版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)為自然對數(shù)的底數(shù))在區(qū)間上不是單調函數(shù),則實數(shù)的取值范圍是()A. B. C. D.2.在區(qū)間上隨機取一個數(shù),使直線與圓相交的概率為()A. B. C. D.3.已知拋物線,F(xiàn)為拋物線的焦點且MN為過焦點的弦,若,,則的面積為()A. B. C. D.4.若函數(shù)的圖象過點,則它的一條對稱軸方程可能是()A. B. C. D.5.中國鐵路總公司相關負責人表示,到2018年底,全國鐵路營業(yè)里程達到13.1萬公里,其中高鐵營業(yè)里程2.9萬公里,超過世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運營里程(單位:萬公里)的折線圖,以下結論不正確的是()A.每相鄰兩年相比較,2014年到2015年鐵路運營里程增加最顯著B.從2014年到2018年這5年,高鐵運營里程與年價正相關C.2018年高鐵運營里程比2014年高鐵運營里程增長80%以上D.從2014年到2018年這5年,高鐵運營里程數(shù)依次成等差數(shù)列6.若雙曲線的焦距為,則的一個焦點到一條漸近線的距離為()A. B. C. D.7.函數(shù)的圖象如圖所示,則它的解析式可能是()A. B.C. D.8.函數(shù)在上的圖象大致為()A. B. C. D.9.若函數(shù)f(x)=a|2x-4|(a>0,a≠1)滿足f(1)=,則f(x)的單調遞減區(qū)間是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]10.設直線過點,且與圓:相切于點,那么()A. B.3 C. D.111.函數(shù)f(x)=2x-3A.[32C.[3212.已知復數(shù)和復數(shù),則為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù),對任意,有,且,則______.14.某班星期一共八節(jié)課(上午、下午各四節(jié),其中下午最后兩節(jié)為社團活動),排課要求為:語文、數(shù)學、外語、物理、化學各排一節(jié),從生物、歷史、地理、政治四科中選排一節(jié).若數(shù)學必須安排在上午且與外語不相鄰(上午第四節(jié)和下午第一節(jié)不算相鄰),則不同的排法有__________種.15.已知函數(shù),若關于的方程恰有四個不同的解,則實數(shù)的取值范圍是______.16.已知平面向量、的夾角為,且,則的最大值是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)本小題滿分14分)已知曲線的極坐標方程為,以極點為原點,極軸為軸的非負半軸建立平面直角坐標系,直線的參數(shù)方程為(為參數(shù)),求直線被曲線截得的線段的長度18.(12分)在平面直角坐標系xOy中,以O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為;直線l的參數(shù)方程為(t為參數(shù)).直線l與曲線C分別交于M,N兩點.(1)寫出曲線C的直角坐標方程和直線l的普通方程;(2)若點P的極坐標為,,求的值.19.(12分)在中,內角所對的邊分別為,已知,且.(I)求角的大??;(Ⅱ)若,求面積的取值范圍.20.(12分)設函數(shù).(1)當時,求不等式的解集;(2)若不等式恒成立,求實數(shù)a的取值范圍.21.(12分)設函數(shù)f(x)=|x﹣a|+|x|(a>0).(1)若不等式f(x)﹣|x|≥4x的解集為{x|x≤1},求實數(shù)a的值;(2)證明:f(x).22.(10分)如圖,在中,角的對邊分別為,且滿足,線段的中點為.(Ⅰ)求角的大??;(Ⅱ)已知,求的大小.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
求得的導函數(shù),由此構造函數(shù),根據(jù)題意可知在上有變號零點.由此令,利用分離常數(shù)法結合換元法,求得的取值范圍.【詳解】,設,要使在區(qū)間上不是單調函數(shù),即在上有變號零點,令,則,令,則問題即在上有零點,由于在上遞增,所以的取值范圍是.故選:B【點睛】本小題主要考查利用導數(shù)研究函數(shù)的單調性,考查方程零點問題的求解策略,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.2.C【解析】
根據(jù)直線與圓相交,可求出k的取值范圍,根據(jù)幾何概型可求出相交的概率.【詳解】因為圓心,半徑,直線與圓相交,所以,解得所以相交的概率,故選C.【點睛】本題主要考查了直線與圓的位置關系,幾何概型,屬于中檔題.3.A【解析】
根據(jù)可知,再利用拋物線的焦半徑公式以及三角形面積公式求解即可.【詳解】由題意可知拋物線方程為,設點點,則由拋物線定義知,,則.由得,則.又MN為過焦點的弦,所以,則,所以.故選:A【點睛】本題考查拋物線的方程應用,同時也考查了焦半徑公式等.屬于中檔題.4.B【解析】
把已知點坐標代入求出,然后驗證各選項.【詳解】由題意,,或,,不妨取或,若,則函數(shù)為,四個選項都不合題意,若,則函數(shù)為,只有時,,即是對稱軸.故選:B.【點睛】本題考查正弦型復合函數(shù)的對稱軸,掌握正弦函數(shù)的性質是解題關鍵.5.D【解析】
由折線圖逐項分析即可求解【詳解】選項,顯然正確;對于,,選項正確;1.6,1.9,2.2,2.5,2.9不是等差數(shù)列,故錯.故選:D【點睛】本題考查統(tǒng)計的知識,考查數(shù)據(jù)處理能力和應用意識,是基礎題6.B【解析】
根據(jù)焦距即可求得參數(shù),再根據(jù)點到直線的距離公式即可求得結果.【詳解】因為雙曲線的焦距為,故可得,解得,不妨取;又焦點,其中一條漸近線為,由點到直線的距離公式即可求的.故選:B.【點睛】本題考查由雙曲線的焦距求方程,以及雙曲線的幾何性質,屬綜合基礎題.7.B【解析】
根據(jù)定義域排除,求出的值,可以排除,考慮排除.【詳解】根據(jù)函數(shù)圖象得定義域為,所以不合題意;選項,計算,不符合函數(shù)圖象;對于選項,與函數(shù)圖象不一致;選項符合函數(shù)圖象特征.故選:B【點睛】此題考查根據(jù)函數(shù)圖象選擇合適的解析式,主要利用函數(shù)性質分析,常見方法為排除法.8.C【解析】
根據(jù)函數(shù)的奇偶性及函數(shù)在時的符號,即可求解.【詳解】由可知函數(shù)為奇函數(shù).所以函數(shù)圖象關于原點對稱,排除選項A,B;當時,,,排除選項D,故選:C.【點睛】本題主要考查了函數(shù)的奇偶性的判定及奇偶函數(shù)圖像的對稱性,屬于中檔題.9.B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上單調遞減,在[2,+∞)上單調遞增,所以f(x)在(-∞,2]上單調遞增,在[2,+∞)上單調遞減,故選B.10.B【解析】
過點的直線與圓:相切于點,可得.因此,即可得出.【詳解】由圓:配方為,,半徑.∵過點的直線與圓:相切于點,∴;∴;故選:B.【點睛】本小題主要考查向量數(shù)量積的計算,考查圓的方程,屬于基礎題.11.A【解析】
根據(jù)冪函數(shù)的定義域與分母不為零列不等式組求解即可.【詳解】因為函數(shù)y=2x-3解得x≥32且∴函數(shù)f(x)=2x-3+1【點睛】定義域的三種類型及求法:(1)已知函數(shù)的解析式,則構造使解析式有意義的不等式(組)求解;(2)對實際問題:由實際意義及使解析式有意義構成的不等式(組)求解;(3)若已知函數(shù)fx的定義域為a,b,則函數(shù)fgx12.C【解析】
利用復數(shù)的三角形式的乘法運算法則即可得出.【詳解】z1z2=(cos23°+isin23°)?(cos37°+isin37°)=cos60°+isin60°=.故答案為C.【點睛】熟練掌握復數(shù)的三角形式的乘法運算法則是解題的關鍵,復數(shù)問題高考必考,常見考點有:點坐標和復數(shù)的對應關系,點的象限和復數(shù)的對應關系,復數(shù)的加減乘除運算,復數(shù)的模長的計算.二、填空題:本題共4小題,每小題5分,共20分。13.-1【解析】
由二項式定理及展開式系數(shù)的求法得,又,所以,令得:,所以,得解.【詳解】由,且,則,又,所以,令得:,所以,故答案為:.【點睛】本題考查了二項式定理及展開式系數(shù)的求法,意在考查學生對這些知識的理解掌握水平.14.1344【解析】
分四種情況討論即可【詳解】解:數(shù)學排在第一節(jié)時有:數(shù)學排在第二節(jié)時有:數(shù)學排在第三節(jié)時有:數(shù)學排在第四節(jié)時有:所以共有1344種故答案為:1344【點睛】考查排列、組合的應用,注意分類討論,做到不重不漏;基礎題.15.【解析】
設,判斷為偶函數(shù),考慮x>0時,的解析式和零點個數(shù),利用導數(shù)分析函數(shù)的單調性,作函數(shù)大致圖象,即可得到的范圍.【詳解】設,則在是偶函數(shù),當時,,由得,記,,,故函數(shù)在增,而,所以在減,在增,,當時,,當時,,因此的圖象為因此實數(shù)的取值范圍是.【點睛】本題主要考查了函數(shù)的零點的個數(shù)問題,涉及構造函數(shù),函數(shù)的奇偶性,利用導數(shù)研究函數(shù)單調性,考查了數(shù)形結合思想方法,以及化簡運算能力和推理能力,屬于難題.16.【解析】
建立平面直角坐標系,設,可得,進而可得出,,由此將轉化為以為自變量的三角函數(shù),利用三角恒等變換思想以及正弦函數(shù)的有界性可得出結果.【詳解】根據(jù)題意建立平面直角坐標系如圖所示,設,,以、為鄰邊作平行四邊形,則,設,則,,且,在中,由正弦定理,得,即,在中,由正弦定理,得,即.,,則,當時,取最大值.故答案為:.【點睛】本題考查了向量的數(shù)量積最值的計算,將問題轉化為角的三角函數(shù)的最值問題是解答的關鍵,考查計算能力,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.【解析】解:解:將曲線的極坐標方程化為直角坐標方程為,即,它表示以為圓心,2為半徑圓,………4分直線方程的普通方程為,………8分圓C的圓心到直線l的距離,……………10分故直線被曲線截得的線段長度為.……………14分18.(1),;(2)2.【解析】
(1)由得,求出曲線的直角坐標方程.由直線的參數(shù)方程消去參數(shù),即求直線的普通方程;(2)將直線的參數(shù)方程化為標準式(為參數(shù)),代入曲線的直角坐標方程,韋達定理得,點在直線上,則,即可求出的值.【詳解】(1)由可得,即,即,曲線的直角坐標方程為,由直線的參數(shù)方程(t為參數(shù)),消去得,即直線的普通方程為.(Ⅱ)點的直角坐標為,則點在直線上.將直線的參數(shù)方程化為標準式(為參數(shù)),代入曲線的直角坐標方程,整理得,直線與曲線交于兩點,,即.設點所對應的參數(shù)分別為,由韋達定理可得,.點在直線上,,.【點睛】本題考查參數(shù)方程、極坐標方程和普通方程的互化及應用,屬于中檔題.19.(Ⅰ);(Ⅱ)【解析】
(I)根據(jù),利用二倍角公式得到,再由輔助角公式得到,然后根據(jù)正弦函數(shù)的性質求解.(Ⅱ)根據(jù)(I)由余弦定理得到,再利用重要不等式得到,然后由求解.【詳解】(I)因為,所以,,,或,或,因為,所以所以;(Ⅱ)由余弦定理得:,所以,所以,當且僅當取等號,又因為,所以,所以【點睛】本題主要考查二倍角公式,輔助角公式以及余弦定理,還考查了運算求解的能力,屬于中檔題.20.(1)(2)【解析】
(1)利用分段討論法去掉絕對值,結合圖象,從而求得不等式的解集;(2)求出函數(shù)的最小值,把問題化為,從而求得的取值范圍.【詳解】(1)當時,則所以不等式的解集為.(2)等價于,而,故等價于,所以或,即或,所以實數(shù)a的取值范圍為.【點睛】本題考查含有絕對值的不等式解法、不等式恒成立問題,考查函數(shù)與方程思想、轉化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力,難度一般.21.(1)a=1;(2)見解析【解析】
(1)由題意可得|x﹣a|≥4x,分類討論去掉絕對值,分別求得x的范圍即可求出a的值.(2)由條件利用絕對值三角不等式,基本不等式證得f(x)≥2..【詳解】(1)由f(x)﹣|x|≥4x,可得|x﹣a|≥4x,(a>0),當x≥a時,x﹣a≥4x,解得x,這與x≥a>0矛盾,故不成立,當x<a時,a﹣x≥4x,解得x,又不等式的解集是{x|x≤1},故1,解得a=1.(2)證明:f(x)=|x﹣a|+|x||x﹣a﹣(x)|=|a|,∵a>0,∴|a|=a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 云南醫(yī)藥健康職業(yè)學院《數(shù)學建模B》2023-2024學年第一學期期末試卷
- 二零二五年度城市綠化工程個人承包合同
- 2024版消防系統(tǒng)施工協(xié)議范本版B版
- 2024裝修合同附加條款明確合同版
- 計算機習題及答案
- 江蘇警官學院《微分方程II》2023-2024學年第一學期期末試卷
- 2024物業(yè)維修與保養(yǎng)服務合同
- 二零二五年度智能物流系統(tǒng)股東合作協(xié)議3篇
- 湖北科技職業(yè)學院《常微分方程專業(yè)理論教學》2023-2024學年第一學期期末試卷
- 二零二五年度綠色環(huán)保居間代理房產(chǎn)租賃合同3篇
- 2021版醫(yī)療廢物分類目錄專業(yè)解讀課件
- 樁基工程勞務分包施工方案
- 衛(wèi)生經(jīng)濟學理論知識考核試題及答案
- 反電信詐騙ppt-防范電信詐騙的ppt
- 危險化學品倉庫施工方案
- 加法交換律說課課件
- 樁基檢測的環(huán)保措施
- 輪機概論-大連海事大學
- 鋼筋計算截面面積及理論重量
- 基層動物防疫員培訓課件
- 抗高血壓藥與麻醉藥之間的相互作用
評論
0/150
提交評論