2023年重慶安全技術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年重慶安全技術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年重慶安全技術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年重慶安全技術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年重慶安全技術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩42頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年重慶安全技術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.設(shè)k>1,則關(guān)于x,y的方程(1-k)x2+y2=k2-1所表示的曲線是()

A.長軸在x軸上的橢圓

B.長軸在y軸上的橢圓

C.實軸在x軸上的雙曲線

D.實軸在y軸上的雙曲線答案:D2.如圖,一個空間幾何體的正視圖、側(cè)視圖、俯視圖為全等的等腰直角三角形,如果直角三角形的直角邊長為2,那么

這個幾何體的體積為()A.13B.23C.43D.2答案:根據(jù)三視圖,可知該幾何體是三棱錐,右圖為該三棱錐的直觀圖,三棱錐的底面是一個腰長是2的等腰直角三角形,∴底面的面積是12×2×2=2垂直于底面的側(cè)棱長是2,即高為2,∴三棱錐的體積是13×2×2=43故選C.3.定義集合運算:A⊙B={z︳z=xy(x+y),x∈A,y∈B},設(shè)集合A={0,1},B={2,3},則集合A⊙B的所有元素之和為()A.0B.6C.12D.18答案:當x=0時,z=0,當x=1,y=2時,z=6,當x=1,y=3時,z=12,故所有元素之和為18,故選D4.已知命題p:?x∈R,x2-x+1>0,則命題¬p

是______.答案:∵命題p:?x∈R,x2-x+1>0,∴命題p的否定是“?x∈R,x2-x+1≤0”故為:?x∈R,x2-x+1≤0.5.△ABC所在平面內(nèi)點O、P,滿足OP=OA+λ(AB+12BC),λ∈[0,+∞),則點P的軌跡一定經(jīng)過△ABC的()A.重心B.垂心C.內(nèi)心D.外心答案:設(shè)BC的中點為D,則∵OP=OA+λ(AB+12BC),∴OP=OA+λAD∴AP=λAD∴AP∥AD∵AD是△ABC的中線∴點P的軌跡一定經(jīng)過△ABC的重心故選A.6.在線性回歸模型y=bx+a+e中,下列說法正確的是()A.y=bx+a+e是一次函數(shù)B.因變量y是由自變量x唯一確定的C.隨機誤差e是由于計算不準確造成的,可以通過精確計算避免隨機誤差e的產(chǎn)生D.因變量y除了受自變量x的影響外,可能還受到其它因素的影響,這些因素會導(dǎo)致隨機誤差e的產(chǎn)生答案:線性回歸是利用數(shù)理統(tǒng)計中的回歸分析,來確定兩種或兩種以上變量間相互依賴的定量關(guān)系的一種統(tǒng)計分析方法之一,分析按照自變量和因變量之間的關(guān)系類型,可分為線性回歸分析和非線性回歸分析.A不正確,根據(jù)線性回歸方程做出的y的值是一個預(yù)報值,不是由x唯一確定,故B不正確,隨機誤差不是由于計算不準造成的,故C不正確,y除了受自變量x的影響之外還受其他因素的影響,故D正確,故選D.7.已知x,y的取值如下表:

x0134y2.24.34.86.7從散點圖分析,y與x線性相關(guān),則回歸方程為.y=bx+a必過點______.答案:.X=0+1+3+44=2,.Y=2.2+4.3+4.8+6.74=92,故樣本中心點的坐標為(2,92).故為:(2,92).8.已知a,b,c是三條直線,且a∥b,a與c的夾角為θ,那么b與c夾角是______.答案:∵a∥b,∴b與c夾角等于a與c的夾角又∵a與c的夾角為θ∴b與c夾角也為θ故為:θ9.復(fù)數(shù)(12+32i)3i的值為______.答案:(12+32i)3i=(cosπ3+isinπ3)3cosπ2+isinπ2=cosπ+isinπcosπ2+

isinπ2=cosπ2+isinπ2=i,故為:i.10.如圖,一個空間幾何體的主視圖和左視圖都是邊長為1的正方形,俯視圖是一個圓,那么這個幾何體的側(cè)面積為()A.π4B.5π4C.πD.3π2答案:此幾何體是一個底面直徑為1,高為1的圓柱底面周長是2π×12=π故側(cè)面積為1×π=π故選C11.與

向量

=(2,-1,2)共線且滿足方程=-18的向量為()

A.不存在

B.-2

C.(-4,2,-4)

D.(4,-2,4)答案:D12.想要檢驗是否喜歡參加體育活動是不是與性別有關(guān),應(yīng)該檢驗()

A.H0:男性喜歡參加體育活動

B.H0:女性不喜歡參加體育活動

C.H0:喜歡參加體育活動與性別有關(guān)

D.H0:喜歡參加體育活動與性別無關(guān)答案:D13.設(shè)雙曲線的漸近線為:y=±32x,則雙曲線的離心率為______.答案:由題意ba=32或ab=32,∴e=ca=132或133,故為132,133.14.規(guī)定運算.abcd.=ad-bc,則.1i-i2.=______.答案:根據(jù)題目的新規(guī)定知,.1i-i2.=1×2-(-i)i=2+i2=2-1=1.故為:1.15.已知2a=3b=6c則有()

A.∈(2,3)

B.∈(3,4)

C.∈(4,5)

D.∈(5,6)答案:C16.電子手表廠生產(chǎn)某批電子手表正品率為,次品率為,現(xiàn)對該批電子手表進行測試,設(shè)第X次首次測到正品,則P(1≤X≤2013)等于()

A.1-()2012

B.1-()2013

C.1-()2012

D.1-()2013答案:B17.將5位志愿者分成4組,其中一組為2人,其余各組各1人,到4個路口協(xié)助交警執(zhí)勤,則不同的分配方案有______種(用數(shù)字作答).答案:由題意,先分組,再到4個路口協(xié)助交警執(zhí)勤,則不同的分配方案有C25A44=240種故為:240.18.將參加數(shù)學(xué)競賽的1000名學(xué)生編號如下:0001,0002,0003,…,1000,打算從中抽取一個容量為50的樣本,按系統(tǒng)抽樣的辦法分成50個部分.如果第一部分編號為0001,0002,…,0020,從中隨機抽取一個號碼為0015,則第40個號碼為______.答案:∵系統(tǒng)抽樣是先將總體按樣本容量分成k=Nn段,再間隔k取一個.又∵現(xiàn)在總體的個體數(shù)為1000,樣本容量為50,∴k=20∴若第一個號碼為0015,則第40個號碼為0015+20×39=0795故為079519.無論m,n取何實數(shù)值,直線(3m-n)x+(m+2n)y-n=0都過定點P,則P點坐標為

A.(-1,3)

B.

C.

D.答案:D20.設(shè)ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,則a1x1,a2x2,…,anxn的值中,現(xiàn)給出以下結(jié)論,其中你認為正確的是______.

①都大于1②都小于1③至少有一個不大于1④至多有一個不小于1⑤至少有一個不小于1.答案:由題意ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,對于a1x1,a2x2,…,anxn的值中,若①成立,則分母都小于分子,由于分母的平方和為1,故可得a12+a22+…an2大于1,這與已知矛盾,故①不對;若②成立,則分母都大于分子,由于分母的平方和為1,故可得a12+a22+…an2小于1,這與已知矛盾,故②不對;由于③與①兩結(jié)論互否,故③對④不可能成立,a1x1,a2x2,…,anxn的值中有多于一個的比值大于1是可以的,故不對⑤與②兩結(jié)論互否,故正確綜上③⑤兩結(jié)論正確故為③⑤21.某校高一年級8個班參加合唱比賽的得分如莖葉圖所示,則這組數(shù)據(jù)的中位數(shù)是______.答案:由莖葉圖可知樣本數(shù)據(jù)共有8個,按照從小到大的順序為:87,89,90,91,92,93,94,96.出現(xiàn)在中間兩位的數(shù)據(jù)是91,92.所以樣本的中位數(shù)是(91+92)÷2=91.5,故為:91.522.設(shè)S(n)=1n+1n+1+1n+2+1n+3+…+1n2,則()A.S(2)=12+13B.S(2)=12+14C.S(2)=1+12+13+14D.S(2)=12+13+14答案:∵S(n)=1n+1n+1+1n+2+1n+3+…+1n2,當n=2時,n2=4故S(2)=12+13+14故選D23.已知關(guān)于x的方程2kx2-2x-3k-2=0的兩實根一個小于1,另一個大于1,求實數(shù)k的取值范圍。答案:解:令,為使方程f(x)=0的兩實根一個小于1,另一個大于1,只需或,即或,解得k>0或k<-4,故k的取值范圍是k>0或k<-4.24.已知均為單位向量,且=,則,的夾角為()

A.

B.

C.

D.答案:C25.雙曲線的漸近線方程是3x±2y=0,則該雙曲線的離心率等于______.答案:∵雙曲線的漸近線方程是3x±2y=0,∴ba=32,設(shè)a=2k,b=3k,則c=13k,∴e=ca=132.:132.26.已知函數(shù)f(x)=2x,x≥01,

x<0,若f(1-a2)>f(2a),則實數(shù)a的取值范圍是______.答案:函數(shù)f(x)=2x,x≥01,

x<0,x<0時是常函數(shù),x≥0時是增函數(shù),由f(1-a2)>f(2a),所以2a<1-a21-a2>0,解得:-1<a<2-1,故為:-1<a<2-1.27.如圖,菱形ABCD的對角線AC和BD相交于O點,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點,求證:E,F(xiàn),G,H四個點在以O(shè)為圓心的同一個圓上.答案:連接OE,OF,OG,OH.∵四邊形ABCD為菱形,∴AB=BC=CD=DA,且BD⊥AC.∵E、F、GH分別為AB、BC、CD、DA的中點,∴OE=OF=OG=OH=12AB,∴E、F、G、H四點在以O(shè)為圓心,12AB為半徑的圓上.28.已知△ABC中,過重心G的直線交邊AB于P,交邊AC于Q,設(shè)AP=pPB,AQ=qQC,則pqp+q=()A.1B.3C.13D.2答案:取特殊直線PQ使其過重心G且平行于邊BC∵點G為重心∴APPB=AQQC=21∵AP=pPB,AQ=qQC∴p=2,q=2∴pqp+q=44=1故選項為A29.已知橢圓的焦點是F1、F2,P是橢圓上的一個動點,如果延長F1P到Q,使得|PQ|=|PF2|,那么動點Q的軌跡是()

A.圓

B.橢圓

C.雙曲線的一支

D.拋物線答案:A30.如圖所示,已知點P在正方體ABCD—A′B′C′D′的對角線

BD′上,∠PDA=60°.

(1)求DP與CC′所成角的大小;

(2)求DP與平面AA′D′D所成角的大小.答案:(1)DP與CC′所成的角為45°(2)DP與平面AA′D′D所成的角為30°解析:如圖所示,以D為原點,DA為單位長度建立空間直角坐標系D—xyz.則=(1,0,0),=(0,0,1).連接BD,B′D′.在平面BB′D′D中,延長DP交B′D′于H.設(shè)="(m,m,1)"(m>0),由已知〈,〉=60°,由·=||||cos〈,〉,可得2m=.解得m=,所以=(,,1).(1)因為cos〈,〉==,所以〈,〉=45°,即DP與CC′所成的角為45°.(2)平面AA′D′D的一個法向量是=(0,1,0).因為cos〈,〉==,所以〈,〉=60°,可得DP與平面AA′D′D所成的角為30°.31.一個口袋內(nèi)有4個不同的紅球,6個不同的白球,

(1)從中任取4個球,紅球的個數(shù)不比白球少的取法有多少種?

(2)若取一個紅球記2分,取一個白球記1分,從中任取5個球,使總分不少于7分的取法有多少種?答案:解(1)由題意知本題是一個分類計數(shù)問題,將取出4個球分成三類情況取4個紅球,沒有白球,有C44種取3個紅球1個白球,有C43C61種;取2個紅球2個白球,有C42C62,∴C44+C43C61+C42C62=115種(2)設(shè)取x個紅球,y個白球,則x+y=5(0≤x≤4)2x+y≥7(0≤y≤6)∴x=2y=3或x=3y=2或x=4y=1∴符合題意的取法種數(shù)有C42C63+C43C62+C44C61=186種32.已知拋物線的參數(shù)方程為(t為參數(shù)),其中p>0,焦點為F,準線為l,過拋物線上一點M作l的垂線,垂足為E.若|EF|=|MF|,點M的橫坐標是3,則p=(

)。答案:233.如圖所示,已知P是平行四邊形ABCD所在平面外一點,連結(jié)PA、PB、PC、PD,點E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心,求證:E、F、G、H四點共面答案:證明:分別延長P、PF、PG、PH交對邊于M、N、Q、R.∵E、F、G、H分別是所在三角形的重心,∴M、N、Q、R為所在邊的中點,順次連結(jié)MNQR所得四邊形為平行四邊形,且有∵MNQR為平行四邊形,∴由共面向量定理得E、F、G、H四點共面.34.已知|a=2,|b|=1,a與b的夾角為60°,求向量.a+2b與2a+b的夾角.答案:由題意得,a?b=2×1×12=1,∴(a+2b)?(2a+b)=2a2+5a?b+2b2=15,|a+2b|=a2+4a?b+4b2=23,|2a+b|=4a2+4a?b+b2=21,設(shè)a+2b與2a+b夾角為θ,則cosθ=(a+2b)?(2a+b)|a+2b||2a+b|=1523×21=5714,則θ=arccos571435.直線l1到l2的角為α,直線l2到l1的角為β,則cos=()

A.

B.

C.0

D.1答案:A36.來自中國、英國、瑞典的乒乓球裁判各兩名,執(zhí)行北京奧運會的一號、二號和三號場地的乒乓球裁判工作,每個場地由兩名來自不同國家的裁判組成,則不同的安排方案總數(shù)有()

A.12種

B.48種

C.90種

D.96種答案:B37.設(shè)隨機變量X服從B(6,),則P(X=3)的值是()

A.

B.

C.

D.答案:B38.“因為對數(shù)函數(shù)y=logax是增函數(shù)(大前提),而y=logx是對數(shù)函數(shù)(小前提),所以y=logx是增函數(shù)(結(jié)論).”上面推理的錯誤是()

A.大前提錯導(dǎo)致結(jié)論錯

B.小前提錯導(dǎo)致結(jié)論錯

C.推理形式錯導(dǎo)致結(jié)論錯

D.大前提和小前提都錯導(dǎo)致結(jié)論錯答案:A39.若角α和β的兩邊分別對應(yīng)平行且方向相反,則當α=45°時,β=______.答案:由題意知∠α=45°°,AB∥CE,AE∥BD∵AE∥BD∴∠BDC=∠α=45°∵AB∥CE∴∠β=∠BDC=45°故為45°.40.若矩陣M=1101,則直線x+y+2=0在M對應(yīng)的變換作用下所得到的直線方程為______.答案:設(shè)直線x+y+2=0上任意一點(x0,y0),(x,y)是所得的直線上一點,[1

1][x]=[x0][0

1][y]=[y0]∴x+y=x0y=y0,∴代入直線x+y+2=0方程:(x+y)+y+2=0得到I的方程x+2y+2=0故為:x+2y+2=0.41.如圖,一個正方體內(nèi)接于一個球,過球心作一個截面,則截面的可能圖形為(

A.①③

B.②④

C.①②③

D.②③④答案:C42.點P(x0,y0)在圓x2+y2=r2內(nèi),則直線x0x+y0y=r2和已知圓的公共點的個數(shù)為(

A.0

B.1

C.2

D.不能確定答案:A43.整數(shù)630的正約數(shù)(包括1和630)共有______個.答案:首先將630分解質(zhì)因數(shù)630=2×32×5×7;然后注意到每一因數(shù)可出現(xiàn)的次冪數(shù),如2可有20,21兩種情況,3有30,31,32三種情況,5有50,51兩種情況,7有70,71兩種情況,按分步計數(shù)原理,整數(shù)630的正約數(shù)(包括1和630)共有2×3×2×2=24個.故為:24.44.若P=+,Q=+(a≥0),則P,Q的大小關(guān)系是()

A.P>Q

B.P=Q

C.P<Q

D.由a的取值確定答案:C45.三個數(shù)a=60.5,b=0.56,c=log0.56的大小順序為______.(按大到小順序)答案:∵a=60.5>60=1,0<b=0.56<0.50=1,c=log0.56<log0.51=0.∴a>b>c.故為a>b>c.46.某班一天上午安排語、數(shù)、外、體四門課,其中體育課不能排在第一、第四節(jié),則不同排法的種數(shù)為()A.24B.22C.20D.12答案:先排體育課,有2種排法,再排語、數(shù)、外三門課,有A33種排法,按乘法原理,不同排法的種數(shù)為2×A33=12.故選D.47.函數(shù)y=ax2+a與(a≠0)在同一坐標系中的圖象可能是()

A.

B.

C.

D.

答案:D48.設(shè)直線的參數(shù)方程是x=2+12ty=3+32t,那么它的斜截式方程是______.答案:∵直線的參數(shù)方程為x=2+12ty=3+32t(t為參數(shù)),消去參數(shù)化為普通方程可得y-3=3(x-2),那么它的斜截式方程是y=3x+3-23.故為:y=3x+3-23.49.從裝有2個紅球和2個白球的口袋內(nèi),任取2個球,那么下面互斥而不對立的兩個事件是()

A.恰有1個白球;恰有2個白球

B.至少有1個白球;都是白球

C.至少有1個白球;

至少有1個紅球

D.至少有1個白球;

都是紅球答案:A50.用反證法證明命題“a,b∈N,如果ab可被5整除,那么a,b至少有1個能被5整除.”則假設(shè)的內(nèi)容是()

A.a(chǎn),b都能被5整除

B.a(chǎn),b都不能被5整除

C.a(chǎn),b不能被5整除

D.a(chǎn),b有1個不能被5整除答案:B第2卷一.綜合題(共50題)1.已知球的表面積等于16π,圓臺上、下底面圓周都在球面上,且下底面過球心,圓臺的軸截面的底角為π3,則圓臺的軸截面的面積是()A.9πB.332C.33D.6答案:設(shè)球的半徑為R,由題意4πR2=16,R=2,圓臺的軸截面的底角為π3,可得圓臺母線長為2,上底面半徑為1,圓臺的高為3,所以圓臺的軸截面的面積S=12(2+4)×3=33故選C2.如圖:一個力F作用于小車G,使小車G發(fā)生了40米的位移,F(xiàn)的大小為50牛,且與小車的位移方向的夾角為60°,則F在小車位移方向上的正射影的數(shù)量為______,力F做的功為______牛米.答案:如圖,∵|F|=50,且F與小車的位移方向的夾角為60°,∴F在小車位移方向上的正射影的數(shù)量為:|F|cos60°=50×12=25(牛).∵力F作用于小車G,使小車G發(fā)生了40米的位移,∴力F做的功w=25×40=1000(牛米).故為:25牛,1000.3.已知點A(1,0,0),B(0,2,0),C(0,0,3)則平面ABC與平面xOy所成銳二面角的余弦值為______.答案:AB=(-1,2,0),AC=(-1,0,3).設(shè)平面ABC的法向量為n=(x,y,z),則n?AB=-x+2y=0n?AC=-x+3z=0,令x=2,則y=1,z=23.∴n=(2,1,23).取平面xoy的法向量m=(0,0,1).則cos<m,n>=m?n|m|

|n|=231×22+1+(23)2=27.故為27.4.(幾何證明選講選做題)已知PA是⊙O的切線,切點為A,直線PO交⊙O于B、C兩點,AC=2,∠PAB=120°,則⊙O的面積為______.答案:∵PA是圓O的切線,∴OA⊥AP又∵∠PAB=120°∴∠BAO=∠ABO=30°又∵在Rt△ABC中,AC=2∴BC=4,即圓O的直徑2R=4∴圓O的面積S=πR2=4π故為:4π.5.在z軸上與點A(-4,1,7)和點B(3,5,-2)等距離的點C的坐標為

______.答案:由題意設(shè)C(0,0,z),∵C與點A(-4,1,7)和點B(3,5,-2)等距離,∴|AC|=|BC|,∴16+1+(7-z)2=9+25+(z+2)2,∴18z=28,∴z=149,∴C點的坐標是(0,0,149)故為:(0,0,149)6.方程組的解集是(

A.{(-3,0)}

B.{-3,0}

C.(-3,0)

D.{(0,-3)}

答案:A7.復(fù)數(shù)i2000=______.答案:復(fù)數(shù)i2009=i4×500=i0=1故為:18.直線被圓x2+y2=9截得的弦長為(

A.

B.

C.

D.答案:B9.(難線性運算、坐標運算)已知0<x<1,0<y<1,求M=x2+y2+x2+(1-y)2+(1-x)2+y2+(1-x)2+(1-y)2的最小值.答案:設(shè)A(0,0),B(1,0),C(1,1),D(0,1),P(x,y),則M=|PA|+|PD|+|PB|+|PC|=(|PA|+|PC|)+(|PB|+|PD|)=(|AP|+|PC|)+(|BP|+|PD|)≥|AP+PC|+|BP+PD|=|AC|+|BD|.而AC=(1,1),BD=(-1,1),得|AC|+|BD|=2+2=22.∴M≥22,當AP與PC同向,BP與PD同向時取等號,設(shè)PC=λAP,PD=μBP,則1-x=λx,1-y=λy,-x=μx-μ,1-y=μy,解得λ=μ=1,x=y=12.所以,當x=y=12時,M的最小值為22.10.已知a=(1,0),b=(m,m)(m>0),則<a,b>=______.答案:∵b=(m,m)(m>0),∴b與第一象限的角平分線同向,且由原點指向遠處,而a=(1,0)同橫軸的正方向同向,∴<a,b>=45°,故為:45°11.圓x2+y2-4x=0,在點P(1,)處的切線方程為()

A.x+y-2=0

B.x+y-4=0

C.x-y+4=0

D.x-y+2=0答案:D12.已知O是正方形ABCD對角線的交點,在以O(shè),A,B,C,D這5點中任意一點為起點,另一點為終點的所有向量中,

(1)與BC相等的向量有

______;

(2)與OB長度相等的向量有

______;

(3)與DA共線的向量有

______.答案:如圖:(1)與BC相等的向量有AD.(2)與OB長度相等的向量有OA、OC、OD、AO、CO、DO.(3)與DA共線的向量有

CB、BC.13.已知x+5y+3z=1,則x2+y2+z2的最小值為______.答案:證明:35(x2+y2+z2)×(1+25+9)≥(x+5y+3z)2=1∴x2+y2+z2≥135,則x2+y2+z2的最小值為135,故為:135.14.若f(x)=ax(a>0且a≠1)的反函數(shù)g(x)滿足:g()<0,則函數(shù)f(x)的圖象向左平移一個單位后的圖象大致是下圖中的()

A.

B.

C.

D.

答案:B15.某校對文明班的評選設(shè)計了a,b,c,d,e五個方面的多元評價指標,并通過經(jīng)驗公式樣S=ab+cd+1e來計算各班的綜合得分,S的值越高則評價效果越好,若某班在自測過程中各項指標顯示出0<c<d<e<b<a,則下階段要把其中一個指標的值增加1個單位,而使得S的值增加最多,那么該指標應(yīng)為()A.a(chǎn)B.bC.cD.d答案:因a,b,cde都為正數(shù),故分子越大或分母越小時,S的值越大,而在分子都增加1的前提下,分母越小時,S的值增長越多,由于0<c<d<e<b<a,分母中d最小,所以c增大1個單位會使得S的值增加最多.故選C.16.在7塊并排、形狀大小相同的試驗田上進行施化肥量對水稻產(chǎn)量影響的試驗,得到如下表所示的一組數(shù)據(jù)(單位:kg).

(1)畫出散點圖;

(2)求y關(guān)于x的線性回歸方程;

(3)若施化肥量為38kg,其他情況不變,請預(yù)測水稻的產(chǎn)量.答案:(1)根據(jù)題表中數(shù)據(jù)可得散點圖如下:(2)∵.x=15+20+25+30+35+40+457=30,.y=330+345+365+405+445+450+4557=399.3∴利用最小二乘法得到b=4.75,a=257∴根據(jù)回歸直線方程系數(shù)的公式計算可得回歸直線方程是?y=4.75x+257.(3)把x=38代入回歸直線方程得y=438,可以預(yù)測,施化肥量為38kg,其他情況不變時,水稻的產(chǎn)量是438kg.17.已知兩組樣本數(shù)據(jù)x1,x2,…xn的平均數(shù)為h,y1,y2,…ym的平均數(shù)為k,則把兩組數(shù)據(jù)合并成一組以后,這組樣本的平均數(shù)為()

A.

B.

C.

D.答案:B18.已知邊長為1的正方形ABCD,則|AB+BC+CD|=______.答案:利用向量加法的幾何性質(zhì),得AB+BC=AC∴AB+BC+CD=AD因為正方形的邊長等于1所以|AB+BC+CD|=|AD|

=1故為:119.若集合A={x|x2-4x-5<0,x∈Z},B={x|y=log0.5x>-3,x∈Z},記x0為拋擲一枚骰子出現(xiàn)的點數(shù),則x0∈A∩B的概率等于______.答案:由x2-4x-5<0,x∈Z,解得:-1<x<5,x∈Z,∴x=0,1,2,3,4.即A={0,1,2,3,4},B={x|y=log0.5x>-3,x∈Z}={1,2,3,4,5,6,7},∴A∩B={1,2,3,4},而x0為拋擲一枚骰子出現(xiàn)的點數(shù)可能有6種,∴P=46=23,故為:23.20.斜二測畫法的規(guī)則是:

(1)在已知圖形中建立直角坐標系xoy,畫直觀圖

時,它們分別對應(yīng)x′和y′軸,兩軸交于點o′,使∠x′o′y′=______,它們確定的平面表示水平平面;

(2)

已知圖形中平行于x軸或y軸的線段,在直觀圖中分別畫成

______;

(3)已知圖形中平行于x軸的線段的長度,在直觀圖中

______;平行于y軸的線段,在直觀圖中

______.答案:按照斜二測畫法的規(guī)則填空故為:(1)45°或135°;(2)平行于x′軸和y′軸;(3)長度不變;長度減半21.已知橢圓C:x2a2+y2b2=1(a>b>0)的兩個焦點分別為F1(-1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點P(43,13).

(I)求橢圓C的離心率:

(II)設(shè)過點A(0,2)的直線l與橢圓C交于M,N兩點,點Q是線段MN上的點,且2|AQ|2=1|AM|2+1|AN|2,求點Q的軌跡方程.答案:(I)∵橢圓C:x2a2+y2b2=1(a>b>0)的兩個焦點分別為F1(-1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點P(43,13).∴c=1,2a=PF1+PF2=(43+1)2+19+(43-1)2+19=22,即a=2∴橢圓的離心率e=ca=12=22…4分(II)由(I)知,橢圓C的方程為x22+y2=1,設(shè)點Q的坐標為(x,y)(1)當直線l與x軸垂直時,直線l與橢圓C交于(0,1)、(0,-1)兩點,此時點Q的坐標為(0,2-355)(2)當直線l與x軸不垂直時,可設(shè)其方程為y=kx+2,因為M,N在直線l上,可設(shè)點M,N的坐標分別為(x1,kx1+2),(x2,kx2+2),則|AM|2=(1+k2)x1

2,|AN|2=(1+k2)x2

2,又|AQ|2=(1+k2)x2,2|AQ|2=1|AM|2+1|AN|2∴2(1+k2)x2=1(1+k2)x1

2+1(1+k2)x2

2,即2x2=1x1

2+1x2

2=(x1+x2)2-2x1x2x1

2x2

2…①將y=kx+2代入x22+y2=1中,得(2k2+1)x2+8kx+6=0…②由△=(8k)2-24(2k2+1)>0,得k2>32由②知x1+x2=-8k2k2+1,x1x2=62k2+1,代入①中化簡得x2=1810k2-3…③因為點Q在直線y=kx+2上,所以k=y-2x,代入③中并化簡得10(y-2)2-3x2=18由③及k2>32可知0<x2<32,即x∈(-62,0)∪(0,62)由題意,Q(x,y)在橢圓C內(nèi),所以-1≤y≤1,又由10(y-2)2-3x2=18得(y-2)2∈[95,94)且-1≤y≤1,則y∈(12,2-355)所以,點Q的軌跡方程為10(y-2)2-3x2=18,其中x∈(-62,62),y∈(12,2-355)…13分22.如圖,小圓圈表示網(wǎng)絡(luò)的結(jié)點,結(jié)點之間的連線表示它們有網(wǎng)線相聯(lián),連線標注的數(shù)字表示該段網(wǎng)線單位時間內(nèi)可以通過的最大信息量,現(xiàn)從結(jié)點B向結(jié)點A傳遞信息,信息可以分開沿不同的路線同時傳遞,則單位時間內(nèi)傳遞的最大信息量為()

A.26

B.24

C.20

D.19

答案:D23.已知=(2,-1,3),=(-1,4,-2),=(7,5,λ),若、、三向量共面,則實數(shù)λ等于()

A.

B.

C.

D.答案:D24.在市場上供應(yīng)的燈泡中,甲廠產(chǎn)品占70%,乙廠占30%,甲廠產(chǎn)品的合格率是95%,乙廠的合格率是80%,則從市場上買到一個甲廠生產(chǎn)的合格燈泡的概率是______.答案:由題意知本題是一個相互獨立事件同時發(fā)生的概率,∵甲廠產(chǎn)品占70%,甲廠產(chǎn)品的合格率是95%,∴從市場上買到一個甲廠生產(chǎn)的合格燈泡的概率是0.7×0.95=0.665故為:0.66525.已知函數(shù)f(x)=x21+x2,那么f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=______.答案:∵f(x)=x21+x2,∴f(1x)=11+x2∴f(x)+f(1x)=1∴f(2)+f(12)=1,f(3)+f(13)=1,f(4)+f(14)=1,f(1)=12∴f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=72故為:7226.設(shè)a>2,給定數(shù)列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求證:

(1)xn>2,且xn+1xn<1(n=1,2…);

(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:證明:(1)①當n=1時,∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12

-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.結(jié)論成立.②假設(shè)n=k時,結(jié)論成立,即2<xk+1<xk(k∈N+),則xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,綜上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由條件x1=a≤3知不等式當n=1時成立假設(shè)不等式當n=k(k≥1)時成立當n=k+1時,由條件及xk>2知xk+1≤1+12k?x2k≤2(xk-1)(2+12k)?x2k-2(2+12k)xk+2(2+12k)≤0?(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及歸納假設(shè)知,上面最后一個不等式一定成立,所以不等式xk+1≤2+12k也成立,從而不等式xn≤2+12n-1對所有的正整數(shù)n成立27.若方程x2+ky2=2表示焦點在y軸上的橢圓,那么實數(shù)k的取值范圍是()A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)答案:∵方程x2+ky2=2,即x22+y22k=1表示焦點在y軸上的橢圓∴2k>2故0<k<1故選D.28.2010年廣州亞運會乒乓球男單決賽中,馬龍與王皓在前三局的比分分別是9:11、11:8、11:7,已知馬琳與王皓的水平相當,比賽實行“七局四勝”制,即先贏四局者勝,求(1)王皓獲勝的概率;

(2)比賽打滿七局的概率.(3)記比賽結(jié)束時的比賽局數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.答案:(1)在馬龍先前三局贏兩局的情況下,王皓取勝有兩種情況.第一種是王皓連勝三局;第二種是在第四到第六局,王皓贏了兩局,第七局王皓贏.在第一種情況下王皓取勝的概率為(12)3=18;在第二種情況下王皓取勝的概率為為C23(12)3×12=316,王皓獲勝的概率18+316=516;(3分)(2)比賽打滿七局有兩種結(jié)果:馬龍勝或王皓勝.記“比賽打滿七局,馬龍勝”為事件A,則P(A)=C13(12)3×12=316;記“比賽打滿七局,王皓勝”為事件B,則P(B)=C23(12)3×12=316;因為事件A、B互斥,所以比賽打滿七局的概率為P(A)+P(B)=38.(7分)(3)比賽結(jié)束時,比賽的局數(shù)為5,6,7,則打完五局馬龍獲勝的概率為12×12=14;打完六局馬琳獲勝的概率為C12(12)2×12=14,王皓取勝的概率為(12)3=18;比賽打滿七局,馬龍獲勝的概率為C13(12)3×12=316,王皓取勝的概率為為C23(12)3×12=316;所以ξ的分布列為ξ567P(ξ)143838Eξ=5×14+6×38+7×38=498.(12分)29.知x、y、z均為實數(shù),

(1)若x+y+z=1,求證:++≤3;

(2)若x+2y+3z=6,求x2+y2+z2的最小值.答案:(1)證明略(2)x2+y2+z2的最小值為解析:(1)證明

因為(++)2≤(12+12+12)(3x+1+3y+2+3z+3)=27.所以++≤3.

7分(2)解

因為(12+22+32)(x2+y2+z2)≥(x+2y+3z)2=36,即14(x2+y2+z2)≥36,所以x2+y2+z2的最小值為.

14分30.平面向量a與b的夾角為60°,a=(2,0),|b|=1

則|a+2b|=______.答案:∵平面向量a與b的夾角為60°,a=(2,0),|b|=1

∴|a+2b|=(a+2b)2=a2+4×a?b+4b2=4+4×2×1×cos60°+4=23.故為:23.31.在極坐標系中圓ρ=2cosθ的垂直于極軸的兩條切線方程分別為()

A.θ=0(ρ∈R)和ρcosθ=2

B.θ=(ρ∈R)和ρcosθ=2

C.θ=(ρ∈R)和ρcosθ=1

D.θ=0(ρ∈R)和ρcosθ=1答案:B32.直線l:y-1=k(x-1)和圓C:x2+y2-2y=0的關(guān)系是()

A.相離

B.相切或相交

C.相交

D.相切答案:C33.給定點A(x0,y0),圓C:x2+y2=r2及直線l:x0x+y0y=r2,給出以下三個命題:

①當點A在圓C上時,直線l與圓C相切;

②當點A在圓C內(nèi)時,直線l與圓C相離;

③當點A在圓C外時,直線l與圓C相交.

其中正確的命題個數(shù)是()

A.0

B.1

C.2

D.3答案:D34.已知正方形ABCD的邊長為a,則|AC+AD|等于______.答案:∵正方形ABCD的邊長為a,∴AC=2a,AC與AD的夾角為45°|AC+AD|2=|AC

|2+2AC?AD+|AD|2=2a2+2×2a×a×22+a2=5a2∴|AC+AD|=5a故為:5a35.設(shè)、、是三角形的邊長,求證:

≥答案:證明見解析解析:證明:由不等式的對稱性,不防設(shè)≥≥,則≥左式-右式≥≥≥036.平面上動點M到定點F(3,0)的距離比M到直線l:x+1=0的距離大2,則動點M滿足的方程()

A.x2=6y

B.x2=12y

C.y2=6x

D.y2=12x答案:D37.如圖,半徑為R的球O中有一內(nèi)接圓柱.當圓柱的側(cè)面積最大時,球的表面積與該圓柱的側(cè)面積之差是______.

答案:設(shè)圓柱的上底面半徑為r,球的半徑與上底面夾角為α,則r=Rcosα,圓柱的高為2Rsinα,圓柱的側(cè)面積為:2πR2sin2α,當且僅當α=π4時,sin2α=1,圓柱的側(cè)面積最大,圓柱的側(cè)面積為:2πR2,球的表面積為:4πR2,球的表面積與該圓柱的側(cè)面積之差是:2πR2.故為:2πR238.已知A(1,1),B(2,4),則直線AB的斜率為()

A.1

B.2

C.3

D.4答案:C39.當a>0時,不等式組的解集為(

)。答案:當a>時為;當a=時為{};當0<a<時為[a,1-a]40.(選做題)在直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,已知射線θ=與曲線(t為參數(shù))相較于A,B來兩點,則線段AB的中點的直角坐標為(

)。答案:(2.5,2.5)41.已知向量,,若與共線,則的值為

A

B

C

D

答案:D解析:,,由,得42.10件產(chǎn)品中有7件正品,3件次品,則在第一次抽到次品條件下,第二次抽到次品的概率______.答案:根據(jù)題意,在第一次抽到次品后,有2件次品,7件正品;則第二次抽到次品的概率為29;故為29.43.當圓x=4cosθy=4sinθ上一點P的旋轉(zhuǎn)角為θ=23π時,點P的坐標為______.答案:根據(jù)圓的參數(shù)方程的意義,當圓x=4cosθy=4sinθ上一點P的旋轉(zhuǎn)角為θ=23π時,點P的坐標為(4cos2π3,4sin2π3),即(-2,23).故為:(-2,23).44.已知點G是△ABC的重心,過G作直線與AB,AC兩邊分別交于M,N兩點,且,則的值()

A.3

B.

C.2

D.答案:B45.已知a,b,c是正實數(shù),且a+b+c=1,則的最小值為(

)A.3B.6C.9D.12答案:C解析:本題考查均值不等式等知識。將1代入中,得,當且僅當,又,故時不等式取,選C。46.拋物線x2+y=0的焦點位于()

A.y軸的負半軸上

B.y軸的正半軸上

C.x軸的負半軸上

D.x軸的正半軸上答案:A47.(不等式選講選做題)

已知實數(shù)a、b、x、y滿足a2+b2=1,x2+y2=3,則ax+by的最大值為______.答案:因為a2+b2=1,x2+y2=3,由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得3≥(ax+by)2,不且僅當ay=bx時取等號,所以ax+by的最大值為3.故為:3.48.用反證法證明命題“在函數(shù)f(x)=x2+px+q中,|f(1)|,|f(2)|,|f(3)|至少有一個不小于”時,假設(shè)正確的是()

A.假設(shè)|f(1)|,|f(2)|,|f(3)|至多有一個小于

B.假設(shè)|f(1)|,|f(2)|,|f(3)|至多有兩個小于

C.假設(shè)|f(1)|,|f(2)|,|f(3)|都不小于

D.假設(shè)|f(1)|,|f(2)|,|f(3)|都小于答案:D49.已知數(shù)列{an}中,a1=1,an+1=an+n,若利用如圖所示的種序框圖計算該數(shù)列的第10項,則判斷框內(nèi)的條件是()

A.n≤8?

B.n≤9?

C.n≤10?

D.n≤11?

答案:B50.已知點A(-1,-2),B(2,3),若直線l:x+y-c=0與線段AB有公共點,則直線l在y軸上的截距的取值范圍是()

A.[-3,5]

B.[-5,3]

C.[3,5]

D.[-5,-3]答案:A第3卷一.綜合題(共50題)1.設(shè)S(n)=1n+1n+1+1n+2+1n+3+…+1n2,則()A.S(2)=12+13B.S(2)=12+14C.S(2)=1+12+13+14D.S(2)=12+13+14答案:∵S(n)=1n+1n+1+1n+2+1n+3+…+1n2,當n=2時,n2=4故S(2)=12+13+14故選D2.(幾何證明選講選選做題)如圖,圓的兩條弦AC、BD相交于P,弧AB、BC、CD、DA的度數(shù)分別為60°、105°、90°、105°,則PAPC=______.答案:連接AB,CD∵弧AB、CD、的度數(shù)分別為60°、90°,∴弦AB的長度等于半徑,弦CD的長度等于半徑的2倍,即ABCD=12,∵∠A=∠D,∠C=∠B,∴△ABP∽△CDP∴ABCD=PAPC∴PAPC=12=22,故為:223.

若向量

=(3,2),=(0,-1),=(-1,2),則向量2-的坐標坐標是(

A.(3,-4)

B.(-3,4)

C.(3,4)

D.(-3,-4)答案:D4.若已知中心在坐標原點的橢圓過點(1,233),且它的一條準線方程為x=3,則該橢圓的方程為______.答案:設(shè)橢圓的方程是x2a2+y2b2=1,由題設(shè),中心在坐標原點的橢圓過點(1,233),且它的一條準線方程為x=3,∴1a2+43b2=1,a2c=3,又a2=c2+b2三式聯(lián)立可以解得a=3,b=2,c=1或a=7,b=143,c=73故該橢圓的方程為x23+y22=1或x27+y2149=1故應(yīng)填x23+y22=1或x27+y2149=15.已知關(guān)于的不等式的解集為,且,求的值答案:,,解析:用數(shù)形結(jié)合法,如圖顯然解集是,即,從而此時=與交點橫坐標為5,從而縱坐標為4,將交點坐標代入可得所以,,6.

選修1:幾何證明選講

如圖,設(shè)AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點,AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD,求證:

(1)l是⊙O的切線;

(2)PB平分∠ABD.答案:證明:(1)連接OP,因為AC⊥l,BD⊥l,所以AC∥BD.又OA=OB,PC=PD,所以O(shè)P∥BD,從而OP⊥l.因為P在⊙O上,所以l是⊙O的切線.(2)連接AP,因為l是⊙O的切線,所以∠BPD=∠BAP.又∠BPD+∠PBD=90°,∠BAP+∠PBA=90°,所以∠PBA=∠PBD,即PB平分∠ABD.7.對變量x,y

有觀測數(shù)據(jù)(x1,y1)(i=1,2,…,10),得散點圖1;對變量u,v

有觀測數(shù)據(jù)(v1,vi)(i=1,2,…,10),得散點圖2.下列說法正確的是()

A.變量x

與y

正相關(guān),u

與v

正相關(guān)

B.變量x

與y

負相關(guān),u

與v

正相關(guān)

C.變量x

與y

正相關(guān),u

與v

負相關(guān)

D.變量x

與y

負相關(guān),u

與v

負相關(guān)答案:B8.若a>0,使不等式|x-4|+|x-3|<a在R上的解集不是空集的a的取值是()

A.0<a<1

B.a(chǎn)=1

C.a(chǎn)>1

D.以上均不對答案:C9.已知f(x)在(0,2)上是增函數(shù),f(x+2)是偶函數(shù),那么正確的是()A.f(1)<f(52)<f(72)B.f(72)<f(1)<f(52)C.f(72)<f(52)<f(1)D.f(52)<f(1)<f(72)答案:根據(jù)函數(shù)的圖象的平移可得把f(x+2)向右平移2個單位可得f(x)的圖象f(x+2)是偶函數(shù),其圖象關(guān)于y軸對稱可知f(x)的圖象關(guān)于x=2對稱∴f(72)=f(12),f(52)=f(32)∵f(x)在(0,2)單調(diào)遞增,且12<1<32∴f(12)<f(1)<f(32)即f(72)<f(1)<f(52)故選:B10.函數(shù)f(x)=11+x2(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]答案:∵函數(shù)f(x)=11+x2(x∈R),∴1+x2≥1,所以原函數(shù)的值域是(0,1],故選B.11.三棱錐P-ABC中,M為BC的中點,以為基底,則可表示為()

A.

B.

C.

D.答案:D12.從一批羽毛球產(chǎn)品中任取一個,質(zhì)量小于4.8

g的概率是0.3,質(zhì)量不小于4.85

g的概率是0.32,那么質(zhì)量在[4.8,4.85)g范圍內(nèi)的概率是()

A.0.62

B.0.38

C.0.7

D.0.68答案:B13.已知平面α內(nèi)有一個點A(2,-1,2),α的一個法向量為=(3,1,2),則下列點P中,在平面α內(nèi)的是()

A.(1,-1,1)

B.(1,3,)

C.,(1,-3,)

D.(-1,3,-)答案:B14.如圖是《集合》的知識結(jié)構(gòu)圖,如果要加入“子集”,那么應(yīng)該放在()

A.“集合”的下位

B.“含義與表示”的下位

C.“基本關(guān)系”的下位

D.“基本運算”的下位

答案:C15.已知f(x)=2x,g(x)=3x.

(1)當x為何值時,f(x)=g(x)?

(2)當x為何值時,f(x)>1?f(x)=1?f(x)<1?

(3)當x為何值時,g(x)>3?g(x)=3?g(x)<3?答案:(1)作出函數(shù)f(x),g(x)的圖象,如圖所示.∵f(x),g(x)的圖象都過點(0,1),且這兩個圖象只有一個公共點,∴當x=0時,f(x)=g(x)=1.(2)由圖可知,當x>0時,f(x)>1;當x=0時,f(x)=1;當x<0時,f(x)<1.(3)由圖可知:當x>1時,g(x)>3;當x=1時,g(x)=3;當x<1時,g(x)<3.16.雙曲線x225-y29=1的兩個焦點分別是F1,F(xiàn)2,雙曲線上一點P到F1的距離是12,則P到F2的距離是()A.17B.7C.7或17D.2或22答案:由題意,a=5,則由雙曲線的定義可知PF1-PF2=±10,∴PF2=2或22,故選D.17.點P(x,y)是橢圓2x2+3y2=12上的一個動點,則x+2y的最大值為______.答案:把橢圓2x2+3y2=12化為標準方程,得x26+y24=1,∴這個橢圓的參數(shù)方程為:x=6cosθy=2sinθ,(θ為參數(shù))∴x+2y=6cosθ+4sinθ,∴(x+2y)max=6+16=22.故為:22.18.已知函數(shù)f(x)=2x,x≥01,

x<0,若f(1-a2)>f(2a),則實數(shù)a的取值范圍是______.答案:函數(shù)f(x)=2x,x≥01,

x<0,x<0時是常函數(shù),x≥0時是增函數(shù),由f(1-a2)>f(2a),所以2a<1-a21-a2>0,解得:-1<a<2-1,故為:-1<a<2-1.19.橢圓x=3cosθy=4sinθ的離心率是______.答案:∵x=3cosθy=4sinθ,∴(x3)2+(y4)2=cos2θ+sin2θ=1,即x29+y216=1,其中a2=16,b2=9,故c2=a2-b2=16-9=7(a>0,b>0,c>0),∴其離心率e=ca=74.故為:74.20.若90°<θ<180°,曲線x2+y2sinθ=1表示()

A.焦點在x軸上的雙曲線

B.焦點在y軸上的雙曲線

C.焦點在x軸上的橢圓

D.焦點在y軸上的橢圓答案:D21.給出下列結(jié)論:

(1)在回歸分析中,可用指數(shù)系數(shù)R2的值判斷模型的擬合效果,R2越大,模型的擬合效果越好;

(2)在回歸分析中,可用殘差平方和判斷模型的擬合效果,殘差平方和越大,模型的擬合效果越好;

(3)在回歸分析中,可用相關(guān)系數(shù)r的值判斷模型的擬合效果,r越大,模型的擬合效果越好;

(4)在回歸分析中,可用殘差圖判斷模型的擬合效果,殘差點比較均勻地落在水平的帶狀區(qū)域中,說明這樣的模型比較合適.帶狀區(qū)域的寬度越窄,說明模型的擬合精度越高.

以上結(jié)論中,正確的有()個.

A.1

B.2

C.3

D.4答案:B22.某地區(qū)居民生活用電分為高峰和低谷兩個時間段進行分時計價.該地區(qū)的電網(wǎng)銷售電價表如圖:高峰時間段用電價格表低谷時間段用電價格表高峰月用電量

(單位:千瓦時)高峰電價(單位:元/千瓦時)低谷月用電量

(單位:千瓦時)低谷電價(單位:

元/千瓦時)50及以下的部分0.56850及以下的部分0.288超過50至200的部分0.598超過50至200的部分0.318超過200的部分0.668超過200的部分0.388若某家庭5月份的高峰時間段用電量為200千瓦時,低谷時間段用電量為100千瓦時,則按這種計費方式該家庭本月應(yīng)付的電費為______元(用數(shù)字作答)答案:高峰時間段用電的電費為50×0.568+150×0.598=28.4+89.7=118.1(元),低谷時間段用電的電費為50×0.288+50×0.318=14.4+15.9=30.3(元),本月的總電費為118.1+30.3=148.4(元),故為:148.4.23.在repeat語句的一般形式中有“until

A”,其中A是

(

)A.循環(huán)變量B.循環(huán)體C.終止條件D.終止條件為真答案:D解析:此題考查程序語句解:Until標志著直到型循環(huán),直到終止條件為止,因此until后跟的是終止條件為真的語句.答案:D.24.一個家庭有兩個小孩,假設(shè)生男生女是等可能的,已知這個家庭有一個是女孩的條件下,這時另一個也是女孩的概率是()

A.

B.

C.

D.答案:D25.已知點M的極坐標為,下列所給四個坐標中能表示點M的坐標是()

A.

B.

C.

D.答案:D26.已知f(x)=1-(x-a)(x-b),并且m,n是方程f(x)=0的兩根,則實數(shù)a,b,m,n的大小關(guān)系可能是()

A.m<a<b<n

B.a(chǎn)<m<n<b

C.a(chǎn)<m<b<n

D.m<a<n<b答案:A27.點(1,-1)在圓(x-a)2+(y-a)2=4的內(nèi)部,則a取值范圍是()

A.-1<a<1

B.0<a<1

C.a(chǎn)<-1或a>1

D.a(chǎn)≠±1答案:A28.一圓形紙片的圓心為點O,點Q是圓內(nèi)異于O點的一定點,點A是圓周上一點.把紙片折疊使點A與Q重合,然后展平紙片,折痕與OA交于P點.當點A運動時點P的軌跡是()A.圓B.橢圓C.雙曲線D.拋物線答案:如圖所示,由題意可知:折痕l為線段AQ的垂直平分線,∴|AP|=|PQ|,而|OP|+|PA|=|OA|=R,∴|PO|+|PQ|=R定值>|OQ|.∴當點A運動時點P的軌跡是以點O,D為焦點,長軸長為R的橢圓.故選B.29.國旗上的正五角星的每一個頂角是多少度?答案:由圖可知:∠AFG=∠C+∠E=2∠C,∠AGF=∠B+∠D=2∠B,∴∠A+∠AFG+∠AGF=∠A+2∠C+2∠B=5∠A∴5∠A=180°,∴∠A=36°.30.命題“存在實數(shù)x,,使x>1”的否定是()

A.對任意實數(shù)x,都有x>1

B.不存在實數(shù)x,使x≤1

C.對任意實數(shù)x,都有x≤1

D.存在實數(shù)x,使x≤1答案:C31.用反證法證明“如果a<b,那么“”,假設(shè)的內(nèi)容應(yīng)是()

A.

B.

C.且

D.或

答案:D32.已知向量a與向量b,|a|=2,|b|=3,a、b的夾角為60°,當1≤m≤2,0≤n≤2時,|ma+nb|的最大值為______.答案:∵|a|=2,|b|=3,a、b的夾角為60°,∴|ma+nb|2=m2a2+2mna?b+n2b2=4m2+2mn×2×3×cos60°+9n2=4m2+6mn+9n2,∵1≤m≤2,0≤n≤2,∴當m=2且n=2時,|ma+nb|2取到最大值,即|ma+nb|2max=100,∴,|ma+nb|的最大值為10.故為:10.33.在下列條件中,使M與不共線三點A、B、C,一定共面的是

[

]答案:C34.已知拋物線C:x2=2py(p>0)的焦點為F,拋物線上一點A的橫坐標為x1(x1>0),過點A作拋物線C的切線l1交x軸于點D,交y軸于點Q,交直線l:y=p2于點M,當|FD|=2時,∠AFD=60°.

(1)求證:△AFQ為等腰三角形,并求拋物線C的方程;

(2)若B位于y軸左側(cè)的拋物線C上,過點B作拋物線C的切線l2交直線l1于點P,交直線l于點N,求△PMN面積的最小值,并求取到最小值時的x1值.答案:(1)設(shè)A(x1,x122p),則A處的切線方程為l1:y=x1px-x122p,可得:D(x12,0),Q(0,-x212p)∴|FQ|=p2+x212p=|AF|;∴△AFQ為等腰三角形.由點A,Q,D的坐標可知:D為線段AQ的中點,∴|AF|=4,得:p2+x212p=4x21+p2=16∴p=2,C:x2=4y.(2)設(shè)B(x2,y2)(x2<0),則B處的切線方程為y=x22x-x224聯(lián)立y=x22x-x224y=x12x-x214得到點P(x1+x22,x1x24),聯(lián)立y=x12x-x214y=1得到點M(x12+2x1,1).同理N(x22+2x2,1),設(shè)h為點P到MN的距離,則S△=12|MN|?h=12×(x12+2x1-x22-2x2)(1-x1x24)=(x2-x1)(4-x1x2)216x1x2

①設(shè)AB的方程為y=kx+b,則b>0,由y=kx+bx2=4y得到x2-4kx-4b=0,得x1+x2=4kx1x2=-4b代入①得:S△=16k2+16b(4+4b)264b=(1+b)2k2+bb,要使面積最小,則應(yīng)k=0,得到S△=(1+b)2bb②令b=t,得S△(t)=(1+t2)2t=t3+2t+1t,則S′△(t)=(3t2-1)(t2+1)t2,所以當t∈(0,33)時,S(t)單調(diào)遞減;當t∈(33,+∞)時,S(t)單調(diào)遞增,所以當t=33時,S取到最小值為1639,此時b=t2=13,k=0,所以y1=13,解得x1=233.故△PMN面積取得最小值時的x1值為233.35.圓錐曲線x=4secθ+1y=3tanθ的焦點坐標是______.答案:由x=4secθ+1y=3tanθ可得secθ=x-14tanθ=y3,由三角函數(shù)的運算可得tan2θ+1=sec2θ,代入可得(x-14)2-(y3)2=1,即(x-1)216-y29=1,可看作雙曲線x216-y29=1向右平移1個單位得到,而雙曲線x216-y29=1的焦點為(-5,0),(5,0)故所求雙曲線的焦點為(-4,0),(6,0)故為:(-4,0),(6,0)36.設(shè)U={x|x<7,x∈N+}A={1,2,5},B={2,3,4,5},求A∩B,CUA,A∪(CUB).答案:∵U={1,2,3,4,5,6}A∩B={2,5}CUA={3,4,6}A∪CUB={1}37.試比較nn+1與(n+1)n(n∈N*)的大?。?/p>

當n=1時,有nn+1______(n+1)n(填>、=或<);

當n=2時,有nn+1______(n+1)n(填>、=或<);

當n=3時,有nn+1______(n+1)n(填>、=或<);

當n=4時,有nn+1______(n+1)n(填>、=或<);

猜想一個一般性的結(jié)論,并加以證明.答案:當n=1時,nn+1=1,(n+1)n=2,此時,nn+1<(n+1)n,當n=2時,nn+1=8,(n+1)n=9,此時,nn+1<(n+1)n,當n=3時,nn+1=81,(n+1)n=64,此時,nn+1>(n+1)n,當n=4時,nn+1=1024,(n+1)n=625,此時,nn+1>(n+1)n,根據(jù)上述結(jié)論,我們猜想:當n≥3時,nn+1>(n+1)n(n∈N*)恒成立.①當n=3時,nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假設(shè)當n=k時,kk+1>(k+1)k成立,即:kk+1(k+1)k>1則當n=k+1時,(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即當n=k+1時也成立,∴當n≥3時,nn+1>(n+1)n(n∈N*)恒成立.38.若E,F(xiàn),G,H分別為空間四邊形ABCD四邊AB,BC,CD,DA的中點,證明:四邊形EFGH是平行四邊形.答案:證明:∵E,F(xiàn),G,H分別為空間四邊形ABCD四邊AB,BC,CD,DA的中點,∴EF是△ABC的中位線,∴EF∥AC,且EF=12AC.同理可證,GH∥AC,且GH=12AC,故有

EF∥GH,且EF=GH,∴四邊形EFGH是平行四邊形.39.某學(xué)校為了了解學(xué)生的日平均睡眠時間(單位:h),隨機選擇了n名同學(xué)進行調(diào)查,下表是這n名同學(xué)的日平均睡眠時間的頻率分布表:

序號(i)分組(睡眠時間)頻數(shù)(人數(shù))頻率1[4,5)40.082[5,6)x0.203[6,7)ay4[7,8)bz5[8,9]m0.O8(1)求n的值;若a=20,試確定x、y、z、m的值;

(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如[4,5)的中點值4.5)作為代表.若據(jù)此計算的這n名學(xué)生的日平均睡眠時間的平均值為6.68.求a、b的值.答案:(1)樣本容量n=40.08=50,∴x=0.20×50=10,y=0.4,z=0.24,m=4(5分)(2)n=50,P(i=3)=a50,P(i=4)=b50平均時間為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論