版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年運城師范高等專科學(xué)校高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.若k∈R,則“k>3”是“方程表示雙曲線”的()
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件答案:A2.設(shè)全集U={1,2,3,4,5},A∩C∪B={1,2},則集合C∪A∩B的所有子集個數(shù)最多為()A.3B.4C.7D.8答案:∵全集U={1,2,3,4,5},A∩C∪B={1,2},∴當(dāng)集合C∪A∩B的所有子集個數(shù)最多時,集合B中最多有三個元素:3,4,5,且A∩B=?,作出文氏圖∴CUA∩B={3,4,5},∴集合C∪A∩B的所有子集個數(shù)為:23=8.故選D.3.對于函數(shù)y=f(x),在給定區(qū)間上有兩個數(shù)x1,x2,且x1<x2,使f(x1)<f(x2)成立,則y=f(x)()A.一定是增函數(shù)B.一定是減函數(shù)C.可能是常數(shù)函數(shù)D.單調(diào)性不能確定答案:解析:由單調(diào)性定義可知,不能用特殊值代替一般值.故選D.4.如圖,中心均為原點O的雙曲線與橢圓有公共焦點,M,N是雙曲線的兩頂點.若M,O,N將橢圓長軸四等分,則雙曲線與橢圓的離心率的比值是()A.3B.2C.3D.2答案:∵M,N是雙曲線的兩頂點,M,O,N將橢圓長軸四等分∴橢圓的長軸長是雙曲線實軸長的2倍∵雙曲線與橢圓有公共焦點,∴雙曲線與橢圓的離心率的比值是2故選B.5.某科目考試有30道題每小題有三個選項,每題2分,另有20道題,每題有四個選項每題3分,每題只有一個答案,某人隨機去選答案,則平均能得______分.答案:由題意,30道題每小題有三個選項,每題2分,每題只有一個,某人隨機去選,則可得2×30×13=20分;20道題,每題有四個選項每題3分,每題只有一個,某人隨機去選,則可得3×20×14=15分故平均能得35分故為:35分.6.(選做題)(幾何證明選講選做題)如圖,直角三角形ABC中,∠B=90°,AB=4,以BC為直徑的圓交AC邊于點D,AD=2,則∠C的大小為______.答案:∵∠B=90°,AB=4,BC為圓的直徑∴AB與圓相切,由切割線定理得,AB2=AD?AC∴AC=8故∠C=30°故為:30°7.某工廠生產(chǎn)A,B,C三種不同型號的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:5.現(xiàn)用分層抽樣方法抽出一個容量為n的樣本,樣本中A型號產(chǎn)品有16件,則此樣本的容量為()
A.40
B.80
C.160
D.320答案:B8.如圖,△ABC中,D,E,F(xiàn)分別是邊BC,AB,CA的中點,在以A、B、C、D、E、F為端點的有向線段中所表示的向量中,
(1)與向量FE共線的有
______.
(2)與向量DF的模相等的有
______.
(3)與向量ED相等的有
______.答案:(1)∵EF是△ABC的中位線,∴EF∥BC且EF=12BC,則與向量FE共線的向量是BC、BD、DC、CB、DB、CD;(2))∵DF是△ABC的中位線,∴DF∥AC且DF=12AC,則與向量DF的模相等的有CE,EA,EC,AF;(3)∵DE是△ABC的中位線,∴DE∥AB且DE=12AB,則與向量ED相等的有AF,F(xiàn)B.9.若隨機變量X的概率分布如下表,則表中a的值為()
X
1
2
3
4
P
0.2
0.3
0.3
a
A.1
B.0.8
C.0.3
D.0.2答案:D10.如圖,在空間直角坐標(biāo)系中,已知直三棱柱的頂點A在x軸上,AB平行于y軸,側(cè)棱AA1平行于z軸.當(dāng)頂點C在y軸正半軸上運動時,以下關(guān)于此直三棱柱三視圖的表述正確的是()
A.該三棱柱主視圖的投影不發(fā)生變化
B.該三棱柱左視圖的投影不發(fā)生變化
C.該三棱柱俯視圖的投影不發(fā)生變化
D.該三棱柱三個視圖的投影都不發(fā)生變化
答案:B11.如圖,PT是⊙O的切線,切點為T,直線PA與⊙O交于A、B兩點,∠TPA的平分線分別交直線TA、TB于D、E兩點,已知PT=2,PB=3,則PA=______,TEAD=______.答案:由題意,如圖可得PT2=PB×PA又由已知PT=2,PB=3,故可得PA=433又TPA的平分線分別交直線TA、TB于D、E兩點,可得∠TPE=∠APD又由弦切角定理知∠PTE=∠PAD故有△PET≈△PDA故有TE:AD=PT:PA=3:2故為433,3212.若直線3x+4y+m=0與曲線x=1+cosθy=-2+sinθ(θ為參數(shù))沒有公共點,則實數(shù)m的取值范圍是
______.答案:∵曲線x=1+cosθy=-2+sinθ(θ為參數(shù))的普通方程是(x-1)2+(y+2)2=1則圓心(1,-2)到直線3x+4y+m=0的距離d=|3?1+4(-2)+m|32+42=|m-5|5,令|m-5|5>1,得m>10或m<0.故為:m>10或m<0.13.設(shè)雙曲線的漸近線為:y=±32x,則雙曲線的離心率為______.答案:由題意ba=32或ab=32,∴e=ca=132或133,故為132,133.14.拋物線x=14ay2的焦點坐標(biāo)為()A.(116a,0)B.(a,0)C.(0,116a)D.(0,a)答案:拋物線x=14ay2可化為:y2=4ax,它的焦點坐標(biāo)是(a,0)故選B.15.想要檢驗是否喜歡參加體育活動是不是與性別有關(guān),應(yīng)該檢驗()
A.H0:男性喜歡參加體育活動
B.H0:女性不喜歡參加體育活動
C.H0:喜歡參加體育活動與性別有關(guān)
D.H0:喜歡參加體育活動與性別無關(guān)答案:D16.(理)已知函數(shù)f(x)=sinπxx∈[0,1]log2011xx∈(1,+∞)若滿足f(a)=f(b)=f(c),(a、b、c互不相等),則a+b+c的取值范圍是______.答案:作出函數(shù)的圖象如圖,直線y=y0交函數(shù)圖象于如圖,由正弦曲線的對稱性,可得A(a,y0)與B(b,y0)關(guān)于直線x=12對稱,因此a+b=1當(dāng)直線線y=y0向上平移時,經(jīng)過點(2011,1)時圖象兩個圖象恰有兩個公共點(A、B重合)所以0<y0<1時,兩個圖象有三個公共點,此時滿足f(a)=f(b)=f(c),(a、b、c互不相等),說明1<c<2011,因此可得a+b+c∈(2,2012)故為(2,2012)17.已知圓C:x2+y2-4y-6y+12=0,求:
(1)過點A(3,5)的圓的切線方程;
(2)在兩條坐標(biāo)軸上截距相等的圓的切線方程.答案:(l)設(shè)過點A(3,5)的直線?的方程為y-5=k(x-3).因為直線?與⊙C相切,而圓心為C(2,3),則|2k-3-3k+5|k2+1=1,解得k=34所以切線方程為y-5=34(x-3),即3x-4y+11=0.由于過圓外一點A與圓相切的直線有兩條,因此另一條切線方程為x=3.(2)因為原點在圓外,所以設(shè)在兩坐標(biāo)軸上截距相等的直線方程x+y=a或y=kx.由直線與圓相切得,|2+3-a|2=1或|2k-3|k2+1=1,解得a=5士2,k=6±223故所求的切線方程為x+y=5士2或y=6±223x.18.將一枚均勻硬幣
隨機擲20次,則恰好出現(xiàn)10次正面向上的概率為()
A.
B.
C.
D.答案:D19.已知圓臺的上下底面半徑分別是2cm、5cm,高為3cm,求圓臺的體積.答案:∵圓臺的上下底面半徑分別是2cm、5cm,高為3cm,∴圓臺的體積V=13×3×(4π+4π?25π+25π)=39πcm3.20.已知鐳經(jīng)過100年,質(zhì)量便比原來減少4.24%,設(shè)質(zhì)量為1的鐳經(jīng)過x年后的剩留量為y,則y=f(x)的函數(shù)解析式為(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100xD.0.9576100x答案:由題意可得,對于函數(shù),當(dāng)x=100時,y=95.76%=0.9576,結(jié)合選項檢驗選項A:x=100,y=0.0424,故排除A選項B:x=100,y=0.9576,故B正確故選:B解析:已知鐳經(jīng)過100年,質(zhì)量便比原來減少4.24%,設(shè)質(zhì)量為1的鐳經(jīng)過x年后的剩留量為y,則y=f(x)的函數(shù)解析式為(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100x21.若把A、B、C、D、E、F、G七人排成一排,則A、B必須相鄰,且C、D不能相鄰的概率是______(結(jié)果用數(shù)值表示).答案:把AB看成一個整體,CD不能相鄰,就用插空法,則有A22A44A25種方法把A、B、C、D、E、F、G七人排成一排,隨便排的種數(shù)A77所以概率為A22A44A25A77=421故為:421.22.已知函數(shù)y=f(x)是R上的奇函數(shù),其零點為x1,x2,…,x2011,則x1+x2+…+x2011=______.答案:∵f(x)是R上的奇函數(shù),∴0是函數(shù)y=f(x)的零點.其他非0的零點關(guān)于原點對稱.∴x1+x2+…+x2011=0.故為:0.23.若x,y∈R,則“x=0”是“x+yi為純虛數(shù)”的()A.充分不必要條件B.必要不充分條件C.充要條件D.不充分也不必要條件答案:根據(jù)復(fù)數(shù)的分類,x+yi為純虛數(shù)的充要條件是x=0,y≠0.“若x=0則x+yi為純虛數(shù)”是假命題,反之為真.∴x,y∈R,則“x=0”是“x+yi為純虛數(shù)”的必要不充分條件故選B24.若點(a,9)在函數(shù)y=3x的圖象上,則tanaπ6=______.答案:將(a,9)代入到y(tǒng)=3x中,得3a=9,解得a=2.∴tanaπ6=tanπ3=3故為:325.根據(jù)學(xué)過的知識,試把“推理與證明”這一章的知識結(jié)構(gòu)圖畫出來.答案:根據(jù)“推理與證明”這一章的知識可得結(jié)構(gòu)圖,如圖所示.26.(選做題)某制藥企業(yè)為了對某種藥用液體進行生物測定,需要優(yōu)選培養(yǎng)溫度,實驗范圍定為29℃~63℃,精確度要求±1℃,用分?jǐn)?shù)法進行優(yōu)選時,能保證找到最佳培養(yǎng)溫度需要最少實驗次數(shù)為(
)。答案:727.拋物線y=ax2(其中a>0)的焦點坐標(biāo)是(
)
A.(,0)
B.(0,)
C.(,0)
D.(0,)答案:D28.如圖所示,PD⊥平面ABCD,且四邊形ABCD為正方形,AB=2,E是PB的中點,
cos〈,〉=.
(1)建立適當(dāng)?shù)目臻g坐標(biāo)系,寫出點E的坐標(biāo);
(2)在平面PAD內(nèi)求一點F,使EF⊥平面PCB.答案:(1)點E的坐標(biāo)是(1,1,1)(2)F是AD的中點時滿足EF⊥平面PCB解析:(1)如圖所示,以DA、DC、DP所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0)、B(2,2,0)、C(0,2,0),設(shè)P(0,0,2m),則E(1,1,m),∴=(-1,1,m),=(0,0,2m).∴cos〈,〉==.解得m=1,∴點E的坐標(biāo)是(1,1,1).(2)∵F∈平面PAD,∴可設(shè)F(x,0,z).則=(x-1,-1,z-1),又=(2,0,0),=(0,2,-2)∵EF⊥平面PCB∴⊥,且⊥即∴∴,∴F點的坐標(biāo)為(1,0,0)即點F是AD的中點時滿足EF⊥平面PCB.29.計算:x10÷x5=______.答案:根據(jù)有理數(shù)指數(shù)冪的運算性質(zhì):x10÷x5=x5故為:x530.已知直線l1:y=kx+(k<0=被圓x2+y2=4截得的弦長為,則l1與直線l2:y=(2+)x的夾角的大小是()
A.30°
B.45°
C.60°
D.75°答案:B31.(參數(shù)方程與極坐標(biāo))已知F是曲線x=2cosθy=1+cos2θ(θ∈R)的焦點,M(12,0),則|MF|的值是
______.答案:y=1+cos2θ=2cos2θ=2?(x2)2化簡得x2=2y∴F(0,12)而M(12,0),∴|MF|=22故為:2232.已知曲線x2a+y2b=1和直線ax+by+1=0(a,b為非零實數(shù)),在同一坐標(biāo)系中,它們的圖形可能是()A.
B.
C.
D.
答案:A選項中,直線的斜率大于0,故系數(shù)a,b的符號相反,此時曲線應(yīng)是雙曲線,故不對;B選項中直線的斜率小于0,故系數(shù)a,b的符號相同且都為負(fù),此時曲線不存在,故不對;C選項中,直線斜率為正,故系數(shù)a,b的符號相反,且a正,b負(fù),此時曲線應(yīng)是焦點在x軸上的雙曲線,圖形符合結(jié)論,可選;D選項中不正確,由C選項的判斷可知D不正確.故選D33.極坐標(biāo)方程ρcos2θ=0表示的曲線為()
A.極點
B.極軸
C.一條直線
D.兩條相交直線答案:D34.已知M(-2,0),N(2,0),|PM|-|PN|=3,則動點P的軌跡是()A.雙曲線B.雙曲線右支C.一條射線D.不存在答案:∵|PM|-|PN|=3,M(-2,0),N(2,0),且3<4=|MN|,根據(jù)雙曲線的定義,∴點P是以M(-2,0),N(2,0)為兩焦點的雙曲線的右支.故選B.35.已知拋物線的頂點在坐標(biāo)原點,焦點在x軸正半軸,拋物線上一點M(3,m)到焦點的距離為5,求m的值及拋物線方程.答案:∵拋物線頂點在原點,焦點在x軸上,其上一點M(3,m)∴設(shè)拋物線方程為y2=2px∵其上一點M(3,m)到焦點的距離為5,∴3+p2=5,可得p=4∴拋物線方程為y2=8x.36.如圖,空間四邊形ABCD中,M、G分別是BC、CD的中點,則AB+12BC+12BD等()A.ADB.GAC.AGD.MG答案:∵M、G分別是BC、CD的中點,∴12BC=BM,12BD=MC∴AB+12BC+12BD=AB+BM+MC=AM+MC=AC故選C37.若橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點,則實數(shù)a的取值范圍是______.答案:橢圓x2+4(y-a)2=4與拋物線x2=2y聯(lián)立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點,∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負(fù)根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵兩根皆負(fù)時,由韋達定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負(fù)根時,-1≤a≤178故為:-1≤a≤17838.如圖,AB是半圓O的直徑,C、D是半圓上的兩點,半圓O的切線PC交AB的延長線于點P,∠PCB=25°,則∠ADC為()
A.105°
B.115°
C.120°
D.125°
答案:B39.已知空間四邊形OABC,M,N分別是OA,BC的中點,且OA=a,OB=b,OC=c,用a,b,c表示向量MN為()A.12a+12b+12cB.12a-12b+12cC.-12a+12b+12cD.-12a+12b-12c答案:如圖所示,連接ON,AN,則ON=12(OB+OC)=12(b+c),AN=12(AC+AB)=12(OC-2OA+OB)=12(-2a+b+c)=-a+12b+12c,所以MN=12(ON+AN)=-12a+12b+12c.故選C.40.關(guān)于x的方程mx2+2(m+3)x+2m+14=0有兩實根,且一個大于4,一個小于4,求m的取值范圍。答案:解:令f(x)=mx2+2(m+3)x+2m+14,依題意得或,即或,解得。41.給出以下命題:(1)若非零向量a與b互為負(fù)向量,則a∥b;(2)|a|=0是a=0的充要條件;(3)若|a|=|b|,則a=±b;(4)物理學(xué)中的作用力和反作用力互為負(fù)向量.其中為真命題的是______.答案:(1)若非零向量a與b互為負(fù)向量,根據(jù)相反向量的定義可知a∥b,故正確;(2)|a|=0則a=0,a=0則|a|=0,故|a|=0是a=0的充要條件,故正確;(3)若|a|=|b|,則兩向量模等,方向任意,故不正確;(4)物理學(xué)中的作用力和反作用力大小相等,方向相反,故互為負(fù)向量,故正確故為:(1)(2)(4)42.在正方體ABCD-A1B1C1D1中,直線BC1與平面A1BD所成角的余弦值是______.答案:分別以DA、DC、DD1為x、y、z軸建立如圖所示空間直角坐標(biāo)系設(shè)正方體的棱長等于1,可得D(0,0,0),B(1,1,0),C1(0,1,1),A1(1,0,1),∴BC1=(-1,0,1),A1D=(-1,0,-1),BD=(-1,-1,0)設(shè)n=(x,y,z)是平面A1BD的一個法向量,則n?A1D=-x-z=0n?BD=-x-y=0,取x=1,得y=z=-1∴平面A1BD的一個法向量為n=(1,-1,-1)設(shè)直線BC1與平面A1BD所成角為θ,則sinθ=|cos<BC1,n>|=BC1?n|BC1|?n=63∴cosθ=1-sin2θ=33,即直線BC1與平面A1BD所成角的余弦值是33故為:3343.是x1,x2,…,x100的平均數(shù),a是x1,x2,…,x40的平均數(shù),b是x41,x42,…,x100的平均數(shù),則下列各式正確的是()
A.=
B=
C.=a+b
D.答案:A44.若定義在正整數(shù)有序?qū)仙系亩瘮?shù)f滿足:①f(x,x)=x,②f(x,y)=f(y,x);③(x+y)f(x,y)=yf(x,x+y),則f(12,16)的值是()A.12B.16C.24D.48答案:依題意:∵(x+y)f(x,y)=yf(x,x+y),∴f(x,x+y)=1y(x+y)f(x,y)∴f(12,16)=f(12,12+4)=14(12+4)f(12,4)=4f(12,4)=4f(4,12)=4f(4,4+8)=4×18(4+8)f(4,8)=6f(4,8)=6f(4,4+4)=6×14(4+4)f(4,4)=12f(4,4)=12×4=48故選D45.設(shè)a=20.3,b=0.32,c=log20.3,則用“>”表示a,b,c的大小關(guān)系式是______.答案:∵0<0.32<1,log20.3<0,20.3>1∴0.32<20.3<log20.3故為:a>b>c46.已知向量,,,則(
)A.B.C.5D.25答案:C解析:將平方即可求得C.47.若方程2ax2-x-1=0在(0,1)內(nèi)恰有一解,則a的取值范圍是______.答案:當(dāng)a>0時,方程對應(yīng)的函數(shù)f(x)=2ax2-x-1在(0,1)內(nèi)恰有一解,必有f(0)?f(1)<0,即-1×(2a-2)<0,解得a>1當(dāng)a≤0時函數(shù)f(x)=2ax2-x-1在(0,1)內(nèi)恰無解.故為:a>148.曲線x=t+1ty=12(t+1t)(t為參數(shù))的直角坐標(biāo)方程是______.答案:∵曲線C的參數(shù)方程x=t+1ty=12(t+1t)(t為參數(shù))x=t+1t≥2,可得x的限制范圍是x≥2,再根據(jù)x2=t+1t+2,∴t+1t=x2-2,可得直角坐標(biāo)方程是:x2=2(y+1),(x≥2),故為:x2=2(y+1),(x≥2).49.點P(x0,y0)在圓x2+y2=r2內(nèi),則直線x0x+y0y=r2和已知圓的公共點的個數(shù)為(
)
A.0
B.1
C.2
D.不能確定答案:A50.設(shè)拋物線C:y2=3px(p>0)的焦點為F,點M在C上,|MF|=5,若以MF為直徑的圓過點(0,2),則C的方程為()
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x答案:C第2卷一.綜合題(共50題)1.參數(shù)方程x=cosαy=1+sinα(α為參數(shù))化成普通方程為
______.答案:∵x=cosαy=1+sinα(α為參數(shù))∴x2+(y-1)2=cos2α+sin2α=1.即:參數(shù)方程x=cosαy=1+sinα(α為參數(shù))化成普通方程為:x2+(y-1)2=1.故為:x2+(y-1)2=1.2.解關(guān)于x的不等式(k≥0,k≠1).答案:不等式的解集為{x|x2}解析:原不等式即,1°若k=0,原不等式的解集為空集;2°若1-k>0,即0,所以原不等式的解集為{x|x2}.</k<1,由原不等式的解集為{x|2<x<</k<1時,原不等式等價于3.已知點A(1,2),直線l1:x=1+3ty=2-4t(t為參數(shù))與直線l2:2x-4y=5相交于點B,則A、B兩點之間的距離|AB|=______.答案:將x=1+3t,y=2-4t代入2x-4y=5,得t=12,所以兩直線的交點坐標(biāo)為(52,0)所以|AB|=(1-52)2+(2-0)2
=52.故為:524.已知過點A(-2,m)和B(m,4)的直線與直線2x+y-1=0平行,則m的值為()
A.0
B.-8
C.2
D.10答案:B5.編號為A、B、C、D、E的五個小球放在如圖所示的五個盒子中,要求每個盒子只能放一個小球,且A不能放1,2號,B必需放在與A相鄰的盒子中,則不同的放法有()種.A.42B.36C.30D.28答案:根據(jù)題意,A不能放1,2號,則A可以放在3、4、5號盒子,分2種情況討論:①當(dāng)A在4、5號盒子時,B有1種放法,剩下3個有A33=6種不同放法,此時,共有2×1×6=12種情況;②當(dāng)A在3號盒子時,B有3種放法,剩下3個有A33=6種不同放法,此時,共有1×3×6=18種情況;由加法原理,計算可得共有12+18=30種不同情況;故選C.6.設(shè)隨機變量X~B(10,0.8),則D(2X+1)等于()
A.1.6
B.3.2
C.6.4
D.12.8答案:C7.在△ABC中,已知D是AB邊上一點,若AD=2DB,CD=λCA+μCB,則λμ的值為______.答案:∵AD=2DB,∴CD=CA+23
AB∵AB=CB-CA∴CD=CA+23AB=CA+23(CB-CA)=13CA+23CB∵CD=λCA+μCB∴λ=13,μ=23∴λμ=12故為128.某計算機程序每運行一次都隨機出現(xiàn)一個五位的二進制數(shù)A=
,其中A的各位數(shù)中,a1=1,ak(k=2,3,4,5)出現(xiàn)0的概率為,出現(xiàn)1的概率為.記ξ=a1+a2+a3+a4+a5,當(dāng)程序運行一次時,ξ的數(shù)學(xué)期望Eξ=()
A.
B.
C.
D.答案:C9.用輾轉(zhuǎn)相除法或者更相減損術(shù)求三個數(shù)的最大公約數(shù).答案:同解析解析:解:324=243×1+81
243=81×3+0
則324與243的最大公約數(shù)為81又135=81×1+54
81=54×1+27
54=27×2+0則81與135的最大公約數(shù)為27所以,三個數(shù)324、243、135的最大公約數(shù)為27.另法為所求。10.一個袋子里裝有大小相同的3個紅球和2個黃球,從中同時取出2個球,則其中含紅球個數(shù)的數(shù)學(xué)期望是
______.答案:設(shè)含紅球個數(shù)為ξ,ξ的可能取值是0、1、2,當(dāng)ξ=0時,表示從中取出2個球,其中不含紅球,當(dāng)ξ=1時,表示從中取出2個球,其中1個紅球,1個黃球,當(dāng)ξ=2時,表示從中取出2個球,其中2個紅球,∴P(ξ=0)=C22C25=0.1,P(ξ=1)=C12C13C25=0.6P(ξ=2)=C23C25=0.3∴Eξ=0×0.1+1×0.6+2×0.3=1.2.故為:1.2.11.若點A分有向線段所成的比是2,則點C分有向線段所成的比是()
A.
B.3
C.-2
D.-3答案:D12.已知橢圓中心在原點,一個焦點為(3,0),且長軸長是短軸長的2倍,則該橢圓的標(biāo)準(zhǔn)方程是______.答案:根據(jù)題意知a=2b,c=3又∵a2=b2+c2∴a2=4
b2=1∴x24+
y2=1故為:∴x24+
y2=1.13.若函數(shù)f(x)對任意實數(shù)x都有f(x)<f(x+1),那么()A.f(x)是增函數(shù)B.f(x)沒有單調(diào)遞增區(qū)間C.f(x)沒有單調(diào)遞減區(qū)間D.f(x)可能存在單調(diào)遞增區(qū)間,也可能存在單調(diào)遞減區(qū)間答案:根據(jù)函數(shù)f(x)對任意實數(shù)x都有f(x)<f(x+1),畫出一個滿足條件的函數(shù)圖象如右圖所示;根據(jù)圖象可知f(x)可能存在單調(diào)遞增區(qū)間,也可能存在單調(diào)遞減區(qū)間故選D.14.方程組的解集是(
)答案:{(5,-4)}15.不等式|3x-2|>4的解集是______.答案:由|3x-2|>4可得
3x-2>4
或3x-2<-4,∴x>2或x<-23.故為:(-∞,-23)∪(2,+∞).16.用數(shù)學(xué)歸納法證明不等式成立,起始值至少應(yīng)取為()
A.7
B.8
C.9
D.10答案:B17.確定方程3x2-9+4x2-16+5x2-25=120x的解集______.答案:由題意,x2-9≥0x2-16≥0x2-25≥0x>0,∴x≥5∴x2-9≥4,x2-16≥3,x2-25≥0,∴3x2-9+4x2-16+5x2-25≥24∵3x2-9+4x2-16+5x2-25=120x∴120x≥24∵x≥5,∴120x≤24∴120x=24∴x=5故為:{5}18.一射手對靶射擊,直到第一次命中為止每次命中的概率為0.6,現(xiàn)有4顆子彈,命中后的剩余子彈數(shù)目ξ的期望為()
A.2.44
B.3.376
C.2.376
D.2.4答案:C19.2005年10月,我國載人航天飛船“神六”飛行獲得圓滿成功.已知“神六”飛船變軌前的運行軌道是一個以地心為焦點的橢圓,飛船近地點、遠(yuǎn)地點離地面的距離分別為200公里、250公里.設(shè)地球半徑為R公里,則此時飛船軌道的離心率為______.(結(jié)果用R的式子表示)答案:(I)設(shè)橢圓的方程為x2a2+y2b2=1由題設(shè)條件得:a-c=|OA|-|OF2|=|F2A|=R+200,a+c=|OB|+|OF2|=|F2B|=R+250,解得a=225+R,c=25則此時飛船軌道的離心率為25225+R故為:25225+R.20.已知焦點在x軸上的雙曲線漸近線方程是y=±4x,則該雙曲線的離心率是()
A.
B.
C.
D.答案:A21.已知矩陣M=2a21,其中a∈R,若點P(1,-2)在矩陣M的變換下得到點P'(-4,0)
(1)求實數(shù)a的值;
(2)求矩陣M的特征值及其對應(yīng)的特征向量.答案:(1)由2a211-2=-40,∴2-2a=-4?a=3.(2)由(1)知M=2321,則矩陣M的特征多項式為f(λ)=.λ-2-3-2λ-1.=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩陣M的特征值為-1與4.當(dāng)λ=-1時,(λ-2)x-3y=0-2x+(λ-1)y=0?x+y=0∴矩陣M的屬于特征值-1的一個特征向量為1-1;當(dāng)λ=4時,(λ-2)x-3y=0-2x+(λ-1)y=0?2x-3y=0∴矩陣M的屬于特征值4的一個特征向量為32.22.已知:關(guān)于x的方程2x2+kx-1=0
(1)求證:方程有兩個不相等的實數(shù)根;
(2)若方程的一個根是-1,求另一個根及k值.答案:(1)證明:2x2+kx-1=0,△=k2-4×2×(-1)=k2+8,無論k取何值,k2≥0,所以k2+8>0,即△>0,∴方程2x2+kx-1=0有兩個不相等的實數(shù)根.(2)設(shè)2x2+kx-1=0的另一個根為x,則x-1=-k2,(-1)?x=-12,解得:x=12,k=1,∴2x2+kx-1=0的另一個根為12,k的值為1.23.設(shè)橢圓(m>0,n>0)的右焦點與拋物線y2=8x的焦點相同,離心率為,則此橢圓的方程為(
)
A.
B.
C.
D.答案:B24.已知向量a=2e1-3e2,b=2e1+3e2,其中e1、e2不共線,向量c=2e1-9e2.問是否存在這樣的實數(shù)λ、μ,使向量d=λa+μb與c共線?答案:∵d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,若d與c共線,則存在實數(shù)k≠0,使d=kc,即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,由2λ+2μ=2k-3λ+3μ=-9k得λ=-2μ.故存在這樣的實數(shù)λ、μ,只要λ=-2μ,就能使d與c共線.25.若a=()x,b=x3,c=logx,則當(dāng)x>1時,a,b,c的大小關(guān)系式()
A.a(chǎn)<b<c
B.c<b<a
C.c<a<b
D.a(chǎn)<c<b答案:C26.已知圓的極坐標(biāo)方程為ρ=4cosθ,圓心為C,點P的極坐標(biāo)為(4,π3),則|CP|=______.答案:圓的極坐標(biāo)方程為ρ=4cosθ,圓的方程為:x2+y2=4x,圓心為C(2,0),點P的極坐標(biāo)為(4,π3),所以P的直角坐標(biāo)(2,23),所以|CP|=(2-2)2+(23-0)2=23.故為:23.27.已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個底邊長為8,高為4的等腰三角形,左視圖是一個底邊長為6、高為4的等腰三角形.則該幾何體的體積為______.答案:由題意幾何體復(fù)原是一個底面邊長為8,6的距離,高為4,且頂點在底面的射影是底面矩形的中心的四棱錐.底面矩形的面積是48所以幾何體的體積是:13×46×4=64故為:64.28.已知命題p:?x∈R,x2-x+1>0,則命題¬p
是______.答案:∵命題p:?x∈R,x2-x+1>0,∴命題p的否定是“?x∈R,x2-x+1≤0”故為:?x∈R,x2-x+1≤0.29.直線y=kx+1與圓x2+y2=4的位置關(guān)系是()
A.相交
B.相切
C.相離
D.與k的取值有關(guān)答案:A30.拋物線y2=4x上一點M與該拋物線的焦點F的距離|MF|=4,則點M的橫坐標(biāo)x=______.答案:∵拋物線y2=4x=2px,∴p=2,由拋物線定義可知,拋物線上任一點到焦點的距離與到準(zhǔn)線的距離是相等的,∴|MF|=4=x+p2=4,∴x=3,故為:3.31.兩條平行線l1:3x+4y-2=0,l2:9x+12y-10=0間的距離等于()
A.
B.
C.
D.答案:C32.設(shè)圓M的方程為(x-3)2+(y-2)2=2,直線L的方程為x+y-3=0,點P的坐標(biāo)為(2,1),那么()
A.點P在直線L上,但不在圓M上
B.點P在圓M上,但不在直線L上
C.點P既在圓M上,又在直線L上
D.點P既不在直線L上,也不在圓M上答案:C33.設(shè)復(fù)數(shù)z滿足條件|z|=1,那么|z+22+i|的最大值是______.答案:∵|z|=1,∴可設(shè)z=cosα+sinα,于是|z+22+i|=|cosα+22+(sinα+1)i|=(cosα+22)2+(sinα+1)2=10+6sin(α+θ)≤10+6=4.∴|z+22+i|的最大值是4.故為434.平行線l1:3x-2y-5=0與l2:6x-4y+3=0之間的距離為______.答案:將l1:3x-2y-5=0化成6x-4y-10=0∴l(xiāng)1:3x-2y-5=0與l2:6x-4y+3=0之間的距離為d=|-10-3|62+(-4)2=1352=132故為:13235.已知F是拋物線C:y2=4x的焦點,過F且斜率為1的直線交C于A,B兩點.設(shè)|FA|>|FB|,則|FA|與|FB|的比值等于______.答案:設(shè)A(x1,y1)B(x2,y2)由y=x-1y2=4x?x2-6x+1=0?x1=3+22,x2=3-22,(x1>x2)∴由拋物線的定義知|FA||FB|=x1+1x2+1=4+224-22=2+22-2=3+22故為:3+2236.若直線按向量平移得到直線,那么(
)A.只能是(-3,0)B.只能是(0,6)C.只能是(-3,0)或(0,6)D.有無數(shù)個答案:D解析:設(shè)平移向量,直線平移之后的解析式為,即,所以,滿足的有無數(shù)多個.37.若(1+2)5=a+b2(a,b為有理數(shù)),則a+b=()A.45B.55C.70D.80答案:解析:由二項式定理得:(1+2)5=1+C512+C52(2)2+C53(2)3+C54(2)4+C55?(2)5=1+52+20+202+20+42=41+292,∴a=41,b=29,a+b=70.故選C38.直線4x-3y+5=0與直線8x-6y+5=0的距離為______.答案:直線4x-3y+5=0即8x-6y+10=0,由兩平行線間的距離公式得:直線4x-3y+5=0(8x-6y+10=0)與直線8x-6y+5=0的距離是
|10-5|62+82=12,故為:12.39.在△ABC中,已知向量=(cos18°,cos72°),=(2cos63°,2cos27°),則△ABC的面積等于()
A.
B.
C.
D.
答案:A40.已知兩直線的方程分別為l1:x+ay+b=0,l2:x+cy+d=0,它們在坐標(biāo)系中的位置如圖所示()
A.b>0,d<0,a<c
B.b>0,d<0,a>c
C.b<0,d>0,a<c
D.b<0,d>0,a>c
答案:D41.已知A,B兩點的極坐標(biāo)為(6,)和(8,),則線段AB中點的直角坐標(biāo)為()
A.(,-)
B.(-,)
C.(,-)
D.(-,-)答案:D42.將函數(shù)="2x"+1的圖像按向量平移得函數(shù)=的圖像則
A=(1)B=(1,1)C=()
D(1,1)答案:C解析:分析:本小題主要考查函數(shù)圖象的平移與向量的關(guān)系問題.依題由函數(shù)y=2x+1的圖象得到函數(shù)y=2x+1的圖象,需將函數(shù)y=2x+1的圖象向左平移1個單位,向下平移1個單位;故=(-1,-1).解:設(shè)=(h,k)則函數(shù)y=2x+1的圖象平移向量后所得圖象的解析式為y=2x-h+1+k∴∴∴=(-1,-1)故答案為:C.43.△ABC中,,若,則m+n=()
A.
B.
C.
D.1答案:B44.化簡5(2a-2b)+4(2b-2a)=______.答案:5(2a-2b)+4(2b-2a)=10a-10b+8b-8a=2a-2b故為:2a-2b45.(1+x)6的各二項式系數(shù)的最大值是______.答案:根據(jù)二項展開式的性質(zhì)可得,(1+x)6的各二項式系數(shù)的最大值C36=20故為:2046.球的表面積與它的內(nèi)接正方體的表面積之比是()A.π3B.π4C.π2D.π答案:設(shè):正方體邊長設(shè)為:a則:球的半徑為3a2所以球的表面積S1=4?π?R2=4π34a2=3πa2而正方體表面積為:S2=6a2所以比值為:S1S2=π2故選C47.設(shè)函數(shù)f(x)是定義在[a,b]上的奇函數(shù),則f(a+b)=______.答案:因為函數(shù)f(x)是定義在[a,b]上的奇函數(shù),所以定義域關(guān)于原點對稱,所以a+b=0,且f(0)=0.所以f(a+b)=f(0)=0.故為:0.48.設(shè)P、Q為兩個非空實數(shù)集合,定義集合P+Q={x|x=a+b,a∈P,b∈Q},若P={0,2,5},Q={1,2,6},則P+Q中元素的個數(shù)是______.答案:∵a∈P,b∈Q,∴a可以為0,2,5三個數(shù),b可以為1,2,6三個數(shù),∴x=0+1=1,x=0+2=2,x=0+6=6,x=2+1=3,x=2+2=4,x=2+6=8,x=5+1=6,x=5+2=7,x=5+6=11,∴P+Q={x|x=a+b,a∈P,b∈Q}={1,2,3,4,6,7,8,11},有8個元素.故為8.49.如圖所示,在幾何體ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,點F是AE的中點.求AB與平面BDF所成角的正弦值.答案:AB與平面BDF所成角的正弦值為.解析:以點B為原點,BA、BC、BE所在的直線分別為x,y,z軸,建立如圖所示的空間直角坐標(biāo)系,則B(0,0,0),A(2,0,0),C(0,2,0),D(0,2,1),E(0,0,2),F(xiàn)(1,0,1).∴=(0,2,1),=(1,-2,0).設(shè)平面BDF的一個法向量為n=(2,a,b),∵n⊥,n⊥,∴即解得a=1,b=-2.∴n=(2,1,-2).設(shè)AB與平面BDF所成的角為,則法向量n與的夾角為-,∴cos(-)===,即sin=,故AB與平面BDF所成角的正弦值為.50.過直線x+y-22=0上點P作圓x2+y2=1的兩條切線,若兩條切線的夾角是60°,則點P的坐標(biāo)是______.答案:根據(jù)題意畫出相應(yīng)的圖形,如圖所示:直線PA和PB為過點P的兩條切線,且∠APB=60°,設(shè)P的坐標(biāo)為(a,b),連接OP,OA,OB,∴OA⊥AP,OB⊥BP,PO平分∠APB,∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,又圓x2+y2=1,即圓心坐標(biāo)為(0,0),半徑r=1,∴OA=OB=1,∴OP=2AO=2BO=2,∴a2+b2=2,即a2+b2=4①,又P在直線x+y-22=0上,∴a+b-22=0,即a+b=22②,聯(lián)立①②解得:a=b=2,則P的坐標(biāo)為(2,2).故為:(2,2)第3卷一.綜合題(共50題)1.下列點在x軸上的是()
A.(0.1,0.2,0.3)
B.(0,0,0.001)
C.(5,0,0)
D.(0,0.01,0)答案:C2.已知m,n為正整數(shù).
(Ⅰ)用數(shù)學(xué)歸納法證明:當(dāng)x>-1時,(1+x)m≥1+mx;
(Ⅱ)對于n≥6,已知(1-1n+3)n<12,求證(1-mn+3)n<(12)m,m=1,2…,n;
(Ⅲ)求出滿足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整數(shù)n.答案:解法1:(Ⅰ)證:用數(shù)學(xué)歸納法證明:當(dāng)x=0時,(1+x)m≥1+mx;即1≥1成立,x≠0時,證:用數(shù)學(xué)歸納法證明:(?。┊?dāng)m=1時,原不等式成立;當(dāng)m=2時,左邊=1+2x+x2,右邊=1+2x,因為x2≥0,所以左邊≥右邊,原不等式成立;(ⅱ)假設(shè)當(dāng)m=k時,不等式成立,即(1+x)k≥1+kx,則當(dāng)m=k+1時,∵x>-1,∴1+x>0,于是在不等式(1+x)k≥1+kx兩邊同乘以1+x得(1+x)k?(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2≥1+(k+1)x,所以(1+x)k+1≥1+(k+1)x.即當(dāng)m=k+1時,不等式也成立.綜合(?。áⅲ┲瑢σ磺姓麛?shù)m,不等式都成立.(Ⅱ)證:當(dāng)n≥6,m≤n時,由(Ⅰ)得(1-1n+3)m≥1-mn+3>0,于是(1-mn+3)n≤(1-1n+3)nm=[(1-1n+3)n]m<(12)m,m=1,2,n.(Ⅲ)由(Ⅱ)知,當(dāng)n≥6時,(1-1n+3)n+(1-2n+3)n++(1-nn+3)n<12+(12)^++(12)n=1-12n<1,∴(n+2n+3)n+(n+1n+3)n++(3n+3)n<1.即3n+4n+…+(n+2)n<(n+3)n.即當(dāng)n≥6時,不存在滿足該等式的正整數(shù)n.故只需要討論n=1,2,3,4,5的情形:當(dāng)n=1時,3≠4,等式不成立;當(dāng)n=2時,32+42=52,等式成立;當(dāng)n=3時,33+43+53=63,等式成立;當(dāng)n=4時,34+44+54+64為偶數(shù),而74為奇數(shù),故34+44+54+64≠74,等式不成立;當(dāng)n=5時,同n=4的情形可分析出,等式不成立.綜上,所求的n只有n=2,3.解法2:(Ⅰ)證:當(dāng)x=0或m=1時,原不等式中等號顯然成立,下用數(shù)學(xué)歸納法證明:當(dāng)x>-1,且x≠0時,m≥2,(1+x)m>1+mx.①(?。┊?dāng)m=2時,左邊=1+2x+x2,右邊=1+2x,因為x≠0,所以x2>0,即左邊>右邊,不等式①成立;(ⅱ)假設(shè)當(dāng)m=k(k≥2)時,不等式①成立,即(1+x)k>1+kx,則當(dāng)m=k+1時,因為x>-1,所以1+x>0.又因為x≠0,k≥2,所以kx2>0.于是在不等式(1+x)k>1+kx兩邊同乘以1+x得(1+x)k?(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,所以(1+x)k+1>1+(k+1)x.即當(dāng)m=k+1時,不等式①也成立.綜上所述,所證不等式成立.(Ⅱ)證:當(dāng)n≥6,m≤n時,∵(1-1n+3)n<12,∴[(1-1n+3)m]n<(12)m,而由(Ⅰ),(1-1n+3)m≥1-mn+3>0,∴(1-mn+3)n≤[(1-1n+3)m]n<(12)m.(Ⅲ)假設(shè)存在正整數(shù)n0≥6使等式3n0+4n0++(n0+2)n0=(n0+3)n0成立,即有(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=1.②又由(Ⅱ)可得(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=(1-n0n0+3)n0+(1-n0-1n0+3)n0++(1-1n0+3)n0<(12)n0+(12)n0-1++12=1-12n0<1,與②式矛盾.故當(dāng)n≥6時,不存在滿足該等式的正整數(shù)n.下同解法1.3.若向量a=(3,0),b=(2,2),則a與b夾角的大小是()
A.0
B.
C.
D.答案:B4.設(shè)集合M={x|0<x≤3},N={x|0<x≤1},那么“a∈M”是“a∈N”的()
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件答案:B5.如圖是《集合》的知識結(jié)構(gòu)圖,如果要加入“子集”,那么應(yīng)該放在()
A.“集合”的下位
B.“含義與表示”的下位
C.“基本關(guān)系”的下位
D.“基本運算”的下位
答案:C6.正方體AC1中,S,T分別是棱AA1,A1B1上的點,如果∠TSC=90°,那么∠TSB=______.答案:由題意,BC⊥平面A1B,∵S,T分別是棱AA1,A1B1上的點,∴BC⊥ST∵∠TSC=90°,∴ST⊥SC∵BC∩SC=C∴ST⊥平面SBC∴ST⊥SB∴∠TSB=90°,故為:90°7.命題“若A∪B=A,則A∩B=B”的否命題是()A.若A∪B≠A,則A∩B≠BB.若A∩B=B,則A∪B=AC.若A∩B≠A,則A∪B≠BD.若A∪B=B,則A∩B=A答案:“若A∪B=A,則A∩B=B”的否命題:“若A∪B≠A則A∩B≠B”故選A.8.給出下列四個命題:
①若兩個向量相等,則它們的起點相同,終點相同;
②在平行四邊形ABCD中,一定有;
③若則
④若則
其中正確的命題個數(shù)是()
A.1
B.2
C.3
D.4答案:C9.對于一組數(shù)據(jù)的兩個函數(shù)模型,其殘差平方和分別為153.4
和200,若從中選取一個擬合程度較好的函數(shù)模型,應(yīng)選殘差平方和為______的那個.答案:殘差的平方和是用來描述n個點與相應(yīng)回歸直線在整體上的接近程度殘差的平方和越小,擬合效果越好,由于153.4<200,故擬合效果較好的是殘差平方和是153.4的那個模型.故為:153.4.10.下列各量:①密度
②浮力
③風(fēng)速
④溫度,其中是向量的個數(shù)有()個.A.1B.3C.2D.4答案:根據(jù)向量的定義,知道需要同時具有大小和方向兩個要素才是向量,在所給的四個量中,密度只有大小,浮力既有大小又有方向,風(fēng)速既有大小又有方向,溫度只有大小沒有方向綜上可知向量的個數(shù)是2個,故選C.11.已知||=2,||=,∠AOB=150°,點C在∠AOB內(nèi),且∠AOC=30°,設(shè)(m,n∈R),則=()
A.
B.
C.
D.答案:B12.如果隨機變量ξ~N(0,σ2),且P(-2<ξ≤0)=0.4,則P(ξ>2)等于()
A.0.1
B.0.2
C.0.3
D.0.4答案:A13.設(shè)平面α的法向量為(1,2,-2),平面β的法向量為(-2,-4,k),若α∥β,則k=______.答案:∵α∥β∴平面α、β的法向量互相平行,由此可得a=(1,2,-2),b=(-2,-4,k),a∥b∴1-2=2-4=-2k,解之得k=4.故為:414.已知雙曲線C:x2a2-y2b2=1(a>0,b>0)的一個焦點是F2(2,0),且b=3a.
(1)求雙曲線C的方程;
(2)設(shè)經(jīng)過焦點F2的直線l的一個法向量為(m,1),當(dāng)直線l與雙曲線C的右支相交于A,B不同的兩點時,求實數(shù)m的取值范圍;并證明AB中點M在曲線3(x-1)2-y2=3上.
(3)設(shè)(2)中直線l與雙曲線C的右支相交于A,B兩點,問是否存在實數(shù)m,使得∠AOB為銳角?若存在,請求出m的范圍;若不存在,請說明理由.答案:(1)c=2c2=a2+b2∴4=a2+3a2∴a2=1,b2=3,∴雙曲線為x2-y23=1.(2)l:m(x-2)+y=0由y=-mx+2mx2-y23=1得(3-m2)x2+4m2x-4m2-3=0由△>0得4m4+(3-m2)(4m2+3)>012m2+9-3m2>0即m2+1>0恒成立又x1+x2>0x1?x2>04m2m2-3>04m2+3m2-3>0∴m2>3∴m∈(-∞,-3)∪(3,+∞)設(shè)A(x1,y1),B(x2,y2),則x1+x22=2m2m2-3y1+y22=-2m3m2-3+2m=-6mm2-3∴AB中點M(2m2m2-3,-6mm2-3)∵3(2m2m2-3-1)2-36m2(m2-3)2=3×(m2+3)2(m2-3)2-36m2(m2-3)2=3?m4+6m2+9-12m2(m2-3)2=3∴M在曲線3(x-1)2-y2=3上.(3)A(x1,y1),B(x2,y2),設(shè)存在實數(shù)m,使∠AOB為銳角,則OA?OB>0∴x1x2+y1y2>0因為y1y2=(-mx1+2m)(-mx2+2m)=m2x1x2-2m2(x1+x2)+4m2∴(1+m2)x1x2-2m2(x1+x2)+4m2>0∴(1+m2)(4m2+3)-8m4+4m2(m2-3)>0即7m2+3-12m2>0∴m2<35,與m2>3矛盾∴不存在15.下列各圖中,可表示函數(shù)y=f(x)的圖象的只可能是()A.
B.
C.
D.
答案:根據(jù)函數(shù)的定義知:自變量取唯一值時,因變量(函數(shù))有且只有唯一值與其相對應(yīng).∴從圖象上看,任意一條與x軸垂直的直線與函數(shù)圖象的交點最多只能有一個交點.從而排除A,B,C,故選D.16.執(zhí)行下列程序后,輸出的i的值是()
A.5
B.6
C.10
D.11答案:D17.某單位200名職工的年齡分布情況如圖,現(xiàn)要從中抽取40名職工作樣本、用系統(tǒng)抽樣法,將全體職工隨機按1~200編號,并按編號順序平均分為40組(1~5號,6~10號,…,196~200號).若第5組抽出的號碼為22,則第8組抽出的號碼應(yīng)是______.若用分層抽樣方法,則40歲以下年齡段應(yīng)抽取______人.答案:∵將全體職工隨機按1~200編號,并按編號順序平均分為40組,由分組可知,抽號的間隔為5,∵第5組抽出的號碼為22,∴第6組抽出的號碼為27,第7組抽出的號碼為32,第8組抽出的號碼為37.40歲以下的年齡段的職工數(shù)為200×0.5=100,則應(yīng)抽取的人數(shù)為40200×100=20(人).故為:37;2018.在調(diào)試某設(shè)備的線路設(shè)計中,要選一個電阻,調(diào)試者手中只有阻值分別為0.7KΩ,1.1KΩ,1.9KΩ,2.0KΩ,3.5KΩ,4.5KΩ,5.5KΩ七種阻值不等的定值電阻,他用分?jǐn)?shù)法進行優(yōu)法進行優(yōu)選試驗時,依次將電阻值從小到大安排序號,則第1個試點的電阻的阻值是(
).答案:3.5kΩ19.如圖,有兩條相交成π3角的直線EF,MN,交點是O.一開始,甲在OE上距O點2km的A處;乙在OM距O點1km的B處.現(xiàn)在他們同時以2km/h的速度行走.甲沿EF的方向,乙沿NM的方向.設(shè)與OE同向的單位向量為e1,與OM同向的單位向量為e2.
(1)求e1,e2;
(2)若過2小時后,甲到達C點,乙到達D點,請用e1,e2表示CD;
(3)若過t小時后,甲到達G點,乙到達H點,請用e1,e2表示GH;
(4)什么時間兩人間距最短?答案:(1)由題意可得e1=12OA,e2=OB,(2)若過2小時后,甲到達C點,乙到達D點,則OC=-2e1,OD=5e2,故CD=OD-OC=2e1+5e2,(3)同(2)可得:經(jīng)過t小時后,甲到達G點,乙到達H點,則OG=(-2t+2)e1,OH=(2t+1)e2,故GH=OH-OG=(2t-2)e1+(2t+1)e2,(4)由(3)可得GH=(2t-2)e1+(2t+1)e2,故兩人間距離y=|GH|=[(2t-2)e1+(2t+1)e2]2=(2t-2)2+(2t+1)2+2(2t-2)(2t+1)×12=12t2-6t+3,由二次函數(shù)的知識可知,當(dāng)t=--62×12=14時,上式取到最小值32,故14時兩人間距離最短.20.分析如圖的程序:若輸入38,運行右邊的程序后,得到的結(jié)果是
______.答案:根據(jù)程序語句,其意義為:輸入一個x,使得9<x<100a=x\10
為去十位數(shù)b=xMOD10
去余數(shù),即取個位數(shù)x=10*b+a
重新組合數(shù)字,用原來二位數(shù)的十位當(dāng)個位,個位當(dāng)十位否則說明輸入有誤故當(dāng)輸入38時輸出83故為:8321.已知橢圓中心在原點,一個焦點為(3,0),且長軸長是短軸長的2倍,則該橢圓的標(biāo)準(zhǔn)方程是______.答案:根據(jù)題意知a=2b,c=3又∵a2=b2+c2∴a2=4
b2=1∴x24+
y2=1故為:∴x24+
y2=1.22.如圖P為空間中任意一點,動點Q在△ABC所在平面內(nèi)運動,且,則實數(shù)m=()
A.0
B.2
C.-2
D.1
答案:C23.設(shè)雙曲線的焦點在x軸上,兩條漸近線為y=±x,則雙曲線的離心率e=()
A.5
B.
C.
D.答案:C24.寫出求1+2+3+4+5+6+…+100的一個算法.可運用公式1+2+3+…+n=n(n+1)2直接計算.
第一步______;
第二步______;
第三步
輸出計算的結(jié)果.答案:由條件知構(gòu)成等差數(shù)列,從而前n項和公式求得其值,求1+2+3+4+5+6+…+100,故先取n=100,再代入計算S=n(n+1)2.故為:取n=100;計算S=n(n+1)2.25.在repeat語句的一般形式中有“until
A”,其中A是
(
)A.循環(huán)變量B.循環(huán)體C.終止條件D.終止條件為真答案:D解析:此題考查程序語句解:Until標(biāo)志著直到型循環(huán),直到終止條件為止,因此until后跟的是終止條件為真的語句.答案:D.26.下列命題中,正確的是()
A.若a∥b,則a與b的方向相同或相反
B.若a∥b,b∥c,則a∥c
C.若兩個單位向量互相平行,則這兩個單位向量相等
D.若a=b,b=c,則a=c答案:D27.已知正數(shù)x,y,z滿足5x+4y+3z=10.
(1)求證:25x
24y+3z+16y23z+5x+9z25x+4y≥5;
(2)求9x2+9y2+z2的最小值.答案:(1)根據(jù)柯西不等式,得[(4y+3z)+(3z+5x)+(5x+4y)][25x24y+3z+16y23z+5x+9z25x+4y]≥(5x+4y+3z)2因為5x+4y+3z=10,所以25x24y+3z+16y23z+5x+9z25x+4y≥10220=5.(2)根據(jù)均值不等式,得9x2+9y2+z2≥29x2?9y2+z2=2?3x2+y2+z2,當(dāng)且僅當(dāng)x2=y2+z2時,等號成立.根據(jù)柯西不等式,得(x2+y2+z2)(52+42+32)≥(5x+4y+3z)2=100,即
(x2+y2+z2)≥2,當(dāng)且僅當(dāng)x5=y4=z3時,等號成立.綜上,9x2+9y2+z2≥2?32=18.28.三棱錐A-BCD中,平面ABD與平面BCD的法向量分別為n1,n2,若<n1,n2>=,則二面角A-BD-C的大小為()
A.
B.
C.或
D.或答案:C29.下面程序框圖輸出的S表示什么?虛線框表示什么結(jié)構(gòu)?答案:由框圖知,當(dāng)r=5時,輸出的s=πr2所以程序框圖輸出的S表示:求半徑為5的圓的面積的算法的程序框圖,虛線框是一個順序結(jié)構(gòu).30.AB是圓O的直徑,EF切圓O于C,AD⊥EF于D,AD=2,AB=6,則AC長為______.答案:連接AC、BC,則∠ACD=∠ABC,又因為∠ADC=∠ACB=90°,所以△ACD~△ACB,所以ADAC=ACAB,解得AC=23.故填:23.31.若A為m×n階矩陣,AB=C,則B的階數(shù)可以是下列中的______.
①m×m,②m×n,③n×m,④n×n.答案:兩個矩陣只有當(dāng)前一個矩陣的列數(shù)與后一個矩陣的行數(shù)相等時,才能作乘法.矩陣A是n列矩陣,故矩陣B是n行的矩陣則B的階數(shù)可以是③n×m,④n×n故為:③④32.解關(guān)于x的不等式(k≥0,k≠1).答案:不等式的解集為{x|x2}解析:原不等式即,1°若k=0,原不等式的解集為空集;2°若1-k>0,即0,所以原不等式的解集為{x|x2}.</k<1,由原不等式的解集為{x|2<x<</k<1時,原不等式等價于33.已知α,β表示兩個不同的平面,m為平面α內(nèi)的一條直線,則“α⊥β”是“m⊥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由平面與平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 文化場館防水修繕合同
- 汽車制造廠外墻翻新膩子施工合同
- 郊區(qū)倉庫租賃協(xié)議
- 橋梁施工平地機租賃合同
- 高速公路修建施工合同
- 電影院彩繪施工合同
- 證券交易所安保人員聘用協(xié)議
- 建筑施工合同:城市地下管網(wǎng)改造
- 城市公寓交易合同模板
- 紀(jì)念館真石漆修復(fù)合同
- 2023年安全三類人員B類考試模擬試題及參考答案
- 八年級上冊英語期末復(fù)習(xí)計劃
- 會理2022年衛(wèi)生系統(tǒng)招聘考試真題及答案解析二
- 設(shè)計中重點、難點及關(guān)鍵技術(shù)問題把握控制及相應(yīng)措施把握難點
- YY/T 0698.2-2009最終滅菌醫(yī)療器械包裝材料第2部分:滅菌包裹材料要求和試驗方法
- GB/T 3274-2007碳素結(jié)構(gòu)鋼和低合金結(jié)構(gòu)鋼熱軋厚鋼板和鋼帶
- 《鄉(xiāng)鎮(zhèn)環(huán)境治理研究開題報告文獻綜述11000字》
- 山東省高等醫(yī)學(xué)院校臨床教學(xué)基地水平評估指標(biāo)體系與標(biāo)準(zhǔn)(修訂)
- 空白貨品簽收單
- 青海省全省市縣鄉(xiāng)鎮(zhèn)衛(wèi)生院街道社區(qū)衛(wèi)生服務(wù)中心基本公共衛(wèi)生服務(wù)醫(yī)療機構(gòu)信息名單目錄450家
- 網(wǎng)絡(luò)暴力的法律規(guī)制開題報告
評論
0/150
提交評論