2023年陜西電子信息職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第1頁
2023年陜西電子信息職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第2頁
2023年陜西電子信息職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第3頁
2023年陜西電子信息職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第4頁
2023年陜西電子信息職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第5頁
已閱讀5頁,還剩41頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年陜西電子信息職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.直線x3+y4=1與x,y軸所圍成的三角形的周長等于()A.6B.12C.24D.60答案:直線x3+y4=1與兩坐標軸交于A(3,0),B(0,4),∴AB=5,∴△AOB的周長為:OA+OB+AB=3+4+5=12,故選B.2.如圖,平行四邊形ABCD中,AE:EB=1:2,若△AEF的面積為6,則△ABC的面積為()A.18B.54C.64D.72答案:∵ABCD為平行四邊形∴AB平行于CD∴△AEF∽△CDF∵AE:EB=1:2∴AE:CD=AE:AB=1:3∴S△CDF=32×S△AEF=9×6=54∵AF:CF=AE:CD=1:3∴S△ADF=S△CDF÷3=54÷3=18∴S△ABC=S△ACD=S△CDF+S△ADF=54+18=72故選D3.函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上的最大值比最小值大a2,則a的值為()A.32B.2C.12或32D.12答案:當a>1時,函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上是增函數(shù),由題意可得a2-a=a2,∴a=32.當1>a>0時,函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上是減函數(shù),由題意可得a-a2=a2,解得

a=12.綜上,a的值為12或32故選C.4.中心在坐標原點,離心率為的雙曲線的焦點在y軸上,則它的漸近線方程為()

A.

B.

C.

D.答案:D5.為如圖所示的四塊區(qū)域涂色,要求相鄰區(qū)域不能同色,現(xiàn)有3種不同顏色可供選擇,則共有______種不同涂色方案(要求用具體數(shù)字作答).答案:由題意,首先給左上方一個涂色,有三種結果,再給最左下邊的上面的涂色,有兩種結果,右上方,如果與左下邊的同色,則右方的涂色,有兩種結果,右上方,如果與左下邊的不同色,則右方的涂色,有1種結果,∴根據(jù)分步計數(shù)原理得到共有3×2×(2+1)=18種結果,故為18.6.若圓x2+y2=9上每個點的橫坐標不變,縱坐標縮短為原來的,則所得到的曲線的方程是()

A.

B.

C.

D.答案:C7.在如圖所示的莖葉圖中,甲、乙兩組數(shù)據(jù)的中位數(shù)分別是______.答案:由莖葉圖可得甲組共有9個數(shù)據(jù)中位數(shù)為45乙組共9個數(shù)據(jù)中位數(shù)為46故為45、468.過點(-3,-1),且與直線x-2y=0平行的直線方程為______.答案:直線l經(jīng)過點(-3,-1),且與直線x-2y=0平行,直線的斜率為12所以直線l的方程為:y+1=12(x+3)即x-2y+1=0.故為:x-2y+1=0.9.為了調(diào)查某產(chǎn)品的銷售情況,銷售部門從下屬的92家銷售連鎖店中抽取30家了解情況.若用系統(tǒng)抽樣法,則抽樣間隔和隨機剔除的個體數(shù)分別為()

A.3,2

B.2,3

C.2,30

D.30,2答案:A10.(幾何證明選做題)如圖,已知:△ABC內(nèi)接于圓O,點D在OC的延長線上,AD是圓O的切線,若∠B=30°,AC=2,則OD的長為______.答案:∵AD是圓O的切線,∠B=30°∴∠DAC=30°,∴∠OAC=60°,∴△AOC是一個等邊三角形,∴OA=OC=2,在直角三角形AOD中,OD=2AO=4,故為:4.11.隨機地向某個區(qū)域拋撒了100粒種子,在面積為10m2的地方有2粒種子發(fā)芽,假設種子的發(fā)芽率為100%,則整個撒種區(qū)域的面積大約有______m2.答案:設整個撒種區(qū)域的面積大約xm2,由于假設種子的發(fā)芽率為100%,所以在面積為10m2的地方有2粒種子發(fā)芽,意味著在面積為10m2的地方有2粒種子,從而有:100x=210,∴x=500,故為:500.12.已知曲線C的參數(shù)方程為x=4t2y=t(t為參數(shù)),若點P(m,2)在曲線C上,則m=______.答案:因為曲線C的參數(shù)方程為x=4t2y=t(t為參數(shù)),消去參數(shù)t得:x=4y2;∵點P(m,2)在曲線C上,所以m=4×4=16.故為:16.13.已知兩點A(2,1),B(3,3),則直線AB的斜率為()

A.2

B.

C.

D.-2答案:A14.設a>0,f(x)=ax2+bx+c,曲線y=f(x)在點P(x0,f(x0))處切線的傾斜角的取值范圍為[0,],則P到曲線y=f(x)對稱軸距離的取值范圍為()

A.[0,]

B.[0,]

C.[0,||]

D.[0,||]答案:B15.設k>1,則關于x,y的方程(1-k)x2+y2=k2-1所表示的曲線是()

A.長軸在x軸上的橢圓

B.長軸在y軸上的橢圓

C.實軸在x軸上的雙曲線

D.實軸在y軸上的雙曲線答案:D16.若復數(shù)(1+bi)?(2-i)是純虛數(shù)(i是虛數(shù)單位,b是實數(shù)),則b=()A.-2B.-12C.12D.2答案:由(1+bi)?(2-i)=2+b+(2b-1)i是純虛數(shù),則2+b=02b-1≠0,解得b=-2.故選A.17.如果x2+ky2=2表示焦點在y軸上的橢圓,則實數(shù)k的取值范圍是

______.答案:根據(jù)題意,x2+ky2=2化為標準形式為x22+y22k=1;根據(jù)題意,其表示焦點在y軸上的橢圓,則有2k>2;解可得0<k<1;故為0<k<1.18.構成多面體的面最少是(

A.三個

B.四個

C.五個

D.六個答案:B19.圓錐的側面展開圖是一個半徑長為4的半圓,則此圓錐的底面半徑為

______.答案:設圓錐的底面半徑為R,則由題意得,2πR=π×4,即R=2,故為:2.20.己知集合A={sinα,cosα},則α的取值范圍是______.答案:由元素的互異性可得sinα≠cosα,∴α≠kπ+π4,k∈z.故α的取值范圍是{α|α≠kπ+π4,k∈z},故為{α|α≠kπ+π4,k∈z}.21.不等式的解集

.答案:;解析:略22.已知A(4,1,3)、B(2,-5,1),C為線段AB上一點,且則C的坐標為()

A.

B.

C.

D.答案:C23.把兩條直線的位置關系填入結構圖中的M、N、E、F中,順序較為恰當?shù)氖牵ǎ?/p>

①平行

②垂直

③相交

④斜交.

A.①②③④

B.①④②③

C.①③②④

D.②①③④

答案:C24.乒乓球單打比賽在甲、乙兩名運動員間進行,比賽采用7局4勝制(即先勝4局者獲勝,比賽結束),假設兩人在每一局比賽中獲勝的可能性相同,那么甲以4比2獲勝的概率為()

A.

B.

C.

D.答案:D25.以下命題:

①二直線平行的充要條件是它們的斜率相等;

②過圓上的點(x0,y0)與圓x2+y2=r2相切的直線方程是x0x+y0y=r2;

③平面內(nèi)到兩定點的距離之和等于常數(shù)的點的軌跡是橢圓;

④拋物線上任意一點M到焦點的距離都等于點M到其準線的距離.

其中正確命題的標號是______.答案:①兩條直線平行的充要條件是它們的斜率相等,且截距不等,故①不正確,②過點(x0,y0)與圓x2+y2=r2相切的直線方程是x0x+y0y=r2.②正確,③不正確,若平面內(nèi)到兩定點距離之和等于常數(shù),如這個常數(shù)正好為兩個點的距離,則動點的軌跡是兩點的連線段,而不是橢圓;④根據(jù)拋物線的定義知:拋物線上任意一點M到焦點的距離都等于點M到其準線的距離.故④正確.故為:②④.26.已知雙曲線的兩條準線將兩焦點間的線段三等分,則雙曲線的離心率是______.答案:由題意可得2c×13=2a2c,∴3a2=c2,∴e=ca=3,故為:3.27.若E,F(xiàn),G,H分別為空間四邊形ABCD四邊AB,BC,CD,DA的中點,證明:四邊形EFGH是平行四邊形.答案:證明:∵E,F(xiàn),G,H分別為空間四邊形ABCD四邊AB,BC,CD,DA的中點,∴EF是△ABC的中位線,∴EF∥AC,且EF=12AC.同理可證,GH∥AC,且GH=12AC,故有

EF∥GH,且EF=GH,∴四邊形EFGH是平行四邊形.28.“△ABC中,若∠C=90°,則∠A、∠B都是銳角”的否命題為()

A.△ABC中,若∠C≠90°,則∠A、∠B都不是銳角

B.△ABC中,若∠C≠90°,則∠A、∠B不都是銳角

C.△ABC中,若∠C≠90°,則∠A、∠B都不一定是銳角

D.以上都不對答案:B29.橢圓x29+y216=1上一動點P到兩焦點距離之和為()A.10B.8C.6D.不確定答案:根據(jù)橢圓的定義,可知動點P到兩焦點距離之和為2a=8,故選B.30.已知圓的方程是(x-2)2+(y-3)2=4,則點P(3,2)滿足()

A.是圓心

B.在圓上

C.在圓內(nèi)

D.在圓外答案:C31.某校在檢查學生作業(yè)時,抽出每班學號尾數(shù)為4的學生作業(yè)進行檢查,這里主要運用的抽樣方法是()

A.分層抽樣

B.抽簽抽樣

C.隨機抽樣

D.系統(tǒng)抽樣答案:D32.為了參加奧運會,對自行車運動員甲、乙兩人在相同的條件下進行了6次測試,測得他們的最大速度的數(shù)據(jù)如表所示:

甲273830373531乙332938342836請判斷:誰參加這項重大比賽更合適,并闡述理由.答案:.X甲=27+38+30+37+35+316=33S甲=946≈3.958,(

4分).X乙=33+29+38+34+28+366=33S乙=383≈3.559(8分).X甲=.X乙,S甲>S乙

(10分)乙參加更合適

(12分)33.已知數(shù)列{an}前n項的和為Sn,且滿足an=n2

(n∈N*).

(Ⅰ)求s1、s2、s3的值;

(Ⅱ)用數(shù)學歸納法證明sn=n(n+1)(2n+1)6

(n∈N*).答案:(Ⅰ)∵an=n2,n∈N*∴s1=a1=1,s2=a1+a2=1+4=5,s3=a1+a2+a3=1+4+9=14.…(6分)(Ⅱ)證明:(1)當n=1時,左邊=s1=1,右邊=1×(1+1)(2+1)6=1,所以等式成立.…(8分)(2)假設n=k(k∈N*)時結論成立,即Sk=k(k+1)(2k+1)6,…(10分)那么,Sk+1=Sk+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6即n=k+1時,等式也成立.…(13分)根據(jù)(1)(2)可知對任意的正整數(shù)n∈N*都成立.…(14分)34.已知方程x2+y2+4x-2y-4=0,則x2+y2的最大值是()A.95B.45C.14-65D.14+65答案:由方程x2+y2+4x-2y-4=0得到圓心為(-2,1),半徑為3,設圓上一點為(x,y)圓心到原點的距離是(-2)2+1

2=5圓上的點到原點的最大距離是5+3故x2+y2的最大值是為(5+3)2=14+65故選D35.甲、乙兩位同學都參加了由學校舉辦的籃球比賽,它們都參加了全部的7場比賽,平均得分均為16分,標準差分別為5.09和3.72,則甲、乙兩同學在這次籃球比賽活動中,發(fā)揮得更穩(wěn)定的是()

A.甲

B.乙

C.甲、乙相同

D.不能確定答案:B36.已知隨機變量ξ服從二項分布ξ~B(6,),則E(2ξ+4)=()

A.10

B.4

C.3

D.9答案:A37.函數(shù)y=()|x|的圖象是()

A.

B.

C.

D.

答案:B38.曲線x=sin2ty=sint(t為參數(shù))的普通方程為______.答案:因為曲線x=sin2ty=sint(t為參數(shù))∴sint=y,代入x=sin2t,可得x=y2,其中-1≤y≤1.故為:x=y2,(-1≤y≤1).39.算法的有窮性是指()A.算法必須包含輸出B.算法中每個操作步驟都是可執(zhí)行的C.算法的步驟必須有限D.以上說法均不正確答案:一個算法必須在有限步內(nèi)結束,簡單的說就是沒有死循環(huán)即算法的步驟必須有限故選C.40.某市為抽查控制汽車尾氣排放的執(zhí)行情況,選擇了抽取汽車車牌號的末位數(shù)字是6的汽車進行檢查,這樣的抽樣方式是(

A.抽簽法

B.簡單隨機抽樣

C.分層抽樣

D.系統(tǒng)抽樣答案:D41.已知非零向量,若與互相垂直,則=(

A.

B.4

C.

D.2答案:D42.滿足條件|z|=|3+4i|的復數(shù)z在復平面上對應點的軌跡是______.答案:|z|=5,即點Z到原點O的距離為5∴z所對應點的軌跡為以(0,0)為圓心,5為半徑的圓.43.如圖是一個實物圖形,則它的左視圖大致為()A.

B.

C.

D.

答案:∵左視圖是指由物體左邊向右做正投影得到的視圖,并且在左視圖中看到的線用實線,看不到的線用虛線,∴該幾何體的左視圖應當是包含一條從左上到右下的對角線的矩形,并且對角線在左視圖中為實線,故選D.44.在極坐標系中與圓ρ=4sinθ相切的一條直線的方程為()

A.ρcosθ=2

B.ρsinθ=2

C.ρ=4sin(θ+)

D.ρ=4sin(θ-)答案:A45.已知點P是拋物線y2=2x上的一個動點,則點P到點(0,2)的距離與P到該拋物線準線的距離之和的最小值為______.答案:依題設P在拋物線準線的投影為P',拋物線的焦點為F,則F(12,0),依拋物線的定義知P到該拋物線準線的距離為|PP'|=|PF|,則點P到點A(0,2)的距離與P到該拋物線準線的距離之和d=|PF|+|PA|≥|AF|=(12)2+22=172.故為:172.46.Direchlet函數(shù)定義為:D(t)=1,t∈Q0,t∈CRQ,關于函數(shù)D(t)的性質(zhì)敘述不正確的是()A.D(t)的值域為{0,1}B.D(t)為偶函數(shù)C.D(t)不是周期函數(shù)D.D(t)不是單調(diào)函數(shù)答案:函數(shù)D(t)是分段函數(shù),值域是兩段的并集,所以值域為{0,1};有理數(shù)和無理數(shù)正負關于原點對稱,所以函數(shù)D(t)的圖象關于y軸對稱,所以函數(shù)是偶函數(shù);對于不同的有理數(shù)x對應的函數(shù)值相等,所以函數(shù)不是單調(diào)函數(shù);因為任取一個非0有理數(shù),都有有理數(shù)加有理數(shù)為有理數(shù),有理數(shù)加無理數(shù)為無理數(shù),所以函數(shù)D(t)的圖象周期出現(xiàn),所以函數(shù)是周期函數(shù),所以選項C不正確.故選C.47.“∵四邊形ABCD為矩形,∴四邊形ABCD的對角線相等”,補充以上推理的大前提為()

A.正方形都是對角線相等的四邊形

B.矩形都是對角線相等的四邊形

C.等腰梯形都是對角線相等的四邊形

D.矩形都是對邊平行且相等的四邊形答案:B48.在△ABC中,已知D是AB邊上一點,若AD=2DB,CD=λCA+μCB,則λμ的值為______.答案:∵AD=2DB,∴CD=CA+23

AB∵AB=CB-CA∴CD=CA+23AB=CA+23(CB-CA)=13CA+23CB∵CD=λCA+μCB∴λ=13,μ=23∴λμ=12故為1249.命題“當AB=AC時,△ABC是等腰三角形”與它的逆命題、否命題、逆否命題這四個命題中,真命題有______個.答案:原命題為真命題.逆命題“當△ABC是等腰三角形時,AB=AC”為假命題.否命題“當AB≠AC時,△ABC不是等腰三角形”為假命題.逆否命題“當△ABC不是等腰三角形時,AB≠AC”為真命題.故為:2.50.已知正方形ABCD的邊長為1,=,=,=,則|++|等于(

A.0

B.2

C.

D.3答案:B第2卷一.綜合題(共50題)1.設雙曲線x2a2-y2b2=1(a>b>0)的半焦距為c,直線l過(a,0),(0,b)兩點,已知原點到直線l的距離為34c,則雙曲線的離心率為______.答案:∵直線l過(a,0),(0,b)兩點,∴直線l的方程為:xa+yb=1,即bx+ay-ab=0,∵原點到直線l的距離為34c,∴|ab|a2+b2=3c4,又c2=a2+b2,∴3e4-16e2+16=0,∴e2=4,或e2=43.∵a>b>0,∴離心率為e=2或e=233;故為2或233.2.已知函數(shù)f(x)滿足:x≥4,則f(x)=(12)x;當x<4時f(x)=f(x+1),則f(2+log23)═______.答案:∵2+log23<4,∴f(2+log23)=f(3+log23)=f(log224)=(12)log224=124故應填1243.圓x2+y2=1和圓x2+y2-6y+5=0的位置關系是()

A.外切

B.內(nèi)切

C.外離

D.內(nèi)含答案:A4.已知點B是點A(2,-3,5)關于平面xOy的對稱點,則|AB|=()

A.10

B.

C.

D.38答案:A5.已知△ABC三個頂點的坐標為A(1,3)、B(-1,-1)、C(-3,5),求這個三角形外接圓的方程.答案:設圓的方程為(x-a)2+(y-b)2=r2,則(1-a)2+(3-b)2=r2(-1-a)2+(-1-b)2=r2(-3-a)2+(5-b)2=r2,整理得a+2b-2=02a-b+6=0,解之得a=-2,b=2,可得r2=10,因此,這個三角形外接圓的方程為(x+2)2+(y-2)2=10.6.在獨立性檢驗中,統(tǒng)計量Χ2有兩個臨界值:3.841和6.635.當Χ2>3.841時,有95%的把握說明兩個事件有關,當Χ2>6.635時,有99%的把握說明兩個事件有關,當Χ2≤3.841時,認為兩個事件無關.在一項打鼾與患心臟病的調(diào)查中,共調(diào)查了2000人,經(jīng)計算Χ2=20.87.根據(jù)這一數(shù)據(jù)分析,認為打鼾與患心臟病之間()

A.有95%的把握認為兩者有關

B.約有95%的打鼾者患心臟病

C.有99%的把握認為兩者有關

D.約有99%的打鼾者患心臟病答案:C7.在輸入語句中,若同時輸入多個變量,則變量之間的分隔符號是()

A.逗號

B.空格

C.分號

D.頓號答案:A8.口袋中有5只球,編號為1,2,3,4,5,從中任取3球,以ξ表示取出的球的最大號碼,則Eξ的值是()A.4B.4.5C.4.75D.5答案:由題意,ξ的取值可以是3,4,5ξ=3時,概率是1C35=110ξ=4時,概率是C23C35=310(最大的是4其它兩個從1、2、3里面隨機?。│?5時,概率是C24C35=610(最大的是5,其它兩個從1、2、3、4里面隨機?。嗥谕鸈ξ=3×110+4×310+5×610=4.5故選B.9.已知一直線斜率為3,且過A(3,4),B(x,7)兩點,則x的值為()

A.4

B.12

C.-6

D.3答案:A10.不等式的解集是(

A.(-∞,-1)∪(-1,2]

B.[-1,2]

C.(-∞,-1)∪[2,+∞)

D.(-1,2]答案:D11.函數(shù)y=ax的反函數(shù)的圖象過點(9,2),則a的值為______.答案:依題意,點(9,2)在函數(shù)y=ax的反函數(shù)的圖象上,則點(2,9)在函數(shù)y=ax的圖象上將x=2,y=9,代入y=ax中,得9=a2解得a=3故為:3.12.設函數(shù)g(x)=ex

x≤0lnx,x>0,則g(g(12))=______.答案:g(g(12))

=g(ln12)

=eln12=12故為:12.13.附加題選做題B.(矩陣與變換)

設矩陣A=m00n,若矩陣A的屬于特征值1的一個特征向量為10,屬于特征值2的一個特征向量為01,求實數(shù)m,n的值.答案:由題意得m00n10=110,m00n01=201,…6分化簡得m=10?n=00?m=0n=2所以m=1n=2.…10分14.如圖,平面內(nèi)有三個向量OA、OB、OC,其中與OA與OB的夾角為120°,OA與OC的夾角為30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),則λ+μ的值為______.答案:過C作OA與OB的平行線與它們的延長線相交,可得平行四邊形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四邊形的邊長為2和4,λ+μ=2+4=6.故為6.15.在空間直角坐標系中,點P(2,-4,6)關于y軸對稱點P′的坐標為P′(-2,-4,-6)P′(-2,-4,-6).答案:∵在空間直角坐標系中,點(2,-4,6)關于y軸對稱,∴其對稱點為:(-2,-4,-6),故為:(-2,-4,-6).16.x>1是x>2的()A.充分但不必要條件B.充要條件C.必要但不充分條件D.既不充分又不必要條件答案:由x>1,我們不一定能得出x>2,比如x=1.5,所以x>1不是x>2的充分條件;∵x>2>1,∴由x>2,能得出x>1,∴x>1是x>2的必要條件∴x>1是x>2的必要但不充分條件故選C.17.在程序語言中,下列符號分別表示什么運算*;\;∧;SQR;ABS?答案:“*”表示乘法運算;“\”表示除法運算;“∧”表示乘方運算;“SQR()”表示求算術平方根運算;“ABS()”表示求絕對值運算.18.方程x(x2+y2-1)=0和x2-(x2+y2-1)2=0表示的圖形是()

A.都是兩個點

B.一條直線和一個圓

C.前者為兩個點,后者是一條直線和一個圓

D.前者是一條直線和一個圓,后者是兩個圓答案:D19.有5組(x,y)的統(tǒng)計數(shù)據(jù):(1,2),(2,4),(4,5),(3,10),(10,12),要使剩下的數(shù)據(jù)具有較強的相關關系,應去掉的一組數(shù)據(jù)是()

A.(1,2)

B.(4,5)

C.(3,10)

D.(10,12)答案:C20.一條直線上順次有A、B、C三點,且|AB|=2,|BC|=3,則C分有向線段AB的比為()

A.-

B.-

C.-

D.-答案:A21.若數(shù)據(jù)x1,x2,x3…xn的平均數(shù).x=5,方差σ2=2,則數(shù)據(jù)3x1+1,3x2+1,3x3+1…,3xn+1的方差為______.答案:∵x1,x2,x3,…,xn的方差為2,∴3x1+1,3x2+1,3x3+1,…,3xn+1的方差是32×2=18.故為:18.22.橢圓有這樣的光學性質(zhì):從橢圓的一個焦點出發(fā)的光線,經(jīng)橢圓反射后,反射光線經(jīng)過橢圓的另一焦點.一水平放置的橢圓形臺球盤,F(xiàn)1,F(xiàn)2是其焦點,長軸長2a,焦距為2c.一靜放在F1點處的小球(半徑忽略不計),受擊打后沿直線運動(不與直線F1F2重合),經(jīng)橢圓壁反彈后再回到點F1時,小球經(jīng)過的路程是()

A.4c

B.4a

C.2(a+c)

D.4(a+c)答案:B23.按ABO血型系統(tǒng)學說,每個人的血型為A、B、O、AB型四種之一,依血型遺傳學,當且僅當父母中至少有一人的血型是AB型時,子女的血型一定不是O型,若某人的血型為O型,則其父母血型的所有可能情況有()

A.12種

B.6種

C.10種

D.9種答案:D24.方程x2+y2=1(xy<0)的曲線形狀是()

A.

B.

C.

D.

答案:C25.如圖,正六邊形ABCDEF中,=()

A.

B.

C.

D.

答案:D26.如圖,四邊形ABCD內(nèi)接于圓O,且AC、BD交于點E,則此圖形中一定相似的三角形有()對.

A.0

B.3

C.2

D.1

答案:C27.若方程sin2x+4sinx+m=0有實數(shù)解,則m的取值范圍是(

A、R

B、(-∞,-5]∪[3,+∞)

C、(-5,3)

D、[-5,3]答案:D28.如圖所示的幾何體ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥AB,M是EC的中點,

(Ⅰ)求證:DM⊥EB;

(Ⅱ)設二面角M-BD-A的平面角為β,求cosβ.答案:分別以直線AE,AB,AD為x軸、y軸、z軸,建立如圖所示的空間直角坐標系A-xyz,設CB=a,則A(0,0,0),E(2a,0,0),B(0,2a,0),C(0,2a,a),D(0,0,2a)所以M(a,a,a2).(Ⅰ):DM=(a,a,-3a2)

,EB=(-2a,2a,0)DM?EB=a?(-2a)+a?2a+0=0.∴DM⊥EB,即DM⊥EB.(Ⅱ)設平面MBD的法向量為n=(x,y,z),DB=(0,2a,-2a),由n⊥DB,n⊥DM,得n?DB=2ay-2az=0n?DM=ax+ay-3a2z=0?y=zx+y-3z2=0取z=2得平面MBD的一非零法向量為n=(1,2,2),又平面BDA的一個法向量n1=(1,0,0).∴cos<n,n1>

=1+0+012+22+22?12+02+

02=13,即cosβ=1329.已知函數(shù)f(x)=x2+2,x≥13x,x<1,則f(f(0))=()A.4B.3C.9D.11答案:因為f(0)=30=1,所以f[f(0)]═f(1)=1+2=3.故選B.30.函數(shù)y=ax+b與y=logbx且a>0,在同一坐標系內(nèi)的圖象是()A.

B.

C.

D.

答案:∵a>0,則函數(shù)y=ax+b為增函數(shù),與y軸的交點為(0,b)當0<b<1時,函數(shù)y=ax+b與y軸的交點在原點和(0,1)點之間,y=logbx為減函數(shù),D圖滿足要求;當b>1時,函數(shù)y=ax+b與y軸的交點在(0,1)點上方,y=logbx為增函數(shù),不存在滿足條件的圖象;故選D31.點(1,1)在圓(x-a)2+(y+a)2=4的內(nèi)部,則a的取值范圍是(

A.-1<a<1

B.0<a<1

C.a(chǎn)<-1或a>1

D.a(chǎn)=±1答案:A32.一元二次不等式ax2+bx+c≤0的解集是全體實數(shù)所滿足的條件是(

)

A.

B.

C.

D.答案:D33.某飲料公司招聘了一名員工,現(xiàn)對其進行一項測試,以便確定工資級別.公司準備了兩種不同的飲料共8杯,其顏色完全相同,并且其中4杯為A飲料,另外4杯為B飲料,公司要求此員工一一品嘗后,從8杯飲料中選出4杯A飲料.若4杯都選對,則月工資定位3500元;若4杯選對3杯,則月工資定為2800元,否則月工資定為2100元,今X表示此人選對A飲料的杯數(shù),假設此人對A和B兩種飲料沒有鑒別能力.

(1)求X的分布列;

(2)求此員工月工資的期望.答案:(1)X的所有可能取值為0,1,2,3,4,P(X=0)=1C48=170P(X=1)=C14C34C48=1670P(X=2)=C24C24C48=3670P(X=3)=C14C34C48=1670P(X=4)=1C48=170(2)此員工月工資Y的所有可能取值有3500、2800、2100,P(Y=3500)=P(X=4)=1C48=170P(Y=2800)=P(X=3)=C14C34C48=1670P(Y=2100)=P(X=0)+P(X=1)+P(X=2)=5370EY=3500×170+2800×1670+2100×5370=228034.給出20個數(shù):87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88它們的和是()A.1789B.1799C.1879D.1899答案:由題意知本題是一個求和問題,87+91+94+88+93+91+89+87+92+86+90+92+88+90+91+86+89+92+95+88=1799,故選B.35.下列各組向量中,可以作為基底的是()A.e1=(0,0),e2=(-2,1)B.e1=(4,6),e2=(6,9)C.e1=(2,-5),e2=(-6,4)D.e1=(2,-3),e2=(12,-34)答案:A、中的2個向量的坐標對應成比例,0-2=01,所以,這2個向量是共線向量,故不能作為基底.B、中的2個向量的坐標對應成比例,46=69,所以,這2個向量是共線向量,故不能作為基底.C中的2個向量的坐標對應不成比例,2-6≠-54,所以,這2個向量不是共線向量,故可以作為基底.D、中的2個向量的坐標對應成比例,212=-3-34,這2個向量是共線向量,故不能作為基底.故選C.36.“因為指數(shù)函數(shù)y=ax是增函數(shù)(大前提),而y=()x是指數(shù)函數(shù)(小前提),所以y=()x是增函數(shù)(結論)”,上面推理的錯誤是()

A.大前提錯導致結論錯

B.小前提錯導致結論錯

C.推理形式錯導致結論錯

D.大前提和小前提錯都導致結論錯答案:A37.算法框圖中表示判斷的是()A.

B.

C.

D.

答案:∵在算法框圖中,表示判斷的是菱形,故選B.38.某醫(yī)療研究所為了檢驗某種血清預防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設H0:“這種血清不能起到預防感冒的作用”,利用2×2列聯(lián)表計算得Χ2≈3.918,經(jīng)查對臨界值表知P(Χ2≥3.841)≈0.05.則下列結論中,正確結論的序號是______

(1)有95%的把握認為“這種血清能起到預防感冒的作用”

(2)若某人未使用該血清,那么他在一年中有95%的可能性得感冒

(3)這種血清預防感冒的有效率為95%

(4)這種血清預防感冒的有效率為5%答案:查對臨界值表知P(Χ2≥3.841)≈0.05,故有95%的把握認為“這種血清能起到預防感冒的作用”950/0僅是指“血清與預防感冒”可信程度,但也有“在100個使用血清的人中一個患感冒的人也沒有”的可能.故為:(1).39.已知a,b,c是正實數(shù),且a+b+c=1,則的最小值為(

)A.3B.6C.9D.12答案:C解析:本題考查均值不等式等知識。將1代入中,得,當且僅當,又,故時不等式取,選C。40.某校高三年級舉行一次演講賽共有10位同學參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學恰好被排在一起(指演講序號相連),而二班的2位同學沒有被排在一起的概率為:()A.110B.120C.140D.1120答案:由題意知本題是一個古典概型,∵試驗發(fā)生包含的所有事件是10位同學參賽演講的順序共有:A1010;滿足條件的事件要得到“一班有3位同學恰好被排在一起而二班的2位同學沒有被排在一起的演講的順序”可通過如下步驟:①將一班的3位同學“捆綁”在一起,有A33種方法;②將一班的“一梱”看作一個對象與其它班的5位同學共6個對象排成一列,有A66種方法;③在以上6個對象所排成一列的7個間隙(包括兩端的位置)中選2個位置,將二班的2位同學插入,有A72種方法.根據(jù)分步計數(shù)原理(乘法原理),共有A33?A66?A72種方法.∴一班有3位同學恰好被排在一起(指演講序號相連),而二班的2位同學沒有被排在一起的概率為:P=A33?A66?A27A1010=120.故選B.41.在投擲兩枚硬幣的隨機試驗中,記“一枚正面朝上,一枚反面朝上”為事件A,“兩枚正面朝上”為事件B,則事件A,B()

A.既是互斥事件又是對立事件

B.是對立事件而非互斥事件

C.既非互斥事件也非對立事件

D.是互斥事件而非對立事件答案:D42.(理)在直角坐標系中,圓C的參數(shù)方程是x=2cosθy=2+2sinθ(θ為參數(shù)),以原點為極點,以x軸正半軸為極軸建立極坐標系,則圓C的圓心極坐標為______.答案:∵直角坐標系中,圓C的參數(shù)方程是x=2cosθy=2+2sinθ(θ為參數(shù)),∴x2+(y-2)2=4,∵以原點為極點,以x軸正半軸為極軸建立極坐標系,∴圓心坐標(0,2),r=2∵0=pcosθ,∴θ=π2,又p=r=2,∴圓C的圓心極坐標為(2,π2),故為:(2,π2).43.不等式的解集是(

A.(-3,2)

B.(2,+∞)

C.(-∞,-3)∪(2,+∞)

D.(-∞,-3)∪(3,+∞)答案:C44.設f(x)=ex(x≤0)ln

x(x>0),則f[f(13)]=______.答案:因為f(x)=ex(x≤0)ln

x(x>0),所以f(13)=ln13<0,所以f[f(13)]=f(ln13)=eln13=13,故為13.45.已知a=(3λ,6,λ+6),b=(λ+1,3,2λ)為兩平行平面的法向量,則λ=______.答案:∵a=(3λ,6,λ+6),b=(λ+1,3,2λ)為兩平行平面的法向量,∴a∥b.∴存在實數(shù)k,使得a=kb,∴3λ=k(λ+1)6=3kλ+6=2λk,解得k=2λ=2,故為246.如圖,AB為⊙O的直徑,弦AC、BD交于點P,若AP=5,PC=3,DP=5,則AB=______.

答案:∵AP=5,PC=3,DP=5由相交弦定理可得:BP=35又∵AB為直徑,∴∠ACB=90°∴BC=PB2-PC2=6∴AB=AC2-BC2=10故為:1047.向面積為S的△ABC內(nèi)任投一點P,則△PBC的面積小于S2的概率為______.答案:記事件A={△PBC的面積小于S2},基本事件空間是三角形ABC的面積,(如圖)事件A的幾何度量為圖中陰影部分的面積(DE是三角形的中位線),因為陰影部分的面積是整個三角形面積的34,所以P(A)=陰影部分的面積三角形ABC的面積=34.故為:34.48.若x、y∈R+且x+2y≤ax+y恒成立,則a的最小值是()A.1B.2C.3D.1+22答案:由題意,根據(jù)柯西不等式得x+2y≤(1+2)(x+y)∴x+2y≤3(x+y)要使x+2y≤ax+y恒成立,∴a≥3∴a的最小值是3故選C.49.選修4-4:坐標系與參數(shù)方程

已知極點O與原點重合,極軸與x軸的正半軸重合.點A,B的極坐標分別為(2,π),(22,π4),曲線C的參數(shù)方程為答案:(Ⅰ)S△AOB=12×2×250.已知拋物線C:y2=4x的焦點為F,點A在拋物線C上運動.

(1)當點A,P滿足AP=-2FA,求動點P的軌跡方程;

(2)設M(m,0),其中m為常數(shù),m∈R+,點A到M的距離記為d,求d的最小值.答案:(1)設動點P的坐標為(x,y),點A的坐標為(xA,yA),則AP=(x-xA,y-yA),因為F的坐標為(1,0),所以FA=(xA-1,yA),因為AP=-2FA,所以(x-,y-yA)=-2(xA-1,yA).所以x-xA=-2(xA-1),y-yA=-2yA,所以xA=2-x,yA=-y代入y2=4x,得到動點P的軌跡方程為y2=8-4x;(2)由題意,d=(m-xA)2+yA2=(m-xA)2+4xA=(xA+2-m)2-4-4m∴m-2≤0,即0<m≤2,xA=0時,dmin=m;m-2>0,即m>2,xA=m-2時,dmin=-4-4m.第3卷一.綜合題(共50題)1.求證:菱形各邊中點在以對角線的交點為圓心的同一個圓上.答案:已知:如圖,菱形ABCD的對角線AC和BD相交于點O.求證:菱形ABCD各邊中點M、N、P、Q在以O為圓心的同一個圓上.證明:∵四邊形ABCD是菱形,∴AC⊥BD,垂足為O,且AB=BC=CD=DA,而M、N、P、Q分別是邊AB、BC、CD、DA的中點,∴OM=ON=OP=OQ=12AB,∴M、N、P、Q四點在以O為圓心OM為半徑的圓上.所以菱形各邊中點在以對角線的交點為圓心的同一個圓上.2.已知方程(1+k)x2-(1-k)y2=1表示焦點在x軸上的雙曲線,則k的取值范圍為(

A.-1<k<1

B.k>1

C.k<-1

D.k>1或k<-1答案:A3.不等式的解集是(

A.(-3,2)

B.(2,+∞)

C.(-∞,-3)∪(2,+∞)

D.(-∞,-3)∪(3,+∞)答案:C4.如圖,平面內(nèi)有三個向量OA、OB、OC,其中與OA與OB的夾角為120°,OA與OC的夾角為30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),則λ+μ的值為______.答案:過C作OA與OB的平行線與它們的延長線相交,可得平行四邊形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四邊形的邊長為2和4,λ+μ=2+4=6.故為6.5.若點A的坐標為(3,2),F(xiàn)是拋物線y2=2x的焦點,點M在拋物線上移動時,使|MF|+|MA|取得最小值的M的坐標為()A.(0,0)B.(12,1)C.(1,2)D.(2,2)答案:由題意得F(12,0),準線方程為x=-12,設點M到準線的距離為d=|PM|,則由拋物線的定義得|MA|+|MF|=|MA|+|PM|,故當P、A、M三點共線時,|MF|+|MA|取得最小值為|AP|=3-(-12)=72.把y=2代入拋物線y2=2x得x=2,故點M的坐標是(2,2),故選D.6.在直角坐標系內(nèi),坐標軸上的點構成的集合可表示為()A.{(x,y)|x=0,y≠0或x≠0,y=0}B.{(x,y)|x=0且y=0}C.{(x,y)|xy=0}D.{(x,y)|x,y不同時為零}答案:在x軸上的點(x,y),必有y=0;在y軸上的點(x,y),必有x=0,∴xy=0.∴直角坐標系中,x軸上的點的集合{(x,y)|y=0},直角坐標系中,y軸上的點的集合{(x,y)|x=0},∴坐標軸上的點的集合可表示為{(x,y)|y=0}∪{(x,y)|x=0}={(x,y)|xy=0}.故選C.7.若函數(shù),則下列結論正確的是(

)A.,在上是增函數(shù)B.,在上是減函數(shù)C.,是偶函數(shù)D.,是奇函數(shù)答案:C解析:對于時有是一個偶函數(shù)8.已知平面上直線l的方向向量=(-,),點O(0,0)和A(1,-2)在l上的射影分別是O'和A′,則=λ,其中λ等于()

A.

B.-

C.2

D.-2答案:D9.曲線的參數(shù)方程是(t是參數(shù),t≠0),它的普通方程是()

A.(x-1)2(y-1)=1

B.

C.

D.答案:B10.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|=()

A.

B.

C.

D.4答案:C11.直線x3+y4=t被兩坐標軸截得的線段長度為1,則t的值是

______.答案:令y=0,得:x=3t;令x=0,得:y=4t,所以被兩坐標軸截得的線段長度為(3t)2+(4t)2=|5t|=1所以t=±15故為±1512.已知正方體ABCD-A1B1C1D1,點E,F(xiàn)分別是上底面A1C1和側面CD1的中心,求下列各式中的x,y的值:

(1)AC1=x(AB+BC+CC1),則x=______;

(2)AE=AA1+xAB+yAD,則x=______,y=______;

(3)AF=AD+xAB+yAA1,則x=______,y=______.答案:(1)根據(jù)向量加法的首尾相連法則,x=1;(2)由向量加法的三角形法則得,AE=AA1+A1E,由四邊形法則和向量相等得,A1E=12(A1B1+A1D1)=12(AB+AD);∴AE=AA1+12AB+12AD,∴x=y=12;(3)由向量加法的三角形法則得,AF=AD+DF,由四邊形法則和向量相等得,DF=12(DC+DD1)=12(AB+AA1);∴AF=AD+12AB+12AA1,∴x=y=12.13.在空間直角坐標系中,已知點P(a,0,0),Q(4,1,2),且|PQ|=,則a=()

A.1

B.-1

C.-1或9

D.1或9答案:C14.點M(2,-3,1)關于坐標原點對稱的點是()

A.(-2,3,-1)

B.(-2,-3,-1)

C.(2,-3,-1)

D.(-2,3,1)答案:A15.已知函數(shù)①f(x)=3lnx;②f(x)=3ecosx;③f(x)=3ex;④f(x)=3cosx.其中對于f(x)定義域內(nèi)的任意一個自變量x1都存在唯一個個自變量x2,使f(x1)f(x2)=3成立的函數(shù)序號是______.答案:根據(jù)題意可知:①f(x)=3lnx,x=1時,lnx沒有倒數(shù),不成立;②f(x)=3ecosx,任一自變量f(x)有倒數(shù),但所取x】的值不唯一,不成立;③f(x)=3ex,任意一個自變量,函數(shù)都有倒數(shù),成立;④f(x)=3cosx,當x=2kπ+π2時,函數(shù)沒有倒數(shù),不成立.所以成立的函數(shù)序號為③故為③16.化簡的結果是()

A.a(chǎn)2

B.a(chǎn)

C.a(chǎn)

D.a(chǎn)答案:C17.計算:x10÷x5=______.答案:根據(jù)有理數(shù)指數(shù)冪的運算性質(zhì):x10÷x5=x5故為:x518.由直線y=x+1上的一點向圓(x-3)2+y2=1引切線,則切線長的最小值為()

A.1

B.2

C.

D.3答案:C19.某種肥皂原零售價每塊2元,凡購買2塊以上(包括2塊),商場推出兩種優(yōu)惠銷售辦法。第一種:一塊肥皂按原價,其余按原價的七折銷售;第二種:全部按原價的八折銷售。你在購買相同數(shù)量肥皂的情況下,要使第一種方法比第二種方法得到的優(yōu)惠多,最少需要買(

)塊肥皂。

A.5

B.2

C.3

D.4答案:D20.如圖,花園中間是噴水池,噴水池周圍的A、B、C、D區(qū)域種植草皮,要求相鄰的區(qū)域種不同顏色的草皮,現(xiàn)有4種不同顏色的草皮可供選用,則共有______種不同的種植方法(以數(shù)字作答).答案:若AD相同,有4×(3+3×2)種種植方法,若AD不同,有4×3×(2+2×1)種種植方法∴共有4×(3+3×2)+4×3×(2+2×1)=36+48=84種不同方法.故為84.21.已知a、b、c為某一直角三角形的三條邊長,c為斜邊.若點(m,n)在直線ax+by+2c=0上,則m2+n2的最小值是______.答案:根據(jù)題意可知:當(m,n)運動到原點與已知直線作垂線的垂足位置時,m2+n2的值最小,由三角形為直角三角形,且c為斜邊,根據(jù)勾股定理得:c2=a2+b2,所以原點(0,0)到直線ax+by+2c=0的距離d=|0+0+2c|a2+b2=2,則m2+n2的最小值為4.故為:4.22.設O為坐標原點,給定一個定點A(4,3),而點B(x,0)在x正半軸上移動,l(x)表示AB的長,則△OAB中兩邊長的比值的最大值為()

A.

B.

C.

D.答案:B23.已知圓的極坐標方程為:ρ2-42ρcos(θ-π4)+6=0.

(1)將極坐標方程化為普通方程;

(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.答案:(1)ρ2-42ρcos(θ-π4)+6=0

ρ2-42(22ρcosθ+22ρsinθ

),即x2+y2-4x-4y+6=0.(2)圓的參數(shù)方程為x=

2

+2cosαy=

2

+2sinα,∴x+y=4+2(sinα+cosα)=4+2sin(α+π4).由于-1≤sin(α+π4)≤1,∴2≤x+y≤6,故x+y的最大值為6,最小值等于2.24.直線x+y-1=0到直線xsinα+ycosα-1=0(<α<)的角是()

A.α-

B.-α

C.α-

D.-α答案:D25.把平面上一切單位向量的始點放在同一點,那么這些向量的終點所構成的圖形是()

A.一條線段

B.一段圓弧

C.圓上一群孤立點

D.一個單位圓答案:D26.巳知橢圓{xn}與{yn}的中心在坐標原點,長軸在x軸上,離心率為32,且G上一點到G的兩個焦點的距離之和為12,則橢圓G的方程為______.答案:由題設知e=32,2a=12,∴a=6,b=3,∴所求橢圓方程為x236+y29=1.:x236+y29=1.27.圓x=1+cosθy=1+sinθ(θ為參數(shù))的標準方程是

______,過這個圓外一點P(2,3)的該圓的切線方程是

______;答案:∵圓x=1+cosθy=1+sinθ(θ為參數(shù))消去參數(shù)θ,得:(x-1)2+(y-1)2=1,即圓x=1+cosθy=1+sinθ(θ為參數(shù))的標準方程是(x-1)2+(y-1)2=1;∵這個圓外一點P(2,3)的該圓的切線,當切線斜率不存在時,顯然x=2符合題意;當切線斜率存在時,設切線方程為:y-3=k(x-2),由圓心到切線的距離等于半徑,得|k-1+3-2k|k2+1=

1,解得:k=34,故切線方程為:3x-4y+6=0.故為:(x-1)2+(y-1)2=1;x=2或3x-4y+6=0.28.(Ⅰ)已知z∈C,且|z|-i=.z+2+3i(i為虛數(shù)單位),求復數(shù)z2+i的虛部.

(Ⅱ)已知z1=a+2i,z2=3-4i(i為虛數(shù)單位),且z1z2為純虛數(shù),求實數(shù)a的值.答案:(Ⅰ)設z=x+yi,代入方程|z|-i=.z+2+3i,得出x2+y2-i=x-yi+2+3i=(x+2)+(3-y)i,故有x2+y2=x+23-y=-1,解得x=3y=4,∴z=3+4i,復數(shù)z2+i=3+4i2+i=2+i,虛部為1(Ⅱ)z1z2=a+2i3-4i=3a-8+(4a+6)i25,且z1z2為純虛數(shù)則3a-8=0,且4a+6≠0,解得a=8329.若p、q是兩個簡單命題,且“p或q”的否定形式是真命題,則()

A.p真q真

B.p真q假

C.p假q真

D.p假q假答案:D30.如圖所示,正方體的棱長為1,點A是其一棱的中點,則點A在空間直角坐標系中的坐標是()

A.(,,1)

B.(1,1,)

C.(,1,)

D.(1,,1)

答案:B31.已知點P(t,t),t∈R,點M是圓x2+(y-1)2=上的動點,點N是圓(x-2)2+y2=上的動點,則|PN|-|PM|的最大值是(

A.-1

B.

C.2

D.1答案:C32.為了評價某個電視欄目的改革效果,在改革前后分別從居民點抽取了100位居民進行調(diào)查,經(jīng)過計算K2≈0.99,根據(jù)這一數(shù)據(jù)分析,下列說法正確的是()

A.有99%的人認為該欄目優(yōu)秀

B.有99%的人認為該欄目是否優(yōu)秀與改革有關系

C.有99%的把握認為電視欄目是否優(yōu)秀與改革有關系

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論