版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年重慶工程職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買(mǎi)!第1卷一.綜合題(共50題)1.已知x1,x2,…,xn都是正數(shù),且x1+x2+…+xn=1,求證:
++…+≥n2.答案:證明略解析:證明
++…+=(x1+x2+…+xn)(
++…+)≥=n2.2.某學(xué)校要從5名男生和2名女生中選出2人作為上海世博會(huì)志愿者,若用隨機(jī)變量ξ表示選出的志愿者中女生的人數(shù),則數(shù)學(xué)期望Eξ______(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示).答案:用隨機(jī)變量ξ表示選出的志愿者中女生的人數(shù),ξ可取0,1,2,當(dāng)ξ=0時(shí),表示沒(méi)有選到女生;當(dāng)ξ=1時(shí),表示選到一個(gè)女生;當(dāng)ξ=2時(shí),表示選到2個(gè)女生,∴P(ξ=0)=C25C27=1021,P(ξ=1)=C15C12C27=1021,P(ξ=2)=C22C27=121,∴Eξ=0×1021+1×1021+2×121=47.故為:473.
圓ρ=(cosθ+sinθ)的圓心的極坐標(biāo)是()
A.(1,)
B.(,)
C.(,)
D.(2,)
答案:A4.某品牌平板電腦的采購(gòu)商指導(dǎo)價(jià)為每臺(tái)2000元,若一次采購(gòu)數(shù)量達(dá)到一定量,還可享受折扣.如圖為某位采購(gòu)商根據(jù)折扣情況設(shè)計(jì)的算法程序框圖,若一次采購(gòu)85臺(tái)該平板電腦,則S=______元.答案:分析程序中各變量、各語(yǔ)句,其作用是:表示一次采購(gòu)共需花費(fèi)的金額,再根據(jù)流程圖所示的順序,可知:該程序的作用是計(jì)算分段函數(shù)S=200×0.8?x,x>100200×0.9?x,50<x≤100200?x,0<x≤50的值,∵x=85,∴S=200×0.9×85=15300(元),故為:15300.5.下表為廣州亞運(yùn)會(huì)官方票務(wù)網(wǎng)站公布的幾種球類(lèi)比賽的門(mén)票價(jià)格,某球迷賽前準(zhǔn)備1200元,預(yù)訂15張下表中球類(lèi)比賽的門(mén)票。比賽項(xiàng)目票價(jià)(元/場(chǎng))足球
籃球
乒乓球100
80
60若在準(zhǔn)備資金允許的范圍內(nèi)和總票數(shù)不變的前提下,該球迷想預(yù)訂上表中三種球類(lèi)比賽門(mén)票,其中籃球比賽門(mén)票數(shù)與乒乓球比賽門(mén)票數(shù)相同,且籃球比賽門(mén)票的費(fèi)用不超過(guò)足球比賽門(mén)票的費(fèi)用,求可以預(yù)訂的足球比賽門(mén)票數(shù)。答案:解:設(shè)預(yù)訂籃球比賽門(mén)票數(shù)與乒乓球比賽門(mén)票數(shù)都是n(n∈N*)張,則足球比賽門(mén)票預(yù)訂(15-2n)張,由題意得解得由n∈N*,可得n=5,∴15-2n=5∴可以預(yù)訂足球比賽門(mén)票5張。6.以下命題:
①二直線(xiàn)平行的充要條件是它們的斜率相等;
②過(guò)圓上的點(diǎn)(x0,y0)與圓x2+y2=r2相切的直線(xiàn)方程是x0x+y0y=r2;
③平面內(nèi)到兩定點(diǎn)的距離之和等于常數(shù)的點(diǎn)的軌跡是橢圓;
④拋物線(xiàn)上任意一點(diǎn)M到焦點(diǎn)的距離都等于點(diǎn)M到其準(zhǔn)線(xiàn)的距離.
其中正確命題的標(biāo)號(hào)是______.答案:①兩條直線(xiàn)平行的充要條件是它們的斜率相等,且截距不等,故①不正確,②過(guò)點(diǎn)(x0,y0)與圓x2+y2=r2相切的直線(xiàn)方程是x0x+y0y=r2.②正確,③不正確,若平面內(nèi)到兩定點(diǎn)距離之和等于常數(shù),如這個(gè)常數(shù)正好為兩個(gè)點(diǎn)的距離,則動(dòng)點(diǎn)的軌跡是兩點(diǎn)的連線(xiàn)段,而不是橢圓;④根據(jù)拋物線(xiàn)的定義知:拋物線(xiàn)上任意一點(diǎn)M到焦點(diǎn)的距離都等于點(diǎn)M到其準(zhǔn)線(xiàn)的距離.故④正確.故為:②④.7.已知橢圓(a>b>0)的焦點(diǎn)分別為F1,F(xiàn)2,b=4,離心率e=過(guò)F1的直線(xiàn)交橢圓于A,B兩點(diǎn),則△ABF2的周長(zhǎng)為()
A.10
B.12
C.16
D.20答案:D8.如圖,平面中兩條直線(xiàn)l1和l2相交于點(diǎn)O,對(duì)于平面上任意一點(diǎn)M,若p、q分別是M到直線(xiàn)l1和l2的距離,則稱(chēng)有序非負(fù)實(shí)數(shù)對(duì)(p,q)是點(diǎn)M的“距離坐標(biāo)”.已知常數(shù)p≥0,q≥0,給出下列命題:
①若p=q=0,則“距離坐標(biāo)”為(0,0)的點(diǎn)有且僅有1個(gè);
②若pq=0,且p+q≠0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且僅有2個(gè);
③若pq≠0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且僅有4個(gè).
上述命題中,正確命題的個(gè)數(shù)是()A.0B.1C.2D.3答案:①正確,此點(diǎn)為點(diǎn)O;②不正確,注意到p,q為常數(shù),由p,q中必有一個(gè)為零,另一個(gè)非零,從而可知有且僅有4個(gè)點(diǎn),這兩點(diǎn)在其中一條直線(xiàn)上,且到另一直線(xiàn)的距離為q(或p);③正確,四個(gè)交點(diǎn)為與直線(xiàn)l1相距為p的兩條平行線(xiàn)和與直線(xiàn)l2相距為q的兩條平行線(xiàn)的交點(diǎn);故選C.9.用秦九韶算法求多項(xiàng)式
在的值.答案:.解析:可根據(jù)秦九韶算法原理,將所給多項(xiàng)式改寫(xiě),然后由內(nèi)到外逐次計(jì)算即可.
而,所以有,,,,,.即.【名師指引】利用秦九韶算法計(jì)算多項(xiàng)式值關(guān)鍵是能正確地將所給多項(xiàng)式改寫(xiě),然后由內(nèi)到外逐次計(jì)算,由于后項(xiàng)計(jì)算需用到前項(xiàng)的結(jié)果,故應(yīng)認(rèn)真、細(xì)心,確保中間結(jié)果的準(zhǔn)確性.10.三棱柱ABC-A1B1C1中,M、N分別是BB1、AC的中點(diǎn),設(shè),,=,則等于()
A.
B.
C.
D.答案:A11.某校對(duì)文明班的評(píng)選設(shè)計(jì)了a,b,c,d,e五個(gè)方面的多元評(píng)價(jià)指標(biāo),并通過(guò)經(jīng)驗(yàn)公式樣S=ab+cd+1e來(lái)計(jì)算各班的綜合得分,S的值越高則評(píng)價(jià)效果越好,若某班在自測(cè)過(guò)程中各項(xiàng)指標(biāo)顯示出0<c<d<e<b<a,則下階段要把其中一個(gè)指標(biāo)的值增加1個(gè)單位,而使得S的值增加最多,那么該指標(biāo)應(yīng)為()A.a(chǎn)B.bC.cD.d答案:因a,b,cde都為正數(shù),故分子越大或分母越小時(shí),S的值越大,而在分子都增加1的前提下,分母越小時(shí),S的值增長(zhǎng)越多,由于0<c<d<e<b<a,分母中d最小,所以c增大1個(gè)單位會(huì)使得S的值增加最多.故選C.12.已知圓柱的軸截面周長(zhǎng)為6,體積為V,則下列關(guān)系式總成立的是()A.V≥πB.V≤πC.V≥18πD.V≤18π答案:設(shè)圓柱的底面半徑為r,高為h,由題意得:4r+2h=6,即2r+h=3,∴體積為V=πr2h≤π[13(r+r+h)]2=π×(33)2=π當(dāng)且僅當(dāng)r=h時(shí)取等號(hào),由此可得V≤π恒成立故選:B13.隨機(jī)變量X的概率分布規(guī)律為P(X=n)=(n=1,2,3,4),其中a是常數(shù),則P()的值為()
A.
B.
C.
D.
答案:D14.設(shè)全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},則CU(S∪T)等于()A.φB.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}答案:∵S∪T={1,3,5,6},∴CU(S∪T)={2,4,7,8}.故選B.15.已知不等式(a2+a+2)2x>(a2+a+2)x+8,其中x∈N+,使此不等式成立的x的最小整數(shù)值是______.答案:∵a2+a+2=(a+12)2+74>1,且x∈N+,∴由正整數(shù)指數(shù)函數(shù)在底數(shù)大于1時(shí)單調(diào)遞增的性質(zhì),得2x>x+8,即x>8,∴使此不等式成立的x的最小整數(shù)值為9.故為:9.16.下面程序運(yùn)行后,輸出的值是()
A.42
B.43
C.44
D.45
答案:C17.四名男生三名女生排成一排,若三名女生中有兩名相鄰,但三名女生不能連排,則不同的排法數(shù)有()A.3600B.3200C.3080D.2880答案:由題意知本題需要利用分步計(jì)數(shù)原理來(lái)解,∵三名女生有且僅有兩名相鄰,∴把這兩名女生看做一個(gè)元素,與另外一名女生作為兩個(gè)元素,有C32A22種結(jié)果,把男生排列有A44,把女生在男生所形成的5個(gè)空位中排列有A52種結(jié)果,共有C32A22A44A52=2880種結(jié)果,故選D.18.命題“三角形中最多只有一個(gè)內(nèi)角是直角”的結(jié)論的否定是()
A.有兩個(gè)內(nèi)角是直角
B.有三個(gè)內(nèi)角是直角
C.至少有兩個(gè)內(nèi)角是直角
D.沒(méi)有一個(gè)內(nèi)角是直角答案:C19.某學(xué)生離家去學(xué)校,由于怕遲到,所以一開(kāi)始就跑步,等跑累了再走余下的路程.
在如圖中縱軸表示離學(xué)校的距離,橫軸表示出發(fā)后的時(shí)間,則如圖中的四個(gè)圖形中較符合該學(xué)生走法的是()A.
B.
C.
D.
答案:由題意可知:由于怕遲到,所以一開(kāi)始就跑步,所以剛開(kāi)始離學(xué)校的距離隨時(shí)間的推移應(yīng)該相對(duì)較快.而等跑累了再走余下的路程,則說(shuō)明離學(xué)校的距離隨時(shí)間的推移在后半段時(shí)間應(yīng)該相對(duì)較慢.所以適合的圖象為:故選B.20.點(diǎn)P(2,5)關(guān)于直線(xiàn)x+y=1的對(duì)稱(chēng)點(diǎn)的坐標(biāo)是(
)。答案:(-4,-1)21.已知大于1的正數(shù)x,y,z滿(mǎn)足x+y+z=33.
(1)求證:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32.
(2)求1log3x+log3y+1log3y+log3z+1log3z+log3x的最小值.答案:(1)由柯西不等式得,(x2x+2y+3z+y2y+2z+3z+z2z+2x+3y)[(x+2y+3z)+(y+2z+3x)+(z+2x+3y)]≥(x+y+z)2=27得:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32;(2)∵1log3x+log3y+1log3y+log3z+1log3z+log3x=1log3(xy)+1log3(yz)+1log3(zx),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx)),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx))≥9所以,(1log3(xy)+1log3(yz)+1log3(zx))≥9(log3(xy)+log3(yz)+log3(zx))=92log3(xyz),又∵33=x+y+z≥33xyz.∴xyz≤33.∴l(xiāng)og3xyz≤32.得92log3xyz≥92×23=3所以,1log3x+log3y+1log3y+log3z+1log3z+log3x≥3當(dāng)且僅當(dāng)x=y=z=3時(shí),等號(hào)成立.故所求的最小值是3.22.若數(shù)據(jù)x1,x2,…,xn的方差為3,數(shù)據(jù)ax1+b,ax2+b,…,axn+b的標(biāo)準(zhǔn)差為23,則實(shí)數(shù)a的值為_(kāi)_____.答案:數(shù)據(jù)ax1+b,ax2+b,…,axn+b的方差是數(shù)據(jù)x1,x2,…,xn的方差的a2倍;則數(shù)據(jù)ax1+b,ax2+b,…,axn+b的方差為3a2,標(biāo)準(zhǔn)差為3a2=23解得a=±2故為:±223.若命題p的否命題是q,命題q的逆命題是r,則r是p的逆命題的()A.原命題B.逆命題C.否命題D.逆否命題答案:設(shè)命題p為“若k,則s”;則其否命題q是“若¬k,則¬s”;∴命題q的逆命題r是“若¬s,則¬k”,而p的逆命題為“若s,則k”,故r是p的逆命題的否命題.故選C.24.若向量且與的夾角余弦為則λ等于()
A.4
B.-4
C.
D.答案:C25.(幾何證明選講選做題)如圖,梯形,,是對(duì)角線(xiàn)和的交點(diǎn),,則
。
答案:1:6解析:,
,,∵,,而∴。26.如圖,AD是圓內(nèi)接三角形ABC的高,AE是圓的直徑,AB=6,AC=3,則AE×AD等于
______.答案:∵AE是直徑∴∠ABE=∠ADC=90°∵∠E=∠C∴△ABE∽△ADC∴ABAD=AEAC∴AE×AD=AB?AC=32故為32.27.平面向量與的夾角為60°,=(2,0),||=1,則|+2|()
A.
B.2
C.4
D.12答案:B28.從1,2,3,4,5中不放回地依次取2個(gè)數(shù),事件A=“第一次取到的是奇數(shù)”,B=“第二次取到的是奇數(shù)”,則P(B|A)=()
A.
B.
C.
D.答案:D29.如圖所示,面積為S的平面凸四邊形的第i條邊的邊長(zhǎng)記為ai(i=1,2,3,4),此四邊形內(nèi)任一點(diǎn)P到第i條邊的距離記為hi(i=1,2,3,4),若a11=a22=a33=a44=k,則4
i=1(ihi)=2Sk.類(lèi)比以上性質(zhì),體積為V的三棱錐的第i個(gè)面的面積記為Si(i=1,2,3,4),此三棱錐內(nèi)任一點(diǎn)Q到第i個(gè)面的距離記為Hi(i=1,2,3,4),若S11=S22=S33=S44=K,則4
i=1(iHi)=()A.4VKB.3VKC.2VKD.VK答案:根據(jù)三棱錐的體積公式V=13Sh得:13S1H1+13S2H2+13S3H3+13S4H4=V,即S1H1+2S2H2+3S3H3+4S4H4=3V,∴H1+2H2+3H3+4H4=3VK,即4i=1(iHi)=3VK.故選B.30.若平面向量a與b的夾角為120°,a=(2,0),|b|=1,則|a+2b|=______.答案:∵|a+2b|=(a+2b)2=a
2+4a?b+4
b2=|a|2+4|a||b|cos<a,b>+4|b|2=22+4×2×1cos120°+4×1=2.故為:231.已知的單調(diào)區(qū)間;
(2)若答案:(1)(2)證明略解析:(1)對(duì)已知函數(shù)進(jìn)行降次分項(xiàng)變形
,得,(2)首先證明任意事實(shí)上,而
.32.現(xiàn)有以下兩項(xiàng)調(diào)查:①某校高二年級(jí)共有15個(gè)班,現(xiàn)從中選擇2個(gè)班,檢查其清潔衛(wèi)生狀況;②某市有大型、中型與小型的商店共1500家,三者數(shù)量之比為1:5:9.為了調(diào)查全市商店每日零售額情況,抽取其中15家進(jìn)行調(diào)查.完成①、②這兩項(xiàng)調(diào)查宜采用的抽樣方法依次是()A.簡(jiǎn)單隨機(jī)抽樣法,分層抽樣法B.系統(tǒng)抽樣法,簡(jiǎn)單隨機(jī)抽樣法C.分層抽樣法,系統(tǒng)抽樣法D.系統(tǒng)抽樣法,分層抽樣法答案:從15個(gè)班中選擇2個(gè)班,檢查其清潔衛(wèi)生狀況;總體個(gè)數(shù)不多,而且差異不大,故可采用簡(jiǎn)單隨機(jī)抽樣的方法,1500家大型、中型與小型的商店的每日零售額存在較大差異,故可采用分層抽樣的方法故完成①、②這兩項(xiàng)調(diào)查宜采用的抽樣方法依次是簡(jiǎn)單隨機(jī)抽樣法,分層抽樣法故選A33.已知平面內(nèi)一動(dòng)點(diǎn)P到F(1,0)的距離比點(diǎn)P到y(tǒng)軸的距離大1.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)F的直線(xiàn)交軌跡C于A,B兩點(diǎn),交直線(xiàn)x=-1于M點(diǎn),且MA=λ1AF,MB=λ2BF,求λ1+λ2的值.答案:(1)由題意知?jiǎng)狱c(diǎn)P到F(1,0)的距離與直線(xiàn)x=-1的距離相等,由拋物線(xiàn)定義知,動(dòng)點(diǎn)P在以F(1,0)為焦點(diǎn),以直線(xiàn)x=-1為準(zhǔn)線(xiàn)的拋物線(xiàn)上,方程為y2=4x.(2)由題設(shè)知直線(xiàn)的斜線(xiàn)存在,設(shè)直線(xiàn)AB的方程為:y=k(x-1),設(shè)A(x1,y1),B(x2,y2),由y=k(x-1)y2=4x,得k2x2-2(k2+2)x+k2=0,∵x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得k2x2-2(k2+2)x+k2=0,∴x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得λ1=-1-2x2-1,同理λ2=-1-2x2-1,∴λ1+λ2=-2-2(1x1-1+1x2-1)=0.34.在吸煙與患肺病這兩個(gè)分類(lèi)變量的計(jì)算中,下列說(shuō)法正確的是()
A.若k2的觀(guān)測(cè)值為k=6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺病
B.從獨(dú)立性檢驗(yàn)可知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)時(shí),我們說(shuō)某人吸煙,那么他有99%的可能患有肺病
C.若從統(tǒng)計(jì)量中求出有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯(cuò)誤
D.以上三種說(shuō)法都不正確答案:D35.圖為一個(gè)幾何體的三視國(guó)科,尺寸如圖所示,則該幾何體的體積為()A.23+π6B.23+4πC.33+π6D.33+4π3答案:由圖中數(shù)據(jù),下部的正三棱柱的高是3,底面是一個(gè)正三角形,其邊長(zhǎng)為2,高為3,故其體積為3×12×2×3=33上部的球體直徑為1,故其半徑為12,其體積為4π3×(12)3=π6故組合體的體積是33+π6故選C36.點(diǎn)M的直角坐標(biāo)為(-3,-1),則點(diǎn)M的極坐標(biāo)為_(kāi)_____.答案:∵M(jìn)的直角坐標(biāo)為(-3,-1),設(shè)M的極坐標(biāo)為(ρ,θ),則ρ=(-3)2+(-1)2=2,又tanθ=33,∴θ=7π6,∴M的極坐標(biāo)為(2,7π6).37.(坐標(biāo)系與參數(shù)方程)
從極點(diǎn)O作直線(xiàn)與另一直線(xiàn)ρcosθ=4相交于點(diǎn)M,在OM上取一點(diǎn)P,使OM?OP=12.
(1)求點(diǎn)P的軌跡方程;
(2)設(shè)R為直線(xiàn)ρcosθ=4上任意一點(diǎn),試求RP的最小值.答案:(1)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(ρ,θ),M的坐標(biāo)為(ρ0,θ),則ρρ0=12.∵ρ0cosθ=4,∴ρ=3cosθ即為所求的軌跡方程.(2)由(1)知P的軌跡是以(32,0)為圓心,半徑為32的圓,而直線(xiàn)l的解析式為x=4,所以圓與x軸的交點(diǎn)坐標(biāo)為(3,0),易得RP的最小值為138.在航天員進(jìn)行的一項(xiàng)太空實(shí)驗(yàn)中,要先后實(shí)施6個(gè)程序,其中程序A只能出現(xiàn)在第一步或最后一步,程序B和C實(shí)施時(shí)必須相鄰,請(qǐng)問(wèn)實(shí)驗(yàn)順序的編排方法共有()
A.24種
B.48種
C.96種
D.144種答案:C39.能較好地反映一組數(shù)據(jù)的離散程度的是()
A.眾數(shù)
B.平均數(shù)
C.標(biāo)準(zhǔn)差
D.極差答案:C40.“a=18”是“對(duì)任意的正數(shù)x,2x+ax≥1的”()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:當(dāng)“a=18”時(shí),由基本不等式可得:“對(duì)任意的正數(shù)x,2x+ax≥1”一定成立,即“a=18”?“對(duì)任意的正數(shù)x,2x+ax≥1”為真命題;而“對(duì)任意的正數(shù)x,2x+ax≥1的”時(shí),可得“a≥18”即“對(duì)任意的正數(shù)x,2x+ax≥1”?“a=18”為假命題;故“a=18”是“對(duì)任意的正數(shù)x,2x+ax≥1的”充分不必要條件故選A41.設(shè)橢圓C1的離心率為513,焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為26.若曲線(xiàn)C2上的點(diǎn)到橢圓C1的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于8,則曲線(xiàn)C2的標(biāo)準(zhǔn)方程為
______答案:根據(jù)題意可知橢圓方程中的a=13,∵ca=513∴c=5根據(jù)雙曲線(xiàn)的定義可知曲線(xiàn)C2為雙曲線(xiàn),其中半焦距為5,實(shí)軸長(zhǎng)為8∴虛軸長(zhǎng)為225-16=6∴雙曲線(xiàn)方程為x216-y29=1故為:x216-y29=142.已知二項(xiàng)分布滿(mǎn)足X~B(6,23),則P(X=2)=______,EX=______.答案:∵X服從二項(xiàng)分布X~B(6,23)∴P(X=2)=C26(13)4(23)2=20243∵隨機(jī)變量ξ服從二項(xiàng)分布ξ~B(6,23),∴期望Eξ=np=6×23=4故為:20243;443.已知a、b、c是實(shí)數(shù),且a2+b2+c2=1,求2a+b+2c的最大值.答案:因?yàn)橐阎猘、b、c是實(shí)數(shù),且a2+b2+c2=1根據(jù)柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(a2+b2+c2)(22+1+22)≥(2a+b+2c)2故(2a+b+2c)2≤9,即2a+b+2c≤3即2a+b+2c的最大值為3.44.當(dāng)太陽(yáng)光線(xiàn)與水平面的傾斜角為60°時(shí),要使一根長(zhǎng)為2m的細(xì)桿的影子最長(zhǎng),則細(xì)桿與水平地面所成的角為()
A.15°
B.30°
C.45°
D.60°答案:B45.將一枚均勻硬幣
隨機(jī)擲20次,則恰好出現(xiàn)10次正面向上的概率為()
A.
B.
C.
D.答案:D46.定義xn+1yn+1=1011xnyn,n∈N*為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個(gè)矩陣變換,其中O是坐標(biāo)原點(diǎn).已知OP1=(1,0),則OP2010的坐標(biāo)為_(kāi)_____.答案:由題意,xn+1=xnyn+1=xn+yn∴向量的橫坐標(biāo)不變,縱坐標(biāo)構(gòu)成以0為首項(xiàng),1為公差的等差數(shù)列∴OP2010的坐標(biāo)為(1,2009)故為(1,2009)47.已知0<k<4,直線(xiàn)l1:kx-2y-2k+8=0和直線(xiàn)l:2x+k2y-4k2-4=0與兩坐標(biāo)軸圍成一個(gè)四邊形,則使得這個(gè)四邊形面積最小的k值為_(kāi)_____.答案:如圖所示:直線(xiàn)l1:kx-2y-2k+8=0即k(x-2)-2y+8=0,過(guò)定點(diǎn)B(2,4),與y軸的交點(diǎn)C(0,4-k),直線(xiàn)l:2x+k2y-4k2-4=0,即2x-4+k2(y-4)=0,過(guò)定點(diǎn)(2,4),與x軸的交點(diǎn)A(2k2+2,0),由題意知,四邊形的面積等于三角形ABD的面積和梯形OCBD的面積之和,故所求四邊形的面積為12×4×(2k2+2-2)+2×(4-k+4)2=4k2-k+8,∴k=18時(shí),所求四邊形的面積最小,故為18.48.若關(guān)于x的不等式xa2-2xa-3<0在[-1,1]上恒成立,則實(shí)數(shù)a的取值范圍是
A.[-1,1]
B.[-1,3]
C.(-1,1)
D.(-1,3)答案:D49.已知兩條直線(xiàn)l1:y=x,l2:ax-y=0,其中a為實(shí)數(shù),當(dāng)這兩條直線(xiàn)的夾角在(0,)內(nèi)變動(dòng)時(shí),a的取值范圍是(
)
A.(0,1)
B.
C.
D.答案:C50.已知點(diǎn)M在z軸上,A(1,0,2),B(1,-3,1),且|MA|=|MB|,則點(diǎn)M的坐標(biāo)是
______.答案:∵點(diǎn)M在z軸上,∴設(shè)點(diǎn)M的坐標(biāo)為(0,0,z)又|MA|=|MB|,由空間兩點(diǎn)間的距離公式得:12+02+(z-2)2=12+32+(z-1)2解得:z=-3.故點(diǎn)M的坐標(biāo)是(0,0,-3).故為:(0,0,-3).第2卷一.綜合題(共50題)1.設(shè)a、b為單位向量,它們的夾角為90°,那么|a+3b|等于()A.7B.10C.13D.4答案:∵a,b它們的夾角為90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10,|a+3b|=10.故選B.2.證明:等腰三角形底邊上任意一點(diǎn)到兩腰的距離之和等于一腰上的高.答案:證明見(jiàn)解析:建立如圖所示的直角坐標(biāo)系.設(shè),,其中,.則直線(xiàn)的方程為,直線(xiàn)的方程為.設(shè)底邊上任意一點(diǎn)為,則到的距離;到的距離;到的距離.因?yàn)?,所以,結(jié)論成立.3.平面向量的夾角為,則等于(
)
A.
B.3
C.7
D.79答案:A4.已知矩陣A=abcd,若矩陣A屬于特征值3的一個(gè)特征向量為α1=11,屬于特征值-1的一個(gè)特征向量為α2=1-1,則矩陣A=______.答案:由矩陣A屬于特征值3的一個(gè)特征向量為α1=11可得abcd11=311,即a+b=3c+d=3;(4分)由矩陣A屬于特征值2的一個(gè)特征向量為α2=1-1,可得abcd1-1=(-1)1-1,即a-b=-1c-d=1,(6分)解得a=1b=2c=2d=1,即矩陣A=1221.(10分)故為:1221.5.把函數(shù)y=ex的圖像按向量=(2,3)平移,得到y(tǒng)=f(x)的圖像,則f(x)=(
)
A.ex+2+3
B.ex+2-3
C.ex-2+3
D.ex-2-3答案:C6.給出下列結(jié)論:
(1)兩個(gè)變量之間的關(guān)系一定是確定的關(guān)系;
(2)相關(guān)關(guān)系就是函數(shù)關(guān)系;
(3)回歸分析是對(duì)具有函數(shù)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的一種常用方法;
(4)回歸分析是對(duì)具有相關(guān)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的一種常用方法.
以上結(jié)論中,正確的有幾個(gè)?()
A.1
B.2
C.3
D.4答案:A7.已知:a={2,-3,1},b={2,0,-2},c={-1,-2,0},r=2a-3b+c,
則r的坐標(biāo)為_(kāi)_____.答案:∵a=(2,-3,1),b=(2,0,-2),c=(-1,-2,0)∴r=2a-
3b+c=2(2,-3,1)-3(2,0,-2)+(-1,-2,0)=(4,-6,2)-(6,0,-6)+(-1,-2,0)=(-3,-8,8)故為:(-3,-8,8)8.三棱錐P-ABC中,M為BC的中點(diǎn),以為基底,則可表示為()
A.
B.
C.
D.答案:D9.已知z1=5+3i,z2=5+4i,下列各式中正確的是()A.z1>z2B.z1<z2C.|z1|>|z2|D.|z1|<|z2|答案:∵z1=5+3i,z2=5+4i,∴z1與z2為虛數(shù),故不能比較大小,可排除A,B;又|z1|=34,|z2|=52+42=41,∴|z1|<|z2|,可排除C.故選D.10.(1)若三條直線(xiàn)2x+3y+8=0,x-y-1=0和x+ky=0相交于一點(diǎn),則k的值為?
(2)若α∈N,又三點(diǎn)A(α,0),B(0,α+4),C(1,3)共線(xiàn),求α的值.答案:(1)由2x+3y+8=0x-y-1=0解得x=-1,y=-2,∴直線(xiàn)2x+3y+8=0和x-y-1=0的交點(diǎn)為(-1,-2).∵三條直線(xiàn)2x+3y+8=0,x-y-1=0和x+ky=0相交于一點(diǎn),∴(-1,-2)在直線(xiàn)x+ky=0上,∴-1-2k=0,解得k=-12.(2)A、B、C三點(diǎn)共線(xiàn),說(shuō)明直線(xiàn)AB與直線(xiàn)AC的斜率相等∴a+4-00-a=3-01-a,解得:a=211.點(diǎn)M的直角坐標(biāo)是(,-1),在ρ≥0,0≤θ<2π的條件下,它的極坐標(biāo)是()
A.(2,)
B.(2,)
C.(,)
D.(,)答案:A12.若方程Ax2+By2=1表示焦點(diǎn)在y軸上的雙曲線(xiàn),則A、B滿(mǎn)足的條件是()
A.A>0,且B>0
B.A>0,且B<0
C.A<0,且B>0
D.A<0,且B<0答案:C13.在平面幾何中,四邊形的分類(lèi)關(guān)系可用以下框圖描述:
則在①中應(yīng)填入______;在②中應(yīng)填入______.答案:由題意知①對(duì)應(yīng)的四邊形是一個(gè)有一組鄰邊相等的平行四邊形,∴這里是一個(gè)菱形,②處的圖形是一個(gè)有一條腰和底邊垂直的梯形,∴②處是一個(gè)直角梯形,故為:菱形;直角梯形.14.已知A、B、C三點(diǎn)共線(xiàn),A分的比為λ=-,A,B的縱坐標(biāo)分別為2,5,則點(diǎn)C的縱坐標(biāo)為()
A.-10
B.6
C.8
D.10答案:D15.若A(x,5-x,2x-1),B(1,x+2,2-x),當(dāng)||取最小值時(shí),x的值等于(
)
A.
B.
C.
D.答案:C16.曲線(xiàn)與坐標(biāo)軸的交點(diǎn)是(
)A.B.C.D.答案:B解析:當(dāng)時(shí),,而,即,得與軸的交點(diǎn)為;當(dāng)時(shí),,而,即,得與軸的交點(diǎn)為17.若定義運(yùn)算a⊕b=b,a<ba,a≥b則函數(shù)f(x)=2x⊕(12)x的值域?yàn)開(kāi)_____(用區(qū)間表示).答案:由題意畫(huà)出f(x)=2x?(12)x的圖象(實(shí)線(xiàn)部分),由圖可知f(x)的值域?yàn)閇1,+∞).故為:[1,+∞).18.若2x+3y=1,求4x2+9y2的最小值,并求出最小值點(diǎn).答案:由柯西不等式(4x2+9y2)(12+12)≥(2x+3y)2=1,∴4x2+9y2≥12.當(dāng)且僅當(dāng)2x?1=3y?1,即2x=3y時(shí)取等號(hào).由2x=3y2x+3y=1得x=14y=16∴4x2+9y2的最小值為12,最小值點(diǎn)為(14,16).19.根據(jù)給出的空間幾何體的三視圖,用斜二側(cè)畫(huà)法畫(huà)出它的直觀(guān)圖.答案:畫(huà)法:(1)畫(huà)軸如下圖,畫(huà)x軸、y軸、z軸,三軸相交于點(diǎn)O,使∠x(chóng)Oy=45°,∠x(chóng)Oz=90°.(2)畫(huà)圓臺(tái)的兩底面畫(huà)出底面⊙O假設(shè)交x軸于A、B兩點(diǎn),在z軸上截取O′,使OO′等于三視圖中相應(yīng)高度,過(guò)O′作Ox的平行線(xiàn)O′x′,Oy的平行線(xiàn)O′y′利用O′x′與O′y′畫(huà)出底面⊙O′,設(shè)⊙O′交x′軸于A′、B′兩點(diǎn).(3)成圖連接A′A、B′B,去掉輔助線(xiàn),將被遮擋的部分要改為虛線(xiàn),即得到給出三視圖所表示的直觀(guān)圖.20.已知x2a2+y2b2=1(a>b>0),則a2+b2與(x+y)2的大小關(guān)系為
______.答案:由已知x2a2+y2b2=1(a>b>0)和柯西不等式的二維形式.得a2+b2=(a2+b2)(x2a2+y2b2)≥(a?xa+b?yb)2=(x+y)2.故為a2+b2≥(x+y)2.21.從2008名學(xué)生中選取50名學(xué)生參加數(shù)學(xué)競(jìng)賽,若采用下面的方法選?。合扔煤?jiǎn)單隨機(jī)抽樣從2008人中剔除8人,剩下的2000人再按系統(tǒng)抽樣的方法抽取50人,則在2008人中,每人入選的概率()
A.不全相等
B.均不相等
C.都相等,且為
D.都相等,且為答案:C22.若矩陣滿(mǎn)足下列條件:①每行中的四個(gè)數(shù)所構(gòu)成的集合均為{1,2,3,4};②四列中有且只有兩列的上下兩數(shù)是相同的.則這樣的不同矩陣的個(gè)數(shù)為()
A.24
B.48
C.144
D.288答案:C23.(選做題)方程ρ=cosθ與(t為參數(shù))分別表示何種曲線(xiàn)(
)。答案:圓,雙曲線(xiàn)24.化簡(jiǎn):AB+CD+BC=______.答案:如圖:AB+CD+BC=AB+BC+CD=AC+CD=AD.故為:AD.25.3i(1+i)2的虛部等于______.答案:3i(1+i)2=2,所以其虛部等于0,故為026.某校欲在一塊長(zhǎng)、短半軸長(zhǎng)分別為10米與8米的橢圓形土地中規(guī)劃一個(gè)矩形區(qū)域搞綠化,則在此橢圓形土地中可綠化的最大面積為()平方米.
A.80
B.160
C.320
D.160答案:B27.一口袋內(nèi)裝有5個(gè)黃球,3個(gè)紅球,現(xiàn)從袋中往外取球,每次取出一個(gè),取出后記下球的顏色,然后放回,直到紅球出現(xiàn)10次時(shí)停止,停止時(shí)取球的次數(shù)ξ是一個(gè)隨機(jī)變量,則P(ξ=12)=______.(填算式)答案:若ξ=12,則取12次停止,第12次取出的是紅球,前11次中有9次是紅球,∴P(ξ=12)=C119(38)9×(58)2×38=C911(38)10(58)2
故為C911(38)10(58)228.已知數(shù)列{an}中,a1=1,an+1=an+n,若利用如圖所示的種序框圖計(jì)算該數(shù)列的第10項(xiàng),則判斷框內(nèi)的條件是()
A.n≤8?
B.n≤9?
C.n≤10?
D.n≤11?
答案:B29.如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點(diǎn)H,直線(xiàn)HF交BC的延長(zhǎng)線(xiàn)于點(diǎn)G.
(1)求證:圓心O在直線(xiàn)AD上.
(2)求證:點(diǎn)C是線(xiàn)段GD的中點(diǎn).答案:證明:(1)∵AB=AC,AF=AE∴CD=BE又∵CF=CD,BD=BE∴CD=BD又∵△ABC是等腰三角形,∴AD是∠CAB的角分線(xiàn)∴圓心O在直線(xiàn)AD上.(5分)(II)連接DF,由(I)知,DH是⊙O的直徑,∴∠DHF=90°,∴∠FDH+∠FHD=90°又∵∠G+∠FHD=90°∴∠FDH=∠G∵⊙O與AC相切于點(diǎn)F∴∠AFH=∠GFC=∠FDH∴∠GFC=∠G∴CG=CF=CD∴點(diǎn)C是線(xiàn)段GD的中點(diǎn).(10分)30.設(shè)兩個(gè)正態(tài)分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)的密度曲線(xiàn)如圖所示,則有()
A.μ1<μ2,σ1<σ2
B.μ1<μ2,σ1>σ2
C.μ1>μ2,σ1<σ2
D.μ1>μ2,σ1>σ2
答案:A31.命題:“方程X2-2=0的解是X=±2”中使用邏輯聯(lián)系詞的情況是()A.沒(méi)有使用邏輯連接詞B.使用了邏輯連接詞“且”C.使用了邏輯連接詞“或”D.使用了邏輯連接詞“非”答案:命題:“方程X2-2=0的解是X=±2”可以化為:“方程X2-2=0的解是X=2,或X=-2”故命題:“方程X2-2=0的解是X=±2”中使用邏輯聯(lián)系詞為:或故選C32.已知a=0.80.7,b=0.80.9,c=1.20.8,則a、b、c按從小到大的順序排列為
______.答案:由指數(shù)函數(shù)y=0.8x知,∵0.7<0.9,∴0.80.9<0.80.7<1,即b<a,又c=1.20.8>1,∴b<a<c.b<a<c33.一個(gè)簡(jiǎn)單多面體的面都是三角形,頂點(diǎn)數(shù)V=6,則它的面數(shù)為_(kāi)_____個(gè).答案:∵已知多面體的每個(gè)面有三條邊,每相鄰兩條邊重合為一條棱,∴棱數(shù)E=32F,代入公式V+F-E=2,得F=2V-4.∵V=6,∴F=8,E=12,即多面體的面數(shù)F為8,棱數(shù)E為12.故為8.34.已知雙曲線(xiàn)x2-y22=1,經(jīng)過(guò)點(diǎn)M(1,1)能否作一條直線(xiàn)l,使直線(xiàn)l與雙曲線(xiàn)交于A、B,且M是線(xiàn)段AB的中點(diǎn),若存在這樣的直線(xiàn)l,求出它的方程;若不存在,說(shuō)明理由.答案:設(shè)過(guò)點(diǎn)M(1,1)的直線(xiàn)方程為y=k(x-1)+1或x=1(1)當(dāng)k存在時(shí)有y=k(x-1)+1x2
-y22=1得(2-k2)x2+(2k2-2k)x-k2+2k-3=0
(1)當(dāng)直線(xiàn)與雙曲線(xiàn)相交于兩個(gè)不同點(diǎn),則必有△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,k<32
又方程(1)的兩個(gè)不同的根是兩交點(diǎn)A、B的橫坐標(biāo)∴x1+x2=2(k-k2)2-k2
又M(1,1)為線(xiàn)段AB的中點(diǎn)∴x1+x22=1
即k-k22-k2=1
k=2
∴k=2,使2-k2≠0但使△<0因此當(dāng)k=2時(shí),方程(1)無(wú)實(shí)數(shù)解故過(guò)點(diǎn)m(1,1)與雙曲線(xiàn)交于兩點(diǎn)A、B且M為線(xiàn)段AB中點(diǎn)的直線(xiàn)不存在.(2)當(dāng)x=1時(shí),直線(xiàn)經(jīng)過(guò)點(diǎn)M但不滿(mǎn)足條件,綜上,符合條件的直線(xiàn)l不存在35.甲袋中裝有3個(gè)白球和5個(gè)黑球,乙袋中裝有4個(gè)白球和6個(gè)黑球,現(xiàn)從甲袋中隨機(jī)取出一個(gè)球放入乙袋中,充分混合后,再?gòu)囊掖须S機(jī)取出一個(gè)球放回甲袋中,則甲袋中白球沒(méi)有減少的概率為()A.944B.2544C.3544D.3744答案:白球沒(méi)有減少的情況有:①抓出黑球,抓入任意球,概率是:58.抓出白球,抓入白球,概率是38×511=1588,故所求事件的概率為58+1588=3544,故選C.36.向量a=i+
2j在向量b=3i+4j上的投影是______.答案:根據(jù)投影的定義可得:a在b方向上的投影為:|a|cos<a,b>=a?b|b|=1×3+2×452=115.故為:115.37.用反證法證明“如果a<b,那么“”,假設(shè)的內(nèi)容應(yīng)是()
A.
B.
C.且
D.或
答案:D38.設(shè)四邊形ABCD中,有DC=12AB,且|AD|=|BC|,則這個(gè)四邊形是
______.答案:由DC=12AB知四邊形ABCD是梯形,又|AD|=|BC|,即梯形的對(duì)角線(xiàn)相等,所以,四邊形ABCD是等腰梯形.故為:等腰梯形.39.在平面直角坐標(biāo)系xoy中,曲線(xiàn)C1的參數(shù)方程為x=4cosθy=2sinθ(θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,得曲線(xiàn)C2的極坐標(biāo)方程為ρ=2cosθ-4sinθ(ρ>0).
(Ⅰ)化曲線(xiàn)C1、C2的方程為普通方程,并說(shuō)明它們分別表示什么曲線(xiàn);
(Ⅱ)設(shè)曲線(xiàn)C1與x軸的一個(gè)交點(diǎn)的坐標(biāo)為P(m,0)(m>0),經(jīng)過(guò)點(diǎn)P作曲線(xiàn)C2的切線(xiàn)l,求切線(xiàn)l的方程.答案:(Ⅰ)曲線(xiàn)C1:x216+y24=1;曲線(xiàn)C2:(x-1)2+(y+2)2=5;(3分)曲線(xiàn)C1為中心是坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)半軸長(zhǎng)是4,短半軸長(zhǎng)是2的橢圓;曲線(xiàn)C2為圓心為(1,-2),半徑為5的圓(2分)(Ⅱ)曲線(xiàn)C1:x216+y24=1與x軸的交點(diǎn)坐標(biāo)為(-4,0)和(4,0),因?yàn)閙>0,所以點(diǎn)P的坐標(biāo)為(4,0),(2分)顯然切線(xiàn)l的斜率存在,設(shè)為k,則切線(xiàn)l的方程為y=k(x-4),由曲線(xiàn)C2為圓心為(1,-2),半徑為5的圓得|k+2-4k|k2+1=5,解得k=3±102,所以切線(xiàn)l的方程為y=3±102(x-4)(3分)40.已知隨機(jī)變量X的分布列是:(
)
X
4
a
9
10
P
0.3
0.1
b
0.2
且EX=7.5,則a的值為()
A.5
B.6
C.7
D.8答案:C41.已知F1(-2,0),F(xiàn)2(2,0)兩點(diǎn),曲線(xiàn)C上的動(dòng)點(diǎn)P滿(mǎn)足|PF1|+|PF2|
=32|F1F2|.
(Ⅰ)求曲線(xiàn)C的方程;
(Ⅱ)若直線(xiàn)l經(jīng)過(guò)點(diǎn)M(0,3),交曲線(xiàn)C于A,B兩點(diǎn),且MA=12MB,求直線(xiàn)l的方程.答案:(Ⅰ)由已知可得|PF1|+|PF2|
=32|F1F2|
=6>|F1F2|=4,故曲線(xiàn)C是以F1,F(xiàn)2為焦點(diǎn),長(zhǎng)軸長(zhǎng)為6的橢圓,其方程為x29+y25=1.(Ⅱ)方法一:設(shè)A(x1,y1),B(x2,y2),由條件可知A為MB的中點(diǎn),則有x129+y125=1,
(1)x229+y225=1,(2)2x1=x2,
(3)2y1=y2+3.
(4)將(3)、(4)代入(2)得4x129+(2y1-3)25=1,整理為4x129+4y125-125y1+45=0.將(1)代入上式得y1=2,再代入橢圓方程解得x1=±35,故所求的直線(xiàn)方程為y=±53x+3.方法二:依題意,直線(xiàn)l的斜率存在,設(shè)其方程為y=kx+3.由y=kx+3x29+y25=1得(5+9k2)x2+54kx+36=0.令△>0,解得k2>49.設(shè)A(x1,y1),B(x2,y2),則x1+x2=-54k5+9k2,①x1x2=365+9k2.②因?yàn)镸A=12MB,所以A為MB的中點(diǎn),從而x2=2x1.將x2=2x1代入①、②,得x1=-18k5+9k2,x12=185+9k2,消去x1得(-18k5+9k2)2=185+9k2,解得k2=59,k=±53.所以直線(xiàn)l的方程為y=±53x+3.42.已知△ABC,A(-1,0),B(3,0),C(2,1),對(duì)它先作關(guān)于x軸的反射變換,再將所得圖形繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°.
(1)分別求兩次變換所對(duì)應(yīng)的矩陣M1,M2;
(2)求△ABC在兩次連續(xù)的變換作用下所得到△A′B′C′的面積.答案:(1)關(guān)于x軸的反射變換M1=100-1,繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°的變換M2=0-110.(4分)(2)∵M(jìn)2?M1=0-110100-1=0110,(6分)△ABC在兩次連續(xù)的變換作用下所得到△A′B′C′,∴A(-1,0),B(3,0),C(2,1)變換成:A′(0,-1),B′(0,3),C′(1,2),(9分)∴△A'B'C'的面積=12×4×1=2.(10分)43.已知向量與的夾角為120°,若向量,且,則=()
A.2
B.
C.
D.答案:C44.已知圓C的圓心為(1,1),半徑為1.直線(xiàn)l的參數(shù)方程為x=2+tcosθy=2+tsinθ(t為參數(shù)),且θ∈[0,π3],點(diǎn)P的直角坐標(biāo)為(2,2),直線(xiàn)l與圓C交于A,B兩點(diǎn),求|PA|?|PB||PA|+|PB|的最小值.答案:圓C的普通方程是(x-1)2+(y-1)2=1,將直線(xiàn)l的參數(shù)方程代入并化簡(jiǎn)得t2+2(sinθ+cosθ)t+1=0,由直線(xiàn)參數(shù)方程的幾何意義得|PA|+|PB|=2|sinθ+cosθ|,|PA|?|PB|=1所以|PA|?|PB||PA|+|PB|=122|sin(θ+π4)|,θ∈[0,π3],當(dāng)θ=π4時(shí),|PA|?|PB||PA|+|PB|取得最小值122×1=24,所以|PA|?|PB||PA|+|PB|的最小值是24.45.已知|a|=1,|b|=2,<a,b>=60°,則|2a+b|=______.答案:∵|a|=1,|b|=2,<a,b>=60°,∴a?b=|a|×|b|cos60°=1由此可得(2a+b)2=4a2+4a?b+b2=4×12+4×1+22=12∴|2a+b|=(2a+b)2=23故為:2346.已知實(shí)數(shù)a,b滿(mǎn)足等式2a=3b,下列五個(gè)關(guān)系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;
⑤a=b.其中可能成立的關(guān)系式有()
A.①②③
B.①②⑤
C.①③⑤
D.③④⑤答案:B47.已知向量a=(0,-1,1),b=(4,1,0),|λa+b|=57且λ>0,則λ=______.答案:∵λa+b=λ(0,-1,1)+(4,1,0)=(4,1-λ,λ),|λa+b|=57,∴42+(1-λ)2+λ2=57,化為λ2-λ-20=0,又λ>0,解得λ=5.故為5.48.若命題P(n)對(duì)n=k成立,則它對(duì)n=k+2也成立,又已知命題P(2)成立,則下列結(jié)論正確的是()
A.P(n)對(duì)所有自然數(shù)n都成立
B.P(n)對(duì)所有正偶數(shù)n成立
C.P(n)對(duì)所有正奇數(shù)n都成立
D.P(n)對(duì)所有大于1的自然數(shù)n成立答案:B49.中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線(xiàn)的一條漸近線(xiàn)經(jīng)過(guò)點(diǎn)(4,2),則它的離心率為()
A.
B.
C.
D.答案:D50.已知原點(diǎn)O(0,0),則點(diǎn)O到直線(xiàn)4x+3y+5=0的距離等于
______.答案:利用點(diǎn)到直線(xiàn)的距離公式得到d=|5|42+32=1,故為1.第3卷一.綜合題(共50題)1.應(yīng)用反證法推出矛盾的推導(dǎo)過(guò)程中要把下列哪些作為條件使用()
①結(jié)論相反的判斷,即假設(shè)
②原命題的條件
③公理、定理、定義等
④原結(jié)論
A.①②
B.①②④
C.①②③
D.②③答案:C2.在15個(gè)村莊中有7個(gè)村莊交通不方便,現(xiàn)從中任意選10個(gè)村莊,用X表示這10個(gè)村莊中交通不方便的村莊數(shù),則P(X=4)=______.(用數(shù)字表示)答案:由題意P(X=4)=C47×C68C1015=7×6×53×2×1×8×72×115×14×13×12×115×4×3×2×1=140429故為:1404293.如圖,O是正方形ABCD對(duì)角線(xiàn)的交點(diǎn),四邊形OAED,OCFB都是正方形,在圖中所示的向量中:
(1)與AO相等的向量有
______;
(2)寫(xiě)出與AO共線(xiàn)的向量有
______;
(3)寫(xiě)出與AO的模相等的向量有
______;
(4)向量AO與CO是否相等?答
______.答案:(1)與AO相等的向量有BF(2)與AO共線(xiàn)的向量有DE,CO,BF(3)與AO的模相等的向量有DE,
DO,AE,CO,CF,BF,BO(4)模相等,方向相反故AO與CO不相等4.已知拋物線(xiàn)C的參數(shù)方程為x=8t2y=8t(t為參數(shù)),設(shè)拋物線(xiàn)C的焦點(diǎn)為F,準(zhǔn)線(xiàn)為l,P為拋物線(xiàn)上一點(diǎn),PA⊥l,A為垂足,如果直線(xiàn)AF的斜率為-3,那么|PF|=______.答案:把拋物線(xiàn)C的參數(shù)方程x=8t2y=8t(t為參數(shù)),消去參數(shù)化為普通方程為y2=8x.故焦點(diǎn)F(2,0),準(zhǔn)線(xiàn)方程為x=-2,再由直線(xiàn)FA的斜率是-3,可得直線(xiàn)FA的傾斜角為120°,設(shè)準(zhǔn)線(xiàn)和x軸的交點(diǎn)為M,則∠AFM=60°,且MF=p=4,∴∠PAF=180°-120°=60°.∴AM=MF?tan60°=43,故點(diǎn)A(0,43),把y=43代入拋物線(xiàn)求得x=6,∴點(diǎn)P(6,43),故|PF|=(6-2)2+(43-0)2=8,故為8.5.直線(xiàn)2x-3y+10=0的法向量的坐標(biāo)可以是答案:C6.執(zhí)行如圖的程序框圖,若p=15,則輸出的n=______.答案:當(dāng)n=1時(shí),S=2,n=2;當(dāng)n=2時(shí),S=6,n=3;當(dāng)n=3時(shí),S=14,n=4;當(dāng)n=4時(shí),S=30,n=5;故最后輸出的n值為5故為:57.已知函數(shù)f(x)=ax,(a>0,a≠1)的圖象經(jīng)過(guò)點(diǎn)P(12,12),則常數(shù)a的值為()A.2B.4C.12D.14答案:∵函數(shù)f(x)=ax,(a>0,a≠1)的圖象經(jīng)過(guò)點(diǎn)P(12,12),∴a12=12,?a=14.故選D.8.直線(xiàn)L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1∥L2,則a的值為(
)
A.-3
B.2
C.-3或2
D.3或-2答案:A9.某學(xué)校為了調(diào)查高三年級(jí)的200名文科學(xué)生完成課后作業(yè)所需時(shí)間,采取了兩種抽樣調(diào)查的方式:第一種由學(xué)生會(huì)的同學(xué)隨機(jī)抽取20名同學(xué)進(jìn)行調(diào)查;第二種由教務(wù)處對(duì)該年級(jí)的文科學(xué)生進(jìn)行編號(hào),從001到200,抽取學(xué)號(hào)最后一位為2的同學(xué)進(jìn)行調(diào)查,則這兩種抽樣的方法依次為()A.分層抽樣,簡(jiǎn)單隨機(jī)抽樣B.簡(jiǎn)單隨機(jī)抽樣,分層抽樣C.分層抽樣,系統(tǒng)抽樣D.簡(jiǎn)單隨機(jī)抽樣,系統(tǒng)抽樣答案:第一種由學(xué)生會(huì)的同學(xué)隨機(jī)抽取20名同學(xué)進(jìn)行調(diào)查;這是一種簡(jiǎn)單隨機(jī)抽樣,第二種由教務(wù)處對(duì)該年級(jí)的文科學(xué)生進(jìn)行編號(hào),從001到200,抽取學(xué)號(hào)最后一位為2的同學(xué)進(jìn)行調(diào)查,對(duì)于個(gè)體比較多的總體,采用系統(tǒng)抽樣,故選D.10.設(shè)x,y∈R,且滿(mǎn)足x2+y2=1,求x+y的最大值為()
A.
B.
C.2
D.1答案:A11.下列命題中為真命題的是(
)
A.平行直線(xiàn)的傾斜角相等
B.平行直線(xiàn)的斜率相等
C.互相垂直的兩直線(xiàn)的傾斜角互補(bǔ)
D.互相垂直的兩直線(xiàn)的斜率互為相反數(shù)答案:A12.如圖,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB為直徑作⊙O,連接OC,過(guò)點(diǎn)C作⊙O的切線(xiàn)CD,D為切點(diǎn),若sin∠OCD=45,則直徑AB=______.答案:連接OD,則OD⊥CD.∵∠ABC=90°,∴CD、CB為⊙O的兩條切線(xiàn).∴根據(jù)切線(xiàn)長(zhǎng)定理得:CD=BC=6.在Rt△OCD中,sin∠OCD=45,∴tan∠OCD=43,OD=tan∠OCD×CD=8.∴AB=2OD=16.故為16.13.由數(shù)字0、1、2、3、4可組成不同的三位數(shù)的個(gè)數(shù)是()
A.100
B.125
C.64
D.80答案:A14.若關(guān)于x,y的二元一次方程組m11mxy=m+12m至多有一組解,則實(shí)數(shù)m的取值范圍是______.答案:關(guān)于x,y的二元一次方程組m11mxy=m+12m即二元一次方程組mx+y=m+1①x+my=2m②①×m-②得(m2-1)x=m(m-1)當(dāng)m-1≠0時(shí)(m2-1)x=m(m-1)至多有一組解∴m≠1故為:(-∞,1)∪(1,+∞)15.從集合{0,1,2,3,4,5,6}中任取兩個(gè)互不相等的數(shù)a,b,組成復(fù)數(shù)a+bi,其中虛數(shù)有()
A.36個(gè)
B.42個(gè)
C.30個(gè)
D.35個(gè)答案:A16.某市為研究市區(qū)居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)繪制了樣本的頻率分布直方圖(如圖).
(Ⅰ)求月收入在[3000,3500)內(nèi)的被調(diào)查人數(shù);
(Ⅱ)估計(jì)被調(diào)查者月收入的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
答案:(I)10000×0.0003×500=1500(人)∴月收入在[3000,3500)內(nèi)的被調(diào)查人數(shù)1500人(II).x=1250×0.1+1750×0.2+2250×0.25+2750×0.25+3250×0.15+3750×0.05=2400∴估計(jì)被調(diào)查者月收入的平均數(shù)為240017.算法的有窮性是指()A.算法必須包含輸出B.算法中每個(gè)操作步驟都是可執(zhí)行的C.算法的步驟必須有限D(zhuǎn).以上說(shuō)法均不正確答案:一個(gè)算法必須在有限步內(nèi)結(jié)束,簡(jiǎn)單的說(shuō)就是沒(méi)有死循環(huán)即算法的步驟必須有限故選C.18.已知兩點(diǎn)P(4,-9),Q(-2,3),則直線(xiàn)PQ與y軸的交點(diǎn)分有向線(xiàn)段PQ的比為_(kāi)_____.答案:直線(xiàn)PQ與y軸的交點(diǎn)的橫坐標(biāo)等于0,由定比分點(diǎn)坐標(biāo)公式可得0=4+λ(-2)1+λ,解得λ=2,故直線(xiàn)PQ與y軸的交點(diǎn)分有向線(xiàn)段PQ的比為
λ=2,故為:2.19.某次考試,滿(mǎn)分100分,按規(guī)定x≥80者為良好,60≤x<80者為及格,小于60者不及格,畫(huà)出當(dāng)輸入一個(gè)同學(xué)的成績(jī)x時(shí),輸出這個(gè)同學(xué)屬于良好、及格還是不及格的程序框圖.答案:第一步:輸入一個(gè)成績(jī)X(0≤X≤100)第二步:判斷X是否大于等于80,若是,則輸出良好;否則,判斷X是否大于等于60,若是,則輸出及格;否則,輸出不及格;第三步:算法結(jié)束20.已知=(-3,2,5),=(1,x,-1),且=2,則x的值為()
A.3
B.4
C.5
D.6答案:C21.已知下列命題(其中a,b為直線(xiàn),α為平面):
①若一條直線(xiàn)垂直于一個(gè)平面內(nèi)無(wú)數(shù)條直線(xiàn),則這條直線(xiàn)與這個(gè)平面垂直;
②若一條直線(xiàn)平行于一個(gè)平面,則垂直于這條直線(xiàn)的直線(xiàn)必垂直于這個(gè)平面;
③若a∥α,b⊥α,則a⊥b;
④若a⊥b,則過(guò)b有且只有一個(gè)平面與a垂直.
上述四個(gè)命題中,真命題是()A.①,②B.②,③C.②,④D.③,④答案:①平面內(nèi)無(wú)數(shù)條直線(xiàn)均為平行線(xiàn)時(shí),不能得出直線(xiàn)與這個(gè)平面垂直,將“無(wú)數(shù)條”改為“所有”才正確;故①錯(cuò)誤;②垂直于這條直線(xiàn)的直線(xiàn)與這個(gè)平面可以是任何的位置關(guān)系,有可能是平行、相交、線(xiàn)在面內(nèi),故②錯(cuò)誤.③若a∥α,b⊥α,則必有a⊥b,正確;④若a⊥b,則過(guò)b有且只有一個(gè)平面與a垂直,顯然正確.故選D.22.如圖,⊙O過(guò)點(diǎn)B、C,圓心O在等腰Rt△ABC的內(nèi)部,,,
.則⊙O的半徑為(
).
A.6
B.13
C.
D.答案:C解析:分析:延長(zhǎng)AO交BC于D,接OB,根據(jù)AB=AC,O是等腰Rt△ABC的內(nèi)心,推出AD⊥BC,BD=DC=3,AO平分∠BAC,求出∠BAD=∠ABD=45°,AD=BD=3,由勾股定理求出OB即可.解答:解:延長(zhǎng)AO交BC于D,連接OB,∵⊙O過(guò)B、C,∴O在BC的垂直平分線(xiàn)上,∵AB=AC,圓心O在等腰Rt△ABC的內(nèi)部,∴AD⊥BC,BD=DC=3,AO平分∠BAC,∵∠BAC=90°,∴∠ADB=90°,∠BAD=45°,∴∠BAD=∠ABD=45°,∴AD=BD=3,∴OD=3-1=2,由勾股定理得:OB==故選C.23.有一段“三段論”推理是這樣的:對(duì)于可導(dǎo)函數(shù)f(x),如果f'(x0)=0,那么x=x0是函數(shù)f(x)的極值點(diǎn),因?yàn)楹瘮?shù)f(x)=x3在x=0處的導(dǎo)數(shù)值f'(0)=0,所以,x=0是函數(shù)f(x)=x3的極值點(diǎn).以上推理中()
A.大前提錯(cuò)誤
B.小前提錯(cuò)誤
C.推理形式錯(cuò)誤
D.結(jié)論正確答案:A24.已知一種材料的最佳加入量在100g到200g之間,若用0.618法安排試驗(yàn),則第一次試點(diǎn)的加入量可以是(
)g。答案:161.8或138.225.已知2a=3b=6c則有()
A.∈(2,3)
B.∈(3,4)
C.∈(4,5)
D.∈(5,6)答案:C26.設(shè)ABC是坐標(biāo)平面上的一個(gè)三角形,P為平面上一點(diǎn)且AP=15AB+25AC,則△ABP的面積△ABC的面積=()A.12B.15C.25D.23答案:連接CP并延長(zhǎng)交AB于D,∵P、C、D三點(diǎn)共線(xiàn),∴AP=λAD+μAC且λ+μ=1設(shè)AB=kAD,結(jié)合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面積與△ABC有相同的底邊AB高的比等于|PD|與|CD|之比∴△ABP的面積與△ABC面積之比為25故選:C27.“因?yàn)閷?duì)數(shù)函數(shù)y=logax是增函數(shù)(大前提),而y=logx是對(duì)數(shù)函數(shù)(小前提),所以y=logx是增函數(shù)(結(jié)論).”上面推理的錯(cuò)誤是()
A.大前提錯(cuò)導(dǎo)致結(jié)論錯(cuò)
B.小前提錯(cuò)導(dǎo)致結(jié)論錯(cuò)
C.推理形式錯(cuò)導(dǎo)致結(jié)論錯(cuò)
D.大前提和小前提都錯(cuò)導(dǎo)致結(jié)論錯(cuò)答案:A28.4個(gè)人各寫(xiě)一張賀年卡,集中后每人取一張別人的賀年卡,共有______種取法.答案:根據(jù)分類(lèi)計(jì)數(shù)問(wèn)題,可以列舉出所有的結(jié)果,1甲乙互換,丙丁互換2甲丙互換,乙丁互換3甲丁互換,乙丙互換4甲要乙的乙要丙的丙要丁的丁要甲的5甲要乙的乙要丁的丙要甲的丁要丙的6甲要丙的丙要乙的乙要丁的丁要甲的7甲要丙的丙要丁的乙要丁的丁要甲的8甲要丁的丁要乙的乙要丙的丙要甲的9甲要丁的丁要丙的乙要甲的丙要乙的通過(guò)列舉可以得到共有9種結(jié)果,故為:929.點(diǎn)M,N分別是曲線(xiàn)ρsinθ=2和ρ=2cosθ上的動(dòng)點(diǎn),則|MN|的最小值是______.答案:∵曲線(xiàn)ρsinθ=2和ρ=2cosθ分別為:y=2和x2+y2=2x,即直線(xiàn)y=2和圓心在(1,0)半徑為1的圓.顯然|MN|的最小值為1.故為:1.30.兩封信隨機(jī)投入A、B、C三個(gè)空郵箱,則A郵箱的信件數(shù)ξ的數(shù)學(xué)期望Eξ=______;答案:由題意知ξ的取值有0,1,2,當(dāng)ξ=0時(shí),即A郵箱的信件數(shù)為0,由分步計(jì)數(shù)原理知兩封信隨機(jī)投入A、B、C三個(gè)空郵箱,共有3×3種結(jié)果,而滿(mǎn)足條件的A郵箱的信件數(shù)為0的結(jié)果數(shù)是2×2,由古典概型公式得到ξ=0時(shí)的概率,同理可得ξ=1時(shí),ξ=2時(shí),ξ=3時(shí)的概率p(ξ=0)=2×29=49,p(ξ=1)=C12C129=49,p(ξ=2)=19,∴Eξ=0×49+1×49+2×19=23故為:23.31.點(diǎn)P(x0,y0)在圓x2+y2=r2內(nèi),則直線(xiàn)x0x+y0y=r2和已知圓的公共點(diǎn)的個(gè)數(shù)為(
)
A.0
B.1
C.2
D.不能確定答案:A32.設(shè)復(fù)數(shù)z的實(shí)部是
12,且|z|=1,則z=______.答案:設(shè)復(fù)數(shù)z的虛部等于b,b∈z,由復(fù)數(shù)z的實(shí)部是12,且|z|=1,可得14+b2=1,∴b=±32,故z=12±32i.故為:12±32i.33.如圖,⊙O與⊙O′交于
A,B,⊙O的弦AC與⊙O′相切于點(diǎn)A,⊙O′的弦AD與⊙O相切于A點(diǎn),則下列結(jié)論中正確的是()
A.∠1>∠2
B.∠1=∠2
C.∠1<∠2
D.無(wú)法確定
答案:B34.如圖,PT是⊙O的切線(xiàn),切點(diǎn)為T(mén),直線(xiàn)PA與⊙O交于A、B兩點(diǎn),∠TPA的平分線(xiàn)分別交直線(xiàn)TA、TB于D、E兩點(diǎn),已知PT=2,PB=3,則PA=______,TEAD=______.答案:由題意,如圖可得PT2=PB×PA又由已知PT=2,PB=3,故可得PA=433又TPA的平分線(xiàn)分別交直線(xiàn)TA、TB于D、E兩點(diǎn),可得∠TPE=∠APD又由弦切角定理知∠PTE=∠PAD故有△PET≈△PDA故有TE:AD=P
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 考古遺址橋梁保護(hù)協(xié)議
- 債權(quán)轉(zhuǎn)為股權(quán)投資協(xié)議
- 2025版電子商務(wù)供應(yīng)鏈金融合作協(xié)議3篇
- 高鐵建設(shè)機(jī)械費(fèi)施工合同
- 聯(lián)營(yíng)合作項(xiàng)目管理誤區(qū)
- 運(yùn)輸企業(yè)社會(huì)責(zé)任與可持續(xù)發(fā)展
- 臨時(shí)娛樂(lè)市場(chǎng)建設(shè)合同
- 雕塑藝術(shù)任課教師聘用合同
- 寵物行業(yè)經(jīng)紀(jì)人招聘協(xié)議
- 招投標(biāo)項(xiàng)目環(huán)境保護(hù)要求
- 穿越河流工程定向鉆專(zhuān)項(xiàng)施工方案
- 地球物理學(xué)進(jìn)展投稿須知
- 機(jī)床精度檢驗(yàn)標(biāo)準(zhǔn) VDI3441 a ISO230-2
- 社會(huì)主義新農(nóng)村建設(shè)建筑廢料利用探究
- 解析電力施工項(xiàng)目的信息化管理
- 火炬介紹 音速火炬等
- 制劑申請(qǐng)書(shū)(共16頁(yè))
- 《質(zhì)量守恒定律》評(píng)課稿
- 人教版七年級(jí)上冊(cè)地理《第4章居民與聚落 第3節(jié)人類(lèi)的聚居地——聚落》課件
- 對(duì)縣委常委班子及成員批評(píng)意見(jiàn)范文
- 數(shù)據(jù)中心IDC項(xiàng)目建議書(shū)
評(píng)論
0/150
提交評(píng)論