-1=0在(0,1)內(nèi)恰有一解,則a的取值范圍是______.答案:當(dāng)a>0時,方程對應(yīng)的函數(shù)f(x)=2ax2-x-1在(0,1)內(nèi)恰有一解,必有f(0)?f(1)<0,即-1×(2a-2)<0,解得a>1當(dāng)a≤0時函數(shù)f(x)=2ax2-x-1在(0,1)內(nèi)恰無解.故為:a>13.下列關(guān)于結(jié)構(gòu)圖的說法不正確的是()

A.結(jié)構(gòu)圖中各要素之間通常表現(xiàn)為概念上的從屬關(guān)系和邏輯上的先后關(guān)系

B.結(jié)構(gòu)圖都是“樹形”結(jié)構(gòu)

C.簡潔的結(jié)構(gòu)圖能更好地反映主體要素之間關(guān)系和系統(tǒng)的整體特點(diǎn)

D.復(fù)雜的結(jié)構(gòu)圖能更詳細(xì)地反映系統(tǒng)中各細(xì)節(jié)要素及其關(guān)系答案:B4.(1+x2)5的展開式中x2的系數(shù)()A.10B.5C.52D.1答案:含x2項(xiàng)為C25(x2)2=10×x24=52x2,故選項(xiàng)為為C.5.Rt△ABC中,AB=3,BC=4,AC=5,將三角形繞直角邊AB旋轉(zhuǎn)一周形成一個新的幾何體,想象幾何體的結(jié)構(gòu),畫出它的三視圖,求出它的表面積和體積.答案:以繞AB邊旋轉(zhuǎn)為例,其直觀圖、正(側(cè))視圖、俯視圖依次分別為:其表面是扇形的表面,所以其表面積為S=πRL=36π,V=13×π×BC2×AB=16π.6.已知拋物線的參數(shù)方程為(t為參數(shù)),其中p>0,焦點(diǎn)為F,準(zhǔn)線為l,過拋物線上一點(diǎn)M作l的垂線,垂足為E.若|EF|=|MF|,點(diǎn)M的橫坐標(biāo)是3,則p=(

)。答案:27.下面五個命題:(1)所有的單位向量相等;(2)長度不等且方向相反的兩個向量不一定是共線向量;(3)由于零向量的方向不確定,故0與任何向量不平行;(4)對于任何向量a,b,必有|a+b|≤|a|+|b|.其中正確命題的序號為:______.答案:(1)單位向量指模為1的向量,方向可為任意的,故錯誤;(2)由共線向量的定義,方向相反的兩個向量一定是共線向量,故錯誤;(3)規(guī)定:零向量與任何向量為平行向量,故錯誤;(4)因?yàn)閨a+b|2=a2+b2+2a?b≤a2+b2+2|a|?|b|=(|a|+|b|)2,故正確故為:(4)8.______稱為向量;常用

______表示,記為

______,又可用小寫字線表示為

______.答案:既有大小,又有方向的量叫做向量;表示方法:①常用有帶箭頭的線段來表示,記為有向線段AB,②又可用小寫字線表示為:a,b,c…,故為:既有大小,又有方向的量;有帶箭頭的線段,有向線段AB,a,b,c….9.以原點(diǎn)為圓心,且截直線3x+4y+15=0所得弦長為8的圓的方程是()A.x2+y2=5B.x2+y2=16C.x2+y2=4D.x2+y2=25答案:弦心距是:1525=3,弦長為8,所以半徑是5所求圓的方程是:x2+y2=25故選D.10.______稱為向量的長度(或稱為模),記作

______,______稱為零向量,記作

______,______稱為單位向量.答案:向量AB所在線段AB的長度,即向量AB的大小,稱為向量AB的長度(或成為模),記作|AB|;長度為零的向量稱為零向量,記作0;長度等于1個單位的向量稱為單位向量.故為:向量AB所在線段AB的長度,即向量AB的大小,|AB|;長度為零的向量,0;長度等于1個單位的向量.11.(本小題滿分10分)如圖,D、E分別是AB、AC邊上的點(diǎn),且不與頂點(diǎn)重合,已知為方程的兩根

(1)證明四點(diǎn)共圓

(2)若求四點(diǎn)所在圓的半徑答案:(1)見解析;(2)解析:解:(Ⅰ)如圖,連接DE,依題意在中,,由因?yàn)樗?,?四點(diǎn)C、B、D、E共圓。(Ⅱ)當(dāng)時,方程的根因而,取CE中點(diǎn)G,BD中點(diǎn)F,分別過G,F做AC,AB的垂線,兩垂線交于點(diǎn)H,連接DH,因?yàn)樗狞c(diǎn)C、B、D、E共圓,所以,H為圓心,半徑為DH.,,所以,,點(diǎn)評:此題考查平面幾何中的圓與相似三角形及方程等概念和性質(zhì)。注意把握判定與性質(zhì)的作用。12.是x1,x2,…,x100的平均數(shù),a是x1,x2,…,x40的平均數(shù),b是x41,x42,…,x100的平均數(shù),則下列各式正確的是()

A.=

B=

C.=a+b

D.答案:A13.已知直線經(jīng)過點(diǎn),傾斜角,設(shè)與圓相交與兩點(diǎn),求點(diǎn)到兩點(diǎn)的距離之積。答案:2解析:把直線代入得,則點(diǎn)到兩點(diǎn)的距離之積為14.已知單位正方體ABCD-A1B1C1D1,E分別是棱C1D1的中點(diǎn),試求:

(1)AE與平面BB1C1C所成的角的正弦值;

(2)二面角C1-DB-A的余弦值.答案:以D為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,如圖所示:(1)設(shè)正方體棱長為2.則E(0,1,2),A(2,0,0).AE=(-2,1,2),平面BCC1B1的法向量為n=(0,1,0).設(shè)AE與平面BCC1B1所成的角為θ.sinθ=|cos<AE,n>|=|AE?n||AE|

|n|=19=13.∴sinθ=13.(2)A(1,0,0),B(1,1,0),C1(0,1,1),∴DA=(1,0,0),DB=(1,1,0),DC1=(0,1,1).設(shè)平面DBC1的法向量為n1=(x,y,z),則n1?DB=x+y=0n1?DC1=y+z=0,令y=-1,則x=1,z=1.∴n1=(1,-1,1).取平面ADB的法向量為n2=(0,0,1).設(shè)二面角C1-DB-A的大小為α,從圖中可知:α為鈍角.∵cos<n1,n2>=n1?n2|n1|

|n2|=13=33,∴cosα=-33.15.(x3+1xx)10的展開式中的第四項(xiàng)是______.答案:由二項(xiàng)式定理的通項(xiàng)公式可知(x3+1xx)10的展開式中的第四項(xiàng)是:C310(x3)7(1xx)3=120x16?x.故為:120x16?x.16.在極坐標(biāo)系中,已知點(diǎn)P(2,),則過點(diǎn)P且平行于極軸的直線的方程是()

A.ρsinθ=1

B.ρsinθ=

C.ρcosθ=1

D.ρcosθ=答案:A17.已知在△ABC中,A(2,-5,3),AB=(4,1,2),BC=(3,-2,5),則C點(diǎn)坐標(biāo)為

______.答案:設(shè)C(x,y,z),則:

AC=AB+BC即:(x-2,y+5,z-3)=(4,1,2)+(3,-2,5)=(7,-1,7)所以得:x-2=7y+5=-1z-3=7,即x=9y=-6z=10故為:(9,-6,10)18.i為虛數(shù)單位,復(fù)數(shù)z=i(1-i),則.z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:∵復(fù)數(shù)z=i(1-i)=1+i,則.z=1-i,它在復(fù)平面內(nèi)的對應(yīng)點(diǎn)的坐標(biāo)為(1,-1),故.z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第四象限,故選D.19.如圖的矩形,長為5,寬為2,在矩形內(nèi)隨機(jī)地撒300顆黃豆,數(shù)得落在陰影部分的黃豆數(shù)為138顆,則我們可以估計出陰影部分的面積為

______.答案:根據(jù)題意:黃豆落在陰影部分的概率是138300矩形的面積為10,設(shè)陰影部分的面積為s則有s10=138300∴s=235故為:23520.如圖程序運(yùn)行后輸出的結(jié)果為______.答案:由題意,列出如下表格s

0

5

9

12

n

5

4

3

2當(dāng)n=12時,不滿足“s<10”,則輸出n的值2故為:221.已知圓臺的上下底面半徑分別是2cm、5cm,高為3cm,求圓臺的體積.答案:∵圓臺的上下底面半徑分別是2cm、5cm,高為3cm,∴圓臺的體積V=13×3×(4π+4π?25π+25π)=39πcm3.22.下列說法中正確的是()

A.若∥,則與向相同

B.若||<||,則<

C.起點(diǎn)不同,但方向相同且模相等的兩個向量相等

D.所有的單位向量都相等答案:C23.如圖,已知⊙O是△ABC的外接圓,AB是⊙O的直徑,D是AB延長線上一點(diǎn),AE⊥DC交DC的延長線于點(diǎn)E,且AC平分∠EAB.

(1)求證:DE是⊙O的切線;

(2)若AB=6,AE=245,求BD和BC的長.答案:(1)證明:連接OC∵AC平分∠EAB∴∠EAC=∠BAC又在圓中OA=OC∴∠AC0=∠BAC∴∠EAC=∠ACO∴OC∥AE(內(nèi)錯角相等,兩直線平行)則由AE⊥DC知OC⊥DC即DE是⊙O的切線.(2)∵∠D=∠D,∠E=∠OCD=90°∴△DCO∽△DEA∴BD=2∵Rt△EAC∽Rt△CAB.∴AC2=1445由勾股定理得BC=655.24.以知F是雙曲線x24-y212=1的左焦點(diǎn),A(1,4),P是雙曲線右支上的動點(diǎn),則|PF|+|PA|的最小值為______.答案:∵A點(diǎn)在雙曲線的兩只之間,且雙曲線右焦點(diǎn)為F′(4,0),∴由雙曲線性質(zhì)|PF|-|PF′|=2a=4而|PA|+|PF′|≥|AF′|=5兩式相加得|PF|+|PA|≥9,當(dāng)且僅當(dāng)A、P、F’三點(diǎn)共線時等號成立.故為925.某項(xiàng)考試按科目A、科目B依次進(jìn)行,只有當(dāng)科目A成績合格時,才可繼續(xù)參加科目B的考試.已知每個科目只允許有一次補(bǔ)考機(jī)會,兩個科目成績均合格方可獲得證書.現(xiàn)某人參加這項(xiàng)考試,科目A每次考試成績合格的概率均為23,科目B每次考試成績合格的概率均為12.假設(shè)各次考試成績合格與否均互不影響.

(Ⅰ)求他不需要補(bǔ)考就可獲得證書的概率;

(Ⅱ)在這項(xiàng)考試過程中,假設(shè)他不放棄所有的考試機(jī)會,記他參加考試的次數(shù)為ξ,求ξ的數(shù)學(xué)期望Eξ.答案:設(shè)“科目A第一次考試合格”為事件A1,“科目A補(bǔ)考合格”為事件A2;“科目B第一次考試合格”為事件B1,“科目B補(bǔ)考合格”為事件B2.(Ⅰ)不需要補(bǔ)考就獲得證書的事件為A1?B1,注意到A1與B1相互獨(dú)立,根據(jù)相互獨(dú)立事件同時發(fā)生的概率可得P(A1?B1)=P(A1)×P(B1)=23×12=13.即該考生不需要補(bǔ)考就獲得證書的概率為13.(Ⅱ)由已知得,ξ=2,3,4,注意到各事件之間的獨(dú)立性與互斥性,根據(jù)相互獨(dú)立事件同時發(fā)生的概率可得P(ξ=2)=P(A1?B1)+P(.A1?.A2)=23×12+13×13=13+19=49.P(ξ=3)=P(A1?.B1?B2)+P(A1?.B1?.B2)+P(.A1?A2?B2)=23×12×12+23×12×12+13×23×12=16+16+19=49,P(ξ=4)=P(.A1?A2?.B2?B2)+P(.A1?A2?.B1?.B2)=13×23×12×12+13×23×12×12=118+118=19,∴Eξ=2×49+3×49+4×19=83.即該考生參加考試次數(shù)的數(shù)學(xué)期望為83.26.下列命題:

①垂直于同一直線的兩直線平行;

②垂直于同一直線的兩平面平行;

③垂直于同一平面的兩直線平行;

④垂直于同一平面的兩平面平行;

其中正確的有()

A.③④

B.①②④

C.②③

D.②③④答案:C27.將橢圓x2+6y2-2x-12y-13=0按向量a平移,使中心與原點(diǎn)重合,則a的坐標(biāo)是()A.(-1,1)B.(1,-1)C.(-1,-1)D.(1,1)答案:橢圓方程x2+6y2-2x-12y-13=0變形為:(x-1)2+6(y-1)2=20,則橢圓中心(1,1),即需按a=(-1,-1)平移,中心與原點(diǎn)重合.故選C.28.對某種花卉的開放花期追蹤調(diào)查,調(diào)查情況如表:

花期(天)11~1314~1617~1920~22個數(shù)20403010則這種卉的平均花期為______天.答案:由表格知,花期平均為12天的有20個,花期平均為15天的有40個,花期平均為18天的有30個,花期平均為21天的有10個,∴這種花卉的評價花期是12×20+15×40+18×30+21×10100=16,故為:1629.若直線ax+by+1=0與圓x2+y2=1相離,則點(diǎn)P(a,b)的位置是()

A.在圓上

B.在圓外

C.在圓內(nèi)

D.以上都有可能答案:C30.向量b與a=(2,-1,2)共線,且a?b=-18,則b的坐標(biāo)為______.答案:因?yàn)橄蛄縝與a=(2,-1,2)共線,所以設(shè)b=ma,因?yàn)榍襛?b=-18,所以ma2=-18,因?yàn)閨a|=22+1+22=3,所以m=-2.所以b=ma=-2(2,-1,2)=(-4,2,-4).故為:(-4,2,-4).31.在參數(shù)方程所表示的曲線上有B、C兩點(diǎn),它們對應(yīng)的參數(shù)值分別為t1、t2,則線段BC的中點(diǎn)M對應(yīng)的參數(shù)值是()

A.

B.

C.

D.答案:B32.在△ABC中,“A=45°”是“sinA=22”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:當(dāng)A=45°時,sinA=22成立.若當(dāng)A=135°時,滿足sinA=22.所以,“A=45°”是“sinA=22”的充分不必要條件.故選A.33.某工程隊有6項(xiàng)工程需要單獨(dú)完成,其中工程乙必須在工程甲完成后才能進(jìn)行,工程丙必須在工程乙完成后才能進(jìn)行,有工程丁必須在工程丙完成后立即進(jìn)行.那么安排這6項(xiàng)工程的不同排法種數(shù)是______.(用數(shù)字作答)答案:依題意,乙必須在甲后,丙必須在乙后,丙丁必相鄰,且丁在丙后,只需將剩余兩個工程依次插在由甲、乙、丙丁四個工程之間即可,第一個插入時有4種,第二個插入時共5個空,有5種方法;可得有5×4=20種不同排法.故為:2034.若點(diǎn)P(a,b)在圓C:x2+y2=1的外部,則直線ax+by+1=0與圓C的位置關(guān)系是()

A.相切

B.相離

C.相交

D.相交或相切答案:C35.若|x-4|+|x+5|>a對于x∈R均成立,則a的取值范圍為______.答案:∵|x-4|+|x+5|=|4-x|+|x+5|≥|4-x+x+5|=9,故|x-4|+|x+5|的最小值為9.再由題意可得,當(dāng)a<9時,不等式對x∈R均成立.故為(-∞,9).36.下面是某工藝品廠隨機(jī)抽取兩個批次的初加工矩形寬度與長度的比值樣本:

甲批次:0.598

0.625

0.628

0.595

0.639

乙批次:0.618

0.613

0.592

0.622

0.620

我們將比值為0.618的矩形稱為“完美矩形”,0.618為標(biāo)準(zhǔn)值,根據(jù)上述兩個樣本來估計兩個批次的總體平均數(shù),正確結(jié)論是()

A.甲批次的總體平均數(shù)與標(biāo)準(zhǔn)值更接近

B.乙批次的總體平均數(shù)與標(biāo)準(zhǔn)值更接近

C.兩個批次總體平均數(shù)與標(biāo)準(zhǔn)值接近程度相同

D.以上選項(xiàng)均不對答案:A37.下面哪個不是算法的特征()A.抽象性B.精確性C.有窮性D.唯一性答案:根據(jù)算法的概念,可知算法具有抽象性、精確性、有窮性等,同一問題,可以有不同的算法,故選D.38.已知、分別是與x軸、y軸方向相同的單位向量,且=-3+6,=-6+4,=--6,則一定共線的三點(diǎn)是()

A.A,B,C

B.A,B,D

C.A,C,D

D.B,C,D答案:C39.已知△ABC的頂點(diǎn)坐標(biāo)分別為A(2,3),B(-1,0),C(2,0),則△ABC的周長是()

A.2

B.6+

C.3+2

D.6+3答案:D40.已知ABCD是平行四邊形,P點(diǎn)是ABCD所在平面外的一點(diǎn),連接PA、PB、PC、PD.設(shè)點(diǎn)E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心.

(1)試用向量方法證明E、F、G、H四點(diǎn)共面;

(2)試判斷平面EFGH與平面ABCD的位置關(guān)系,并用向量方法證明你的判斷.答案:(1)證明略(2)平面EFGH∥平面ABCD解析:(1)

分別延長PE、PF、PG、PH交對邊于M、N、Q、R點(diǎn),因?yàn)镋、F、G、H分別是所在三角形的重心,所以M、N、Q、R為所在邊的中點(diǎn),順次連接M、N、Q、R得到的四邊形為平行四邊形,且有=,=,=,

=∴=+=(-)+(-)=(-)+(-)=(+)又∵=-=-=∴=(+),∴=+由共面向量定理知:E、F、G、H四點(diǎn)共面.(2)

由(1)得=,故∥.又∵平面ABC,EG平面ABC.∴EG∥平面ABC.又∵=-=-=∴MN∥EF,又∵M(jìn)N平面ABC,EF平面ABC,EF∥平面ABC.∵EG與EF交于E點(diǎn),∴平面EFGH∥平面ABCD.41.10件產(chǎn)品中有7件正品,3件次品,則在第一次抽到次品條件下,第二次抽到次品的概率______.答案:根據(jù)題意,在第一次抽到次品后,有2件次品,7件正品;則第二次抽到次品的概率為29;故為29.42.設(shè)點(diǎn)P對應(yīng)的復(fù)數(shù)為-3+3i,以原點(diǎn)為極點(diǎn),實(shí)軸正半軸為極軸建立極坐標(biāo)系,則點(diǎn)P的極坐標(biāo)為()

A.(3,π)

B.(-3,π)

C.(3,π)

D.(-3,π)答案:A43.某房間有四個門,甲要各進(jìn)、出這個房間一次,不同的走法有多少種?()

A.12

B.7

C.16

D.64答案:C44.若一元二次方程x2+(a-1)x+1-a2=0有兩個正實(shí)數(shù)根,則a的取值范圍是(

A.(-1,1)

B.(-∞,)∪[1,+∞)

C.(-1,]

D.[,1)答案:C45.設(shè)函數(shù)g(x)=ex

x≤0lnx,x>0,則g(g(12))=______.答案:g(g(12))

=g(ln12)

=eln12=12故為:12.46.當(dāng)a>0時,設(shè)命題P:函數(shù)f(x)=x+ax在區(qū)間(1,2)上單調(diào)遞增;命題Q:不等式x2+ax+1>0對任意x∈R都成立.若“P且Q”是真命題,則實(shí)數(shù)a的取值范圍是()A.0<a≤1B.1≤a<2C.0≤a≤2D.0<a<1或a≥2答案:∵函數(shù)f(x)=x+ax在區(qū)間(1,2)上單調(diào)遞增;∴f′(x)≥0在區(qū)間(1,2)上恒成立,∴1-ax2≥0在區(qū)間(1,2)上恒成立,即a≤x2在區(qū)間(1,2)上恒成立,∴a≤1.且a>0…①又不等式x2+ax+1>0對任意x∈R都成立,∴△=a2-4<0,∴-2<a<2…②若“P且Q”是真命題,則P且Q都是真命題,故由①②的交集得:0<a≤1,則實(shí)數(shù)a的取值范圍是0<a≤1.故選A.47.如果輸入2,那么執(zhí)行圖中算法的結(jié)果是()A.輸出2B.輸出3C.輸出4D.程序出錯,輸不出任何結(jié)果答案:第一步:輸入n=2第二步:n=2+1=3第三步:n=3+1=4第四步:輸出4故為C.48.H:x-y+z=2為坐標(biāo)空間中一平面,L為平面H上的一直線.已知點(diǎn)P(2,1,1)為L上距離原點(diǎn)O最近的點(diǎn),則______為L的方向向量.答案:∵x-y+z=2為坐標(biāo)空間中一平面∴平面的一個法向量是n=(1,-1,1)設(shè)直線L的方向向量為d=(2,b,c)∵L在H上,∴d與平面H的法向量n=(1,-1,1)垂直故d?n=0?2-b+c=0∵P(2,1,1)為直線L上距離原點(diǎn)O最近的點(diǎn),∴.OP⊥L故OP?d=0?(2,1,1)?(2,b,c)=0?4+b+c=0解得b=-1,c=-3故為:(2,-1,-3)49.類比“等差數(shù)列的定義”給出一個新數(shù)列“等和數(shù)列的定義”是()A.連續(xù)兩項(xiàng)的和相等的數(shù)列叫等和數(shù)列B.從第一項(xiàng)起,以后每一項(xiàng)與前一項(xiàng)的和都相等的數(shù)列叫等和數(shù)列C.從第二項(xiàng)起,以后每一項(xiàng)與前一項(xiàng)的差都不相等的數(shù)列叫等和數(shù)列D.從第二項(xiàng)起,以后每一項(xiàng)與前一項(xiàng)的和都相等的數(shù)列叫等和數(shù)列答案:由等差數(shù)列的定義:從第二項(xiàng)起,以后每一項(xiàng)與前一項(xiàng)的差都相等的數(shù)列叫等差數(shù)列類比可得:從第二項(xiàng)起,以后每一項(xiàng)與前一項(xiàng)的和都相等的數(shù)列叫等和數(shù)列故選D50.將(x+y+z)5展開合并同類項(xiàng)后共有______項(xiàng),其中x3yz項(xiàng)的系數(shù)是______.答案:將(x+y+z)5展開合并同類項(xiàng)后,每一項(xiàng)都是m?xa?yb?zc

的形式,且a+b+c=5,其中,m是實(shí)數(shù),a、b、c∈N,構(gòu)造8個完全一樣的小球模型,分成3組,每組至少一個,共有分法C27種,每一組中都去掉一個小球的數(shù)目分別作為(x+y+z)5的展開式中每一項(xiàng)中x,y,z各字母的次數(shù),小球分組模型與各項(xiàng)的次數(shù)是一一對應(yīng)的.故將(x+y+z)5展開合并同類項(xiàng)后共有C27=21項(xiàng).把(x+y+z)5的展開式看成5個因式(x+y+z)的乘積形式.從中任意選3個因式,這3個因式都取x,另外的2個因式分別取y、z,相乘即得含x3yz項(xiàng),故含x3yz項(xiàng)的系數(shù)為C35=20,故為21;20.第2卷一.綜合題(共50題)1.如圖,直線AB是平面α的斜線,A為斜足,若點(diǎn)P在平面α內(nèi)運(yùn)動,使得點(diǎn)P到直線AB的距離為定值a(a>0),則動點(diǎn)P的軌跡是()A.圓B.橢圓C.一條直線D.兩條平行直線答案:因?yàn)辄c(diǎn)P到直線AB的距離為定值a,所以,P點(diǎn)在以AB為軸的圓柱的側(cè)面上,又直線AB是平面α的斜線,且點(diǎn)P在平面α內(nèi)運(yùn)動,所以,可以理解為用用與圓柱底面不平行的平面截圓柱的側(cè)面,所以得到的軌跡是橢圓.故選B.2.將命題“正數(shù)a的平方大于零”改寫成“若p,則q”的形式,并寫出它的逆命題、否命題與逆否命題.答案:原命題可以寫成:若a是正數(shù),則a的平方大于零;逆命題:若a的平方大于零,則a是正數(shù);否命題:若a不是正數(shù),則a的平方不大于零;逆否命題:若a的平方不大于零,則a不是正數(shù).3.隨機(jī)地向某個區(qū)域拋撒了100粒種子,在面積為10m2的地方有2粒種子發(fā)芽,假設(shè)種子的發(fā)芽率為100%,則整個撒種區(qū)域的面積大約有______m2.答案:設(shè)整個撒種區(qū)域的面積大約xm2,由于假設(shè)種子的發(fā)芽率為100%,所以在面積為10m2的地方有2粒種子發(fā)芽,意味著在面積為10m2的地方有2粒種子,從而有:100x=210,∴x=500,故為:500.4.設(shè)復(fù)數(shù)z滿足條件|z|=1,那么|z+22+i|的最大值是______.答案:∵|z|=1,∴可設(shè)z=cosα+sinα,于是|z+22+i|=|cosα+22+(sinα+1)i|=(cosα+22)2+(sinα+1)2=10+6sin(α+θ)≤10+6=4.∴|z+22+i|的最大值是4.故為45.如圖,F(xiàn)是定直線l外的一個定點(diǎn),C是l上的動點(diǎn),有下列結(jié)論:若以C為圓心,CF為半徑的圓與l相交于A、B兩點(diǎn),過A、B分別作l的垂線與圓C過F的切線相交于點(diǎn)P和點(diǎn)Q,則必在以F為焦點(diǎn),l為準(zhǔn)線的同一條拋物線上.

(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求出該拋物線的方程;

(Ⅱ)對以上結(jié)論的反向思考可以得到另一個命題:“若過拋物線焦點(diǎn)F的直線與拋物線相交于P、Q兩點(diǎn),則以PQ為直徑的圓一定與拋物線的準(zhǔn)線l相切”請問:此命題是正確?試證明你的判斷;

(Ⅲ)請選擇橢圓或雙曲線之一類比(Ⅱ)寫出相應(yīng)的命題并證明其真假.(只選擇一種曲線解答即可,若兩種都選,則以第一選擇為平分依據(jù))答案:(Ⅰ)過F作l的垂線交l于K,以KF的中點(diǎn)為原點(diǎn),KF所在直線為x軸建立平面直角坐標(biāo)系如圖1,并設(shè)|KF|=p,則可得該拋物線的方程為

y2=2px(p>0);(Ⅱ)該命題為真命題,證明如下:如圖2,設(shè)PQ中點(diǎn)為M,P、Q、M在拋物線準(zhǔn)線l上的射影分別為A、B、D,∵PQ是拋物線過焦點(diǎn)F的弦,∴|PF|=|PA|,|QF|=|QB|,又|MD|是梯形APQB的中位線,∴|MD=12(|PA|+|QB|)=12(|PF|+|QF|)=|PQ|2.∵M(jìn)是以PQ為直徑的圓的圓心,∴圓M與l相切.(Ⅲ)選擇橢圓類比(Ⅱ)所寫出的命題為:“過橢圓一焦點(diǎn)F的直線與橢圓交于P、Q兩點(diǎn),則以PQ為直徑的圓與橢圓相應(yīng)的準(zhǔn)線l相離”.此命題為真命題,證明如下:證明:設(shè)PQ中點(diǎn)為M,橢圓的離心率為e,則0<e<1,P、Q、M在相應(yīng)準(zhǔn)線l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵M(jìn)D是梯形APQB的中位線,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e>|PQ|2,∴圓M與準(zhǔn)線l相離.選擇雙曲線類比(Ⅱ)所寫出的命題為:“過雙曲線一焦點(diǎn)F的直線與雙曲線交于P、Q兩點(diǎn),則以PQ為直徑的圓與雙曲線相應(yīng)的準(zhǔn)線l相交”.此命題為真命題,證明如下:證明:設(shè)PQ中點(diǎn)為M,橢圓的離心率為e,則e>1,P、Q、M在相應(yīng)準(zhǔn)線l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵M(jìn)D是梯形APQB的中位線,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e<|PQ|2,∴圓M與準(zhǔn)線l相交.6.某商人將彩電先按原價提高40%,然后“八折優(yōu)惠”,結(jié)果是每臺彩電比原價多賺144元,那么每臺彩電原價是______元.答案:設(shè)每臺彩電原價是x元,由題意可得(1+40%)x?0.8-x=144,解得x=1200,故為1200.7.三個數(shù)a=60.5,b=0.56,c=log0.56的大小順序?yàn)開_____.(按大到小順序)答案:∵a=60.5>60=1,0<b=0.56<0.50=1,c=log0.56<log0.51=0.∴a>b>c.故為a>b>c.8.已知當(dāng)m∈R時,函數(shù)f(x)=m(x2-1)+x-a的圖象和x軸恒有公共點(diǎn),求實(shí)數(shù)a的取值范圍.答案:(1)m=0時,f(x)=x-a是一次函數(shù),它的圖象恒與x軸相交,此時a∈R.(2)m≠0時,由題意知,方程mx2+x-(m+a)=0恒有實(shí)數(shù)解,其充要條件是△=1+4m(m+a)=4m2+4am+1≥0.又只需△′=(4a)2-16≤0,解得-1≤a≤1,即a∈[-1,1].∴m=0時,a∈R;m≠0時,a∈[-1,1].9.數(shù)集{1,x,2x}中的元素x應(yīng)滿足的條件是______.答案:根據(jù)集合中元素的互異性可得1≠x,x≠2x,1≠2x∴x≠1且x≠12且x≠0.故為:x≠1且x≠12且x≠0.10.如圖,平面中兩條直線l1和l2相交于點(diǎn)O,對于平面上任意一點(diǎn)M,若p、q分別是M到直線l1和l2的距離,則稱有序非負(fù)實(shí)數(shù)對(p,q)是點(diǎn)M的“距離坐標(biāo)”.已知常數(shù)p≥0,q≥0,給出下列命題:

①若p=q=0,則“距離坐標(biāo)”為(0,0)的點(diǎn)有且僅有1個;

②若pq=0,且p+q≠0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且僅有2個;

③若pq≠0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且僅有4個.

上述命題中,正確命題的個數(shù)是()A.0B.1C.2D.3答案:①正確,此點(diǎn)為點(diǎn)O;②不正確,注意到p,q為常數(shù),由p,q中必有一個為零,另一個非零,從而可知有且僅有4個點(diǎn),這兩點(diǎn)在其中一條直線上,且到另一直線的距離為q(或p);③正確,四個交點(diǎn)為與直線l1相距為p的兩條平行線和與直線l2相距為q的兩條平行線的交點(diǎn);故選C.11.若關(guān)于x的一元二次實(shí)系數(shù)方程x2+px+q=0有一個根為1+i(i是虛數(shù)單位),則p+q的值是()

A.-1

B.0

C.2

D.-2答案:B12.為了評價某個電視欄目的改革效果,在改革前后分別從居民點(diǎn)抽取了100位居民進(jìn)行調(diào)查,經(jīng)過計算K2≈0.99,根據(jù)這一數(shù)據(jù)分析,下列說法正確的是()

A.有99%的人認(rèn)為該欄目優(yōu)秀

B.有99%的人認(rèn)為該欄目是否優(yōu)秀與改革有關(guān)系

C.有99%的把握認(rèn)為電視欄目是否優(yōu)秀與改革有關(guān)系

D.沒有理由認(rèn)為電視欄目是否優(yōu)秀與改革有關(guān)系答案:D13.設(shè)O是坐標(biāo)原點(diǎn),F(xiàn)是拋物線y2=2px(p>0)的焦點(diǎn),A是拋物線上的一個動點(diǎn),F(xiàn)A與x軸正方向的夾角為60°,求|OA|的值.答案:由題意設(shè)A(x+P2,3x),代入y2=2px得(3x)2=2p(x+p2)解得x=p(負(fù)值舍去).∴A(32p,3p)∴|OA|=(32p)2+3p2=212p14.拋擲兩個骰子,若至少有一個1點(diǎn)或一個6點(diǎn)出現(xiàn),就說這次試驗(yàn)失?。敲?,在3次試驗(yàn)中成功2次的概率為()

A.

B.

C.

D.答案:D15.設(shè),,,則P,Q,R的大小順序是(

)

A.P>Q>R

B.P>R>Q

C.Q>P>R

D.Q>R>P答案:B16.用一枚質(zhì)地均勻的硬幣,甲、乙兩人做拋擲硬幣游戲,甲拋擲4次,記正面向上的次數(shù)為ξ;乙拋擲3次,記正面向上的次數(shù)為η.

(Ⅰ)分別求ξ和η的期望;

(Ⅱ)規(guī)定:若ξ>η,則甲獲勝;否則,乙獲勝.求甲獲勝的概率.答案:(Ⅰ)由題意,ξ~B(4,0.5),η~B(3,0.5),所以Eξ=4×0.5=2,Eη=3×0.5=1.5…(4分)(Ⅱ)P(ξ=1)=C14(12)4=14,P(ξ=2)=C24(12)4=38,P(ξ=3)=C34(12)4=14,P(ξ=4)=C44(12)4=116P(η=0)=C03(12)3=18,P(η=1)=C13(12)3=38,P(η=2)=C23(12)3=38,P(η=3)=C33(12)3=18…(8分)甲獲勝有以下情形:ξ=1,η=0;ξ=2,η=0,1;ξ=3,η=0,1,2;ξ=4,η=0,1,2,3則甲獲勝的概率為P=14×18+38(18+38)+14(18+38+38)+116×1=12.…(13分)17.已知一種材料的最佳加入量在100g到200g之間,若用0.618法安排試驗(yàn),則第一次試點(diǎn)的加入量可以是(

)g。答案:161.8或138.218.若指數(shù)函數(shù)f(x)與冪函數(shù)g(x)的圖象相交于一點(diǎn)(2,4),則f(x)=______,g(x)=______.答案:設(shè)f(x)=ax(a>0且a≠1),g(x)=xα將(2,4)代入兩個解析式得4=a2,4=2α解得a=2,α=2故為:f(x)=2x,g(x)=x219.盒中裝有形狀、大小完全相同的5個球,其中紅色球3個,黃色球2個.若從中隨機(jī)取出2個球,則所取出的2個球顏色不同的概率等于______.答案:從中隨機(jī)取出2個球,每個球被取到的可能性相同,是古典概型從中隨機(jī)取出2個球,所有的取法共有C52=10所取出的2個球顏色不同,所有的取法有C31?C21=6由古典概型概率公式知P=610=35故為3520.已知隨機(jī)變量X滿足D(X)=2,則D(3X+2)=()

A.2

B.8

C.18

D.20答案:C21.過點(diǎn)A(a,4)和B(-1,a)的直線的傾斜角等于45°,則a的值是______.答案:∵過點(diǎn)A(a,4)和B(-1,a)的直線的傾斜角等于45°,∴kAB=a-4-1-a=tan45°=1,∴a=32.故為:32.22.已知拋物線y2=4x上兩定點(diǎn)A、B分別在對稱軸兩側(cè),F(xiàn)為焦點(diǎn),且|AF|=2,|BF|=5,在拋物線的AOB一段上求一點(diǎn)P,使S△ABP最大,并求面積最大值.答案:不妨設(shè)點(diǎn)A在第一象限,B點(diǎn)在第四象限.如圖.拋物線的焦點(diǎn)F(1,0),點(diǎn)A在第一象限,設(shè)A(x1,y1),y1>0,由|FA|=2得x1+1=2,x1=1,代入y2=4x中得y1=2,所以A(1,2),…(2分);同理B(4,-4),…(4分)由A(1,2),B(4,-4)得|AB|=(1-4)2+(2+4)2=35…(6分)直線AB的方程為y-2-4-2=x-14-1,化簡得2x+y-4=0.…(8分)再設(shè)在拋物線AOB這段曲線上任一點(diǎn)P(x0,y0),且0≤x0≤4,-4≤y0≤2.則點(diǎn)P到直線AB的距離d=|2x0+y0-4|1+4=|2×y0

24+y0-4|5=|12(y0+1)2-92|5

…(9分)所以當(dāng)y0=-1時,d取最大值9510,…(10分)所以△PAB的面積最大值為S=12×35×9510=274

…(11分)此時P點(diǎn)坐標(biāo)為(14,-1).…(12分).23.在極坐標(biāo)系中,點(diǎn)(2,)到圓ρ=2cosθ的圓心的距離為()

A.2

B.

C.

D.答案:D24.已知圓柱的軸截面周長為6,體積為V,則下列關(guān)系式總成立的是()A.V≥πB.V≤πC.V≥18πD.V≤18π答案:設(shè)圓柱的底面半徑為r,高為h,由題意得:4r+2h=6,即2r+h=3,∴體積為V=πr2h≤π[13(r+r+h)]2=π×(33)2=π當(dāng)且僅當(dāng)r=h時取等號,由此可得V≤π恒成立故選:B25.設(shè)集合A和B都是自然數(shù)集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素2n+n,則在映射f下,象20的原象是()A.2B.3C.4D.5答案:由2n+n=20求n,用代入法可知選C.故選C26.若方程sin2x+4sinx+m=0有實(shí)數(shù)解,則m的取值范圍是(

A、R

B、(-∞,-5]∪[3,+∞)

C、(-5,3)

D、[-5,3]答案:D27.復(fù)數(shù)i2000=______.答案:復(fù)數(shù)i2009=i4×500=i0=1故為:128.已知點(diǎn)A(5,0)和⊙B:(x+5)2+y2=36,P是⊙B上的動點(diǎn),直線BP與線段AP的垂直平分線交于點(diǎn)Q.

(1)證明點(diǎn)Q的軌跡是雙曲線,并求出軌跡方程.

(2)若(BQ+BA)?QA=0,求點(diǎn)Q的坐標(biāo).答案:(1)∵點(diǎn)Q在線段AP的垂直平分線上,∴|QP|=|QA|,∴||BQ|-|PQ||=||BQ|-|AQ||=6.∴點(diǎn)Q的軌跡是以A、B為焦點(diǎn)的雙曲線.(4′)其軌跡方程是x29-y216=1.(7′)(2)以A、B、Q為三個頂點(diǎn)作平行四邊形ABQC,則BQ+BA=BC∵(BQ+BA)?QA=0,∴BC?QC=0,∴平行四邊形ABQC是菱形,∴|BA|=|BQ|.(8′)∴點(diǎn)Q在圓(x+5)2+y2=100上.解方程組(x+5)2+y2=100x29-y216=1.(10′)得Q(-395,±485)或Q(215,±865).(12′)29.在△ABC中,“A=45°”是“sinA=22”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:當(dāng)A=45°時,sinA=22成立.若當(dāng)A=135°時,滿足sinA=22.所以,“A=45°”是“sinA=22”的充分不必要條件.故選A.30.過點(diǎn)(-3,-1),且與直線x-2y=0平行的直線方程為______.答案:直線l經(jīng)過點(diǎn)(-3,-1),且與直線x-2y=0平行,直線的斜率為12所以直線l的方程為:y+1=12(x+3)即x-2y+1=0.故為:x-2y+1=0.31.如圖,半徑為R的球O中有一內(nèi)接圓柱.當(dāng)圓柱的側(cè)面積最大時,球的表面積與該圓柱的側(cè)面積之差是______.

答案:設(shè)圓柱的上底面半徑為r,球的半徑與上底面夾角為α,則r=Rcosα,圓柱的高為2Rsinα,圓柱的側(cè)面積為:2πR2sin2α,當(dāng)且僅當(dāng)α=π4時,sin2α=1,圓柱的側(cè)面積最大,圓柱的側(cè)面積為:2πR2,球的表面積為:4πR2,球的表面積與該圓柱的側(cè)面積之差是:2πR2.故為:2πR232.下列函數(shù)f(x)與g(x)表示同一函數(shù)的是

()A.f(x)=x0與g(x)=1B.f(x)=2lgx與g(x)=lgx2C.f(x)=|x|與g(x)=(x)2D.f(x)=x與g(x)=3x3答案:A、∵f(x)=x0,其定義域?yàn)閧x|x≠0},而g(x)的定義域?yàn)镽,故A錯誤;B、∵f(x)=2lgx,的定義域?yàn)閧x|x>0},而g(x)=lgx2的定義域?yàn)镽,故B錯誤;C、∵f(x)=|x|與g(x)=(x)2=x,其中f(x)的定義域?yàn)镽,g(x)的定義域?yàn)閧x|x≥0},故C錯誤;D、∵f(x)=x與g(x)=3x3=x,其中f(x)與g(x)的定義域?yàn)镽,故D正確.故選D.33.方程x2+(m-2)x+5-m=0的兩根都大于2,則m的取值范圍是()

A.(-5,-4]

B.(-∞,-4]

C.(-∞,-2]

D.(-∞,-5)∪(-5,-4]答案:A34.橢圓上有一點(diǎn)P,F(xiàn)1,F(xiàn)2是橢圓的左、右焦點(diǎn),△F1PF2為直角三角形,則這樣的點(diǎn)P有()

A.3個

B.4個

C.6個

D.8個答案:C35.對于非零的自然數(shù)n,拋物線y=(n2+n)x2-(2n+1)x+1與x軸相交于An,Bn兩點(diǎn),若以|AnBn|表示這兩點(diǎn)間的距離,則|A1B1|+|A2B2|+|A3B3|+┅+|A2009B2009|的值

等于______.答案:令(n2+n)x2-(2n+1)x+1=0,得x1=1n,x2=1n+1所以An(1n,0),Bn(1n+1,0)所以|AnBn|=1n-1n+1,所以|A1B1|+|A2B2|+|A3B3|+┅+|A2009B2009|=(11-12)+(12-13)+┉+(12009-12010)=1-12010=20092010.故為:20092010.36.5顆骰子同時擲出,共擲100次則至少一次出現(xiàn)全為6點(diǎn)的概率為(

)A.B.C.D.答案:C解析:5顆骰子同時擲出,沒有全部出現(xiàn)6點(diǎn)的概率是,共擲100次至少一次出現(xiàn)全為6點(diǎn)的概率是.37.某校為提高教學(xué)質(zhì)量進(jìn)行教改實(shí)驗(yàn),設(shè)有試驗(yàn)班和對照班.經(jīng)過兩個月的教學(xué)試驗(yàn),進(jìn)行了一次檢測,試驗(yàn)班與對照班成績統(tǒng)計如下的2×2列聯(lián)表所示(單位:人),則其中m=______,n=______.

80及80分以下80分以上合計試驗(yàn)班321850對照班12m50合計4456n答案:由題意,18+m=56,50+50=n,∴m=38.n=100,故為38,010.38.若直線的參數(shù)方程為,則直線的斜率為(

)A.B.C.D.答案:D39.已知向量與的夾角為120°,若向量,且,則=()

A.2

B.

C.

D.答案:C40.如圖,已知△ABC,過頂點(diǎn)A的圓與邊BC切于BC的中點(diǎn)P,與邊AB、AC分別交于點(diǎn)M、N,且CN=2BM,點(diǎn)N平分AC.則AM:BM=()

A.2

B.4

C.6

D.7

答案:D41.設(shè)向量a=(x+1,y),b=(x-1,y),點(diǎn)P(x,y)為動點(diǎn),已知|a|+|b|=4.

(1)求點(diǎn)p的軌跡方程;

(2)設(shè)點(diǎn)p的軌跡與x軸負(fù)半軸交于點(diǎn)A,過點(diǎn)F(1,0)的直線交點(diǎn)P的軌跡于B、C兩點(diǎn),試推斷△ABC的面積是否存在最大值?若存在,求其最大值;若不存在,請說明理由.答案:(1)由已知,(x+)2+y2+(x-1)2+1=4,所以動點(diǎn)P的軌跡M是以點(diǎn)E(-1,0),F(xiàn)(1,0)為焦點(diǎn),長軸長為4的橢圓.因?yàn)閏=1,a=2,則b2=a2-c2=3.故動點(diǎn)P的軌跡M方程是x24+y23=1(2)設(shè)直線BC的方程x=my+1與(1)中的橢圓方程x24+y23=1聯(lián)立消去x可得(3m2+4)y2+6my-9=0,設(shè)點(diǎn)B(x1,y1),C(x2,y2)則y1+y2=-6m3m2+4,y1y2=-93m2+4,所以|BC|=m2+1(y1+y2)2-4y1y2=12(m2+1)3m2+4點(diǎn)A到直線BC的距離d=31+m2S△ABC=12|BC|d=181+m23m2+4令1+m2=t,t≥1,∴S△ABC=12|BC|d=18t3t2+1=183t+1t≤92故三角形的面積最大值為9242.半徑為5,圓心在y軸上,且與直線y=6相切的圓的方程為______.答案:如圖所示,因?yàn)榘霃綖?,圓心在y軸上,且與直線y=6相切,所以可知有兩個圓,上圓圓心為(0,11),下圓圓心為(0,1),所以圓的方程為x2+(y-1)2=25或x2+(y-11)2=25.43.求證1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2).答案:證明:①當(dāng)n=1時,左邊=2,右邊=13×1×2×3=2,等式成立;②假設(shè)當(dāng)n=k時,等式成立,即1×2+2×3+3×4+…+k(k+1)=13k(k+1)(k+2)則當(dāng)n=k+1時,左邊=13k(k+1)(k+2)+(k+1)(k+2)=(k+1)(k+2)(13k+1)=13(k+1)(k+2)(k+3)即n=k+1時,等式也成立.所以1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2)對任意正整數(shù)都成立.44.已知四邊形ABCD,

點(diǎn)E、

F、

G、

H分別是AB、BC、CD、DA的中點(diǎn),

求證:

EF=HG.答案:證明:∵E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),∴HG=12AC,EF=12AC,∴EF=HG.45.某學(xué)校為了解該校1200名男生的百米成績(單位:秒),隨機(jī)選擇了50名學(xué)生進(jìn)行調(diào)查.如圖是這50名學(xué)生百米成績的頻率分布直方圖.根據(jù)樣本的頻率分布,估計這1200名學(xué)生中成績在[13,15](單位:秒)內(nèi)的人數(shù)大約是______.答案:∵由圖知,前面兩個小矩形的面積=0.02×1+0.18×1=0.2,即頻率,∴1200名學(xué)生中成績在[13,15](單位:s)內(nèi)的人數(shù)大約是0.2×1200=240.故為240.46.設(shè)直線過點(diǎn)(0,a),其斜率為1,且與圓x2+y2=2相切,則a的值為()

A.±

B.±2

C.±2

D.±4答案:B47.給出以下變量①吸煙,②性別,③宗教信仰,④國籍,其中屬于分類變量的有______.答案:①因?yàn)槲鼰煵皇欠诸愖兞浚欠裎鼰煵攀欠诸愖兞?,其他②③④屬于分類變量.故為:②③④?8.若0<x<1,則2x,(12)x,(0.2)x之間的大小關(guān)系為()A.2x<(0.2)x<(12)xB.2x<(12)x<(0.2)xC.(12)x<(0.2)x<2xD.(0.2)x<(12)x<2x答案:由題意考察冪函數(shù)y=xn(0<n<1),利用冪函數(shù)的性質(zhì),∵0<n<1,∴冪函數(shù)y=xn在第一象限是增函數(shù),又2>12>0.2∴2x>(12)x>(0.2)x故選D49.已知在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為x=3+3cosθy=1+3sinθ,(θ為參數(shù)),以O(shè)x為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為pcos(θ+π6)=0.

(1)寫出直線l的直角坐標(biāo)方程和圓C的普通方程;

(2)求圓C截直線l所得的弦長.答案:(1)消去參數(shù)θ,得圓C的普通方程為(x-3)2+(y-1)2=9.(2分)由ρcos(θ+π6)=0,得32ρcosθ-12ρsinθ=0,∴直線l的直角坐標(biāo)方程為3x-y=0.(5分)(2)圓心(3,1)到直線l的距離為d=|3×3-1|(3)2+12=1.(7分)設(shè)圓C直線l所得弦長為m,則m2=r2-d2=9-1=22,∴m=42.(10分)50.在曲線(t為參數(shù))上的點(diǎn)是()

A.(1,-1)

B.(4,21)

C.(7,89)

D.答案:A第3卷一.綜合題(共50題)1.與

向量

=(2,-1,2)共線且滿足方程=-18的向量為()

A.不存在

B.-2

C.(-4,2,-4)

D.(4,-2,4)答案:D2.200輛汽車經(jīng)過某一雷達(dá)地區(qū),時速頻率分布直方圖如圖所示,則時速不低于60km/h的汽車數(shù)量為

______輛.答案:時速不低于60km/h的汽車的頻率為(0.028+0.01)×10=0.38∴時速不低于60km/h的汽車數(shù)量為200×0.38=76故為:763.若平面α,β的法向量分別為(-1,2,4),(x,-1,-2),并且α⊥β,則x的值為()A.10B.-10C.12D.-12答案:∵α⊥β,∴平面α,β的法向量互相垂直∴(-1,2,4)?(x,-1,-2)=0即-1×x+(-1)×2+4×(-2)=0解得x=-10故選B.4.設(shè)a,b∈R.“a=O”是“復(fù)數(shù)a+bi是純虛數(shù)”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件答案:因?yàn)閍,b∈R.“a=O”時“復(fù)數(shù)a+bi不一定是純虛數(shù)”.“復(fù)數(shù)a+bi是純虛數(shù)”則“a=0”一定成立.所以a,b∈R.“a=O”是“復(fù)數(shù)a+bi是純虛數(shù)”的必要而不充分條件.故選B.5.已知拋物線的參數(shù)方程為(t為參數(shù)),其中p>0,焦點(diǎn)為F,準(zhǔn)線為l,過拋物線上一點(diǎn)M作l的垂線,垂足為E.若|EF|=|MF|,點(diǎn)M的橫坐標(biāo)是3,則p=(

)。答案:26.直線x3+y4=1與x,y軸所圍成的三角形的周長等于()A.6B.12C.24D.60答案:直線x3+y4=1與兩坐標(biāo)軸交于A(3,0),B(0,4),∴AB=5,∴△AOB的周長為:OA+OB+AB=3+4+5=12,故選B.7.若方程sin2x+4sinx+m=0有實(shí)數(shù)解,則m的取值范圍是(

A、R

B、(-∞,-5]∪[3,+∞)

C、(-5,3)

D、[-5,3]答案:D8.給出一個程序框圖,輸出的結(jié)果為s=132,則判斷框中應(yīng)填()

A.i≥11

B.i≥10

C.i≤11

D.i≤12

答案:A9.已知圓C:x2+y2=12,直線l:4x+3y=25.

(1)圓C的圓心到直線l的距離為______;

(2)圓C上任意一點(diǎn)A到直線l的距離小于2的概率為______.答案:(1)由題意知圓x2+y2=12的圓心是(0,0),圓心到直線的距離是d=2532+42=5,(2)由題意知本題是一個幾何概型,試驗(yàn)發(fā)生包含的事件是從這個圓上隨機(jī)的取一個點(diǎn),對應(yīng)的圓上整個圓周的弧長,滿足條件的事件是到直線l的距離小于2,過圓心做一條直線交直線l與一點(diǎn),根據(jù)上一問可知圓心到直線的距離是5,在這條垂直于直線l的半徑上找到圓心的距離為3的點(diǎn)做半徑的垂線,根據(jù)弦心距,半徑,弦長之間組成的直角三角形得到符合條件的弧長對應(yīng)的圓心角是60°根據(jù)幾何概型的概率公式得到P=60°360°=16故為:5;1610.已知兩曲線參數(shù)方程分別為x=5cosθy=sinθ(0≤θ<π)和x=54t2y=t(t∈R),它們的交點(diǎn)坐標(biāo)為______.答案:曲線參數(shù)方程x=5cosθy=sinθ(0≤θ<π)的直角坐標(biāo)方程為:x25+y2=1;曲線x=54t2y=t(t∈R)的普通方程為:y2=45x;解方程組:x25+y2=1y2=45x得:x=1y=255∴它們的交點(diǎn)坐標(biāo)為(1,255).故為:(1,255).11.已知復(fù)數(shù)z的模為1,且復(fù)數(shù)z的實(shí)部為13,則復(fù)數(shù)z的虛部為______.答案:設(shè)復(fù)數(shù)的虛部是b,∵復(fù)數(shù)z的模為1,且復(fù)數(shù)z的實(shí)部為13,∴(13)2+b2=1,∴b2=89,∴b=±223故為:±22312.已知點(diǎn)A(-1,-2),B(2,3),若直線l:x+y-c=0與線段AB有公共點(diǎn),則直線l在y軸上的截距的取值范圍是()

A.[-3,5]

B.[-5,3]

C.[3,5]

D.[-5,-3]答案:A13.若三角形的內(nèi)切圓半徑為r,三邊的長分別為a,b,c,則三角形的面積S=12r(a+b+c),根據(jù)類比思想,若四面體的內(nèi)切球半徑為R,四個面的面積分別為S1、S2、S3、S4,則此四面體的體積V=______.答案:設(shè)四面體的內(nèi)切球的球心為O,則球心O到四個面的距離都是R,所以四面體的體積等于以O(shè)為頂點(diǎn),分別以四個面為底面的4個三棱錐體積的和.故為:13R(S1+S2+S3+S4).14.已知兩點(diǎn)P(4,-9),Q(-2,3),則直線PQ與y軸的交點(diǎn)分有向線段PQ的比為______.答案:直線PQ與y軸的交點(diǎn)的橫坐標(biāo)等于0,由定比分點(diǎn)坐標(biāo)公式可得0=4+λ(-2)1+λ,解得λ=2,故直線PQ與y軸的交點(diǎn)分有向線段PQ的比為

λ=2,故為:2.15.若點(diǎn)(a,9)在函數(shù)y=3x的圖象上,則tanaπ6=______.答案:將(a,9)代入到y(tǒng)=3x中,得3a=9,解得a=2.∴tanaπ6=tanπ3=3故為:316.方程組的解集是[

]A.

B.{x,y|x=3且y=-7}

C.{3,-7}

D.{(x,y)|x=3且y=-7}答案:D17.如圖,⊙O是Rt△ABC的外接圓,點(diǎn)O在AB上,BD⊥AB,點(diǎn)B是垂足,OD∥AC,連接CD.

求證:CD是⊙O的切線.答案:證明:連接CO,(1分)∵OD∥AC,∴∠COD=∠ACO,∠CAO=∠DOB.(3分)∵∠ACO=∠CAO,∴∠COD=∠DOB.(6分)∵OD=OD,OC=OB,∴△COD≌△BOD.(8分)∴∠OCD=∠OBD=90°.∴OC⊥CD,即CD是⊙O的切線.(10分)18.若下列算法的程序運(yùn)行的結(jié)果為S=132,那么判斷框中應(yīng)填入的關(guān)于k的判斷條件是

______.答案:本題考查根據(jù)程序框圖的運(yùn)算,寫出控制條件按照程序框圖執(zhí)行如下:s=1

k=12s=12

k=11s=12×11=132

k=10因?yàn)檩敵?32故此時判斷條件應(yīng)為:K≤10或K<11故為:K≤10或K<1119.已知x∈{1,2,x2},則實(shí)數(shù)x=______.答案:∵x∈{1,2,x2},分情況討論可得:①x=1此時集合為{1,2,1}不合題意②x=2此時集合為{1,2,4}合題意③x=x2解得x=0或x=1當(dāng)x=0時集合為{1,2,0}合題意故為0或2.20.已知=(3,4),=(5,12),與則夾角的余弦為()

A.

B.

C.

D.答案:A21.設(shè)F1,F(xiàn)2是雙曲線的兩個焦點(diǎn),點(diǎn)P在雙曲線上,且·=0,則|PF1|·|PF2|值等于()

A.2

B.2

C.4

D.8答案:A22.

點(diǎn)M分有向線段的比為λ,已知點(diǎn)M1(1,5),M2(2,3),λ=-2,則點(diǎn)M的坐標(biāo)為()

A.(3,8)

B.(1,3)

C.(3,1)

D.(-3,-1)答案:C23.已知橢圓的參數(shù)方程為(?為參數(shù)),點(diǎn)M在橢圓上,點(diǎn)O為原點(diǎn),則當(dāng)?=時,OM的斜率為()

A.1

B.2

C.

D.2答案:D24.某水產(chǎn)試驗(yàn)廠實(shí)行某種魚的人工孵化,10000個卵能孵化出7645尾魚苗.根據(jù)概率的統(tǒng)計定義解答下列問題:

(1)求這種魚卵的孵化概率(孵化率);

(2)30000個魚卵大約能孵化多少尾魚苗?

(3)要孵化5000尾魚苗,大概得準(zhǔn)備多少魚卵?(精確到百位)答案:(1)這種魚卵的孵化概率為:764510000=0.7645(2)由(1)知,30000個魚卵大約能孵化:30000×0.7645=22935尾魚苗(3)要孵化5000尾魚苗,需準(zhǔn)備50000.7645=6500個魚卵.25.有四條線段,其長度分別為2,3,4,5,現(xiàn)從中任取三條,則以這三條線段為邊可以構(gòu)成三角形的概率是______.答案:所有的取法共有C34=4種,三條線段構(gòu)成三角形的條件是任意兩邊之和大于第三邊,其中能夠成三角形的取法有①2、3、4;②2、4、5;③3、4、5,共有3種,故這三條線段為邊可以構(gòu)成三角形的概率是34,故為34.26.(文)若拋物線y2=2px的焦點(diǎn)與橢圓x26+y22=1的右焦點(diǎn)重合,則實(shí)數(shù)p的值是______.答案:∵x26+y22=1

中a2=6,b2=2,∴c2=4,c=2∴右焦點(diǎn)坐標(biāo)為(2,0)∵拋物線y2=2px的焦點(diǎn)與橢圓x26+y22=1的右焦點(diǎn)重合∴拋物線y2=2px中p=4故為427.直線l與拋物線y2=2x相交于A、B兩點(diǎn),O為拋物線的頂點(diǎn),若OA⊥OB.證明:直線l過定點(diǎn).答案:證明:設(shè)點(diǎn)A,B的坐標(biāo)分別為(x1,y1),(x2,y2)(I)當(dāng)直線l有存在斜率時,設(shè)直線方程為y=kx+b,顯然k≠0且b≠0.(2分)聯(lián)立方程得:y=kx+by2=2x消去y得k2x2+(2kb-2)x+b2=0由題意:x1x2=b2k2,&

y1y2=(kx1+b)(kx2+b)=2bk(5分)又由OA⊥OB得x1x2+y1y2=0,(7分)即b2k2+2bk=0,解得b=0(舍去)或b=-2k(9分)故直線l的方程為:y=kx-2k=k(x-2),故直線過定點(diǎn)(2,0)(11分)(II)當(dāng)直線l不存在斜率時,設(shè)它的方程為x=m,顯然m>0聯(lián)立方程得:x=my2=2x解得y=±2m,即y1y2=-2m又由OA⊥OB得x1x2+y1y2=0,即m2-2m=0,解得m=0(舍去)或m=2可知直線l方程為:x=2,故直線過定點(diǎn)(2,0)綜合(1)(2)可知,滿足條件的直線過定點(diǎn)(2,0).28.如圖,點(diǎn)O是平行六面體ABCD-A1B1C1D1的對角線BD1與A1C的交點(diǎn),=,=,=,則=()

A.++

B.++

C.--+

D.+-

答案:C29.如圖,正方體ABCD-A1B1C1D1的棱長為3,點(diǎn)M在AB上,且AM=13AB,點(diǎn)P在平面ABCD上,且動點(diǎn)P到直線A1D1的距離與P到點(diǎn)M的距離相等,在平面直角坐標(biāo)系xAy中,動點(diǎn)P的軌跡方程是______.答案:作PN⊥AD,則PN⊥面A1D1DA,作NH⊥A1D1,N,H為垂足,由三垂線定理可得PH⊥A1D1.以AD,AB,AA1為x軸,y軸,z軸,建立空間坐標(biāo)系,設(shè)P(x,y,0),由題意可得M(0,1,0),H(x,0,3),|PM|=|pH|,∴x2+(y-1)2=y2+9,整理,得x2=2y+8.故為:x2=2y+8.30.過點(diǎn)M(0,1)作直線,使它被兩直線l1:x-3y+10=0,l2:2x+y-8=0所截得的線段恰好被M所平分,求此直線方程.答案:設(shè)所求直線與已知直線l1,l2分別交于A、B兩點(diǎn).∵點(diǎn)B在直線l2:2x+y-8=0上,故可設(shè)B(t,8-2t).又M(0,1)是AB的中點(diǎn),由中點(diǎn)坐標(biāo)公式得A(-t,2t-6).∵A點(diǎn)在直線l1:x-3y+10=0上,∴(-t)-3(2t-6)+10=0,解得t=4.∴B(4,0),A(-4,2),故所求直線方程為:x+4y-4=0.31.設(shè)xi,yi

(i=1,2,…,n)是實(shí)數(shù),且x1≥x2≥…≥xn,y1≥y2≥…≥yn,而z1,z2,…,zn是y1,y2,…,yn的一個排列.求證:n

i-1(xi-yi)2≥n

i-1(xi-zi)2.答案:證明:要證ni-1(xi-yi)2≥ni-1(xi-zi)2,只需證

ni=1

yi2-2ni=1

xi?yi≥ni=1

zi2-2ni=1

xi?zi,由于ni=1

yi2=ni=1

zi2,故只需證ni=1

xi?zi≤ni=1

xi?yi

①.而①的左邊為亂序和,右邊為順序和,根據(jù)排序不等式可得①成立,故要證的不等式成立.32.設(shè)甲、乙兩名射手各打了10發(fā)子彈,每發(fā)子彈擊中環(huán)數(shù)如下:甲:10,7,7,10,8,9,9,10,5,10;

乙:8,7,9,10,9,8,8,9,8,9則甲、乙兩名射手的射擊技術(shù)評定情況是()

A.甲比乙好

B.乙比甲好

C.甲、乙一樣好

D.難以確定答案:B33.已知二階矩陣A=2ab0屬于特征值-1的一個特征向量為1-3,求矩陣A的逆矩陣.答案:由矩陣A屬于特征值-1的一個特征向量為α1=1-3,可得2ab01-3=-1-3,得2-3a=-1b=3即a=1,b=3;

…(3分)解得A=2130,…(8分)∴A逆矩陣是A-1=dad-bc-bad-bc-cad-bcaad-bc=0131-23.34.求證:三個兩兩垂直的平面的交線兩兩垂直.答案:設(shè)三個互相垂直的平面分別為α、β、γ,且α∩β=a,β∩γ=b,γ∩α=c,三個平面的公共點(diǎn)為O,如圖所示:在平面γ內(nèi),除點(diǎn)O外,任意取一點(diǎn)M,且點(diǎn)M不在這三個平面中的任何一個平面內(nèi),過點(diǎn)M作MN⊥c,MP⊥b,M、P為垂足,則有平面和平面垂直的性質(zhì)可得MN⊥α,MP⊥β,∴a⊥MN,a⊥MP,∴a⊥平面γ.

再由b、c在平面γ內(nèi),可得a⊥b,a⊥c.同理可證,c⊥b,c⊥a,從而證得a、b、c互相垂直.35.如圖是2010年青年歌手大獎賽中,七位評委為甲、乙兩名選手打出的分?jǐn)?shù)的莖葉圖(其中m為數(shù)字0~9中的

一個),去掉一個最高分和一個最低分后,甲、乙兩名選手得分的平均數(shù)分別為a1,a2,則一定有()A.a(chǎn)1>a2B.a(chǎn)2>a1C.a(chǎn)1=a2D.a(chǎn)1,a2的大小與m的值有關(guān)答案:由題意知去掉一個最高分和一個最低分以后,兩組數(shù)據(jù)都有五個數(shù)據(jù),代入數(shù)據(jù)可以求得甲和乙的平均分a1=1+4+5×35+80=84,a2=4×3+6+75+80=85,∴a2>a1故選B36.指數(shù)函數(shù)y=ax的圖象經(jīng)過點(diǎn)(2,16)則a的值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論