




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的圖象的大致形狀是()A. B. C. D.2.已知正四面體外接球的體積為,則這個(gè)四面體的表面積為()A. B. C. D.3.《九章算術(shù)》勾股章有一“引葭赴岸”問(wèn)題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問(wèn)水深,葭各幾何?”,其意思是:有一個(gè)直徑為一丈的圓柱形水池,池中心生有一顆類(lèi)似蘆葦?shù)闹参?,露出水面兩尺,若把它引向岸邊,正好與岸邊齊,問(wèn)水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為()A. B. C. D.4.中,點(diǎn)在邊上,平分,若,,,,則()A. B. C. D.5.若復(fù)數(shù)滿(mǎn)足,則()A. B. C. D.6.設(shè)(是虛數(shù)單位),則()A. B.1 C.2 D.7.已知正方體的棱長(zhǎng)為2,點(diǎn)在線段上,且,平面經(jīng)過(guò)點(diǎn),則正方體被平面截得的截面面積為()A. B. C. D.8.在四面體中,為正三角形,邊長(zhǎng)為6,,,,則四面體的體積為()A. B. C.24 D.9.設(shè)復(fù)數(shù)滿(mǎn)足為虛數(shù)單位),則()A. B. C. D.10.已知雙曲線:,,為其左、右焦點(diǎn),直線過(guò)右焦點(diǎn),與雙曲線的右支交于,兩點(diǎn),且點(diǎn)在軸上方,若,則直線的斜率為()A. B. C. D.11.已知函數(shù)滿(mǎn)足:當(dāng)時(shí),,且對(duì)任意,都有,則()A.0 B.1 C.-1 D.12.已知為定義在上的奇函數(shù),且滿(mǎn)足當(dāng)時(shí),,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知變量x,y滿(mǎn)足約束條件x-y≤0x+2y≤34x-y≥-6,則14.圓關(guān)于直線的對(duì)稱(chēng)圓的方程為_(kāi)____.15.已知平面向量,的夾角為,且,則=____16.三對(duì)父子去參加親子活動(dòng),坐在如圖所示的6個(gè)位置上,有且僅有一對(duì)父子是相鄰而坐的坐法有________種(比如:B與D、B與C是相鄰的,A與D、C與D是不相鄰的).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某工廠,兩條相互獨(dú)立的生產(chǎn)線生產(chǎn)同款產(chǎn)品,在產(chǎn)量一樣的情況下通過(guò)日常監(jiān)控得知,生產(chǎn)線生產(chǎn)的產(chǎn)品為合格品的概率分別為和.(1)從,生產(chǎn)線上各抽檢一件產(chǎn)品,若使得至少有一件合格的概率不低于,求的最小值.(2)假設(shè)不合格的產(chǎn)品均可進(jìn)行返工修復(fù)為合格品,以(1)中確定的作為的值.①已知,生產(chǎn)線的不合格產(chǎn)品返工后每件產(chǎn)品可分別挽回?fù)p失元和元.若從兩條生產(chǎn)線上各隨機(jī)抽檢件產(chǎn)品,以挽回?fù)p失的平均數(shù)為判斷依據(jù),估計(jì)哪條生產(chǎn)線挽回的損失較多?②若最終的合格品(包括返工修復(fù)后的合格品)按照一、二、三等級(jí)分類(lèi)后,每件分別獲利元、元、元,現(xiàn)從,生產(chǎn)線的最終合格品中各隨機(jī)抽取件進(jìn)行檢測(cè),結(jié)果統(tǒng)計(jì)如下圖;用樣本的頻率分布估計(jì)總體分布,記該工廠生產(chǎn)一件產(chǎn)品的利潤(rùn)為,求的分布列并估算該廠產(chǎn)量件時(shí)利潤(rùn)的期望值.18.(12分)已知橢圓()經(jīng)過(guò)點(diǎn),離心率為,、、為橢圓上不同的三點(diǎn),且滿(mǎn)足,為坐標(biāo)原點(diǎn).(1)若直線、的斜率都存在,求證:為定值;(2)求的取值范圍.19.(12分)在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù)),圓的方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.(1)求和的極坐標(biāo)方程;(2)過(guò)且傾斜角為的直線與交于點(diǎn),與交于另一點(diǎn),若,求的取值范圍.20.(12分)已知矩陣,.求矩陣;求矩陣的特征值.21.(12分)在平面直角坐標(biāo)系中,已知橢圓:()的左、右焦點(diǎn)分別為、,且點(diǎn)、與橢圓的上頂點(diǎn)構(gòu)成邊長(zhǎng)為2的等邊三角形.(1)求橢圓的方程;(2)已知直線與橢圓相切于點(diǎn),且分別與直線和直線相交于點(diǎn)、.試判斷是否為定值,并說(shuō)明理由.22.(10分)如圖,在正四棱柱中,,,過(guò)頂點(diǎn),的平面與棱,分別交于,兩點(diǎn)(不在棱的端點(diǎn)處).(1)求證:四邊形是平行四邊形;(2)求證:與不垂直;(3)若平面與棱所在直線交于點(diǎn),當(dāng)四邊形為菱形時(shí),求長(zhǎng).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
根據(jù)函數(shù)奇偶性,可排除D;求得及,由導(dǎo)函數(shù)符號(hào)可判斷在上單調(diào)遞增,即可排除AC選項(xiàng).【詳解】函數(shù)易知為奇函數(shù),故排除D.又,易知當(dāng)時(shí),;又當(dāng)時(shí),,故在上單調(diào)遞增,所以,綜上,時(shí),,即單調(diào)遞增.又為奇函數(shù),所以在上單調(diào)遞增,故排除A,C.故選:B【點(diǎn)睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,導(dǎo)函數(shù)性質(zhì)與函數(shù)圖象關(guān)系,屬于中檔題.2.B【解析】
設(shè)正四面體ABCD的外接球的半徑R,將該正四面體放入一個(gè)正方體內(nèi),使得每條棱恰好為正方體的面對(duì)角線,根據(jù)正方體和正四面體的外接球?yàn)橥粋€(gè)球計(jì)算出正方體的棱長(zhǎng),從而得出正四面體的棱長(zhǎng),最后可求出正四面體的表面積.【詳解】將正四面體ABCD放在一個(gè)正方體內(nèi),設(shè)正方體的棱長(zhǎng)為a,如圖所示,設(shè)正四面體ABCD的外接球的半徑為R,則,得.因?yàn)檎拿骟wABCD的外接球和正方體的外接球是同一個(gè)球,則有,∴.而正四面體ABCD的每條棱長(zhǎng)均為正方體的面對(duì)角線長(zhǎng),所以,正四面體ABCD的棱長(zhǎng)為,因此,這個(gè)正四面體的表面積為.故選:B.【點(diǎn)睛】本題考查球的內(nèi)接多面體,解決這類(lèi)問(wèn)題就是找出合適的模型將球體的半徑與幾何體的一些幾何量聯(lián)系起來(lái),考查計(jì)算能力,屬于中檔題.3.C【解析】
由題意知:,,設(shè),則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設(shè),則在中,列勾股方程得:,解得所以從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為故選C.【點(diǎn)睛】本題考查了幾何概型中的長(zhǎng)度型,屬于基礎(chǔ)題.4.B【解析】
由平分,根據(jù)三角形內(nèi)角平分線定理可得,再根據(jù)平面向量的加減法運(yùn)算即得答案.【詳解】平分,根據(jù)三角形內(nèi)角平分線定理可得,又,,,,..故選:.【點(diǎn)睛】本題主要考查平面向量的線性運(yùn)算,屬于基礎(chǔ)題.5.C【解析】
化簡(jiǎn)得到,,再計(jì)算復(fù)數(shù)模得到答案.【詳解】,故,故,.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的化簡(jiǎn),共軛復(fù)數(shù),復(fù)數(shù)模,意在考查學(xué)生的計(jì)算能力.6.A【解析】
先利用復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則求出,即可根據(jù)復(fù)數(shù)的模計(jì)算公式求出.【詳解】∵,∴.故選:A.【點(diǎn)睛】本題主要考查復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則的應(yīng)用,以及復(fù)數(shù)的模計(jì)算公式的應(yīng)用,屬于容易題.7.B【解析】
先根據(jù)平面的基本性質(zhì)確定平面,然后利用面面平行的性質(zhì)定理,得到截面的形狀再求解.【詳解】如圖所示:確定一個(gè)平面,因?yàn)槠矫嫫矫?,所以,同理,所以四邊形是平行四邊?即正方體被平面截的截面.因?yàn)椋?,即所以由余弦定理得:所以所以四邊形故選:B【點(diǎn)睛】本題主要考查平面的基本性質(zhì),面面平行的性質(zhì)定理及截面面積的求法,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.8.A【解析】
推導(dǎo)出,分別取的中點(diǎn),連結(jié),則,推導(dǎo)出,從而,進(jìn)而四面體的體積為,由此能求出結(jié)果.【詳解】解:在四面體中,為等邊三角形,邊長(zhǎng)為6,,,,,,分別取的中點(diǎn),連結(jié),則,且,,,,平面,平面,,四面體的體積為:.故答案為:.【點(diǎn)睛】本題考查四面體體積的求法,考查空間中線線,線面,面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力.9.B【解析】
易得,分子分母同乘以分母的共軛復(fù)數(shù)即可.【詳解】由已知,,所以.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的乘法、除法運(yùn)算,考查學(xué)生的基本計(jì)算能力,是一道容易題.10.D【解析】
由|AF2|=3|BF2|,可得.設(shè)直線l的方程x=my+,m>0,設(shè),,即y1=﹣3y2①,聯(lián)立直線l與曲線C,得y1+y2=-②,y1y2=③,求出m的值即可求出直線的斜率.【詳解】雙曲線C:,F(xiàn)1,F(xiàn)2為左、右焦點(diǎn),則F2(,0),設(shè)直線l的方程x=my+,m>0,∵雙曲線的漸近線方程為x=±2y,∴m≠±2,設(shè)A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,聯(lián)立①②得,聯(lián)立①③得,,即:,,解得:,直線的斜率為,故選D.【點(diǎn)睛】本題考查直線與雙曲線的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查向量知識(shí),屬于中檔題.11.C【解析】
由題意可知,代入函數(shù)表達(dá)式即可得解.【詳解】由可知函數(shù)是周期為4的函數(shù),.故選:C.【點(diǎn)睛】本題考查了分段函數(shù)和函數(shù)周期的應(yīng)用,屬于基礎(chǔ)題.12.C【解析】
由題設(shè)條件,可得函數(shù)的周期是,再結(jié)合函數(shù)是奇函數(shù)的性質(zhì)將轉(zhuǎn)化為函數(shù)值,即可得到結(jié)論.【詳解】由題意,,則函數(shù)的周期是,所以,,又函數(shù)為上的奇函數(shù),且當(dāng)時(shí),,所以,.故選:C.【點(diǎn)睛】本題考查函數(shù)的周期性,由題設(shè)得函數(shù)的周期是解答本題的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.-5【解析】
畫(huà)出x,y滿(mǎn)足的可行域,當(dāng)目標(biāo)函數(shù)z=x-2y經(jīng)過(guò)點(diǎn)A時(shí),z最小,求解即可?!驹斀狻慨?huà)出x,y滿(mǎn)足的可行域,由x+2y=34x-y=-6解得A-1,2,當(dāng)目標(biāo)函數(shù)z=x-2y經(jīng)過(guò)點(diǎn)A【點(diǎn)睛】本題考查的是線性規(guī)劃問(wèn)題,解決線性規(guī)劃問(wèn)題的實(shí)質(zhì)是把代數(shù)問(wèn)題幾何化,即數(shù)形結(jié)合思想。需要注意的是:一,準(zhǔn)確無(wú)誤地作出可行域;二,畫(huà)目標(biāo)函數(shù)所對(duì)應(yīng)的直線時(shí),要注意讓其斜率與約束條件中的直線的斜率進(jìn)行比較,避免出錯(cuò);三,一般情況下,目標(biāo)函數(shù)的最大值或最小值會(huì)在可行域的端點(diǎn)或邊界上取得。14.【解析】
求出圓心關(guān)于直線的對(duì)稱(chēng)點(diǎn),即可得解.【詳解】的圓心為,關(guān)于對(duì)稱(chēng)點(diǎn)設(shè)為,則有:,解得,所以對(duì)稱(chēng)后的圓心為,故所求圓的方程為.故答案為:【點(diǎn)睛】此題考查求圓關(guān)于直線的對(duì)稱(chēng)圓方程,關(guān)鍵在于準(zhǔn)確求出圓心關(guān)于直線的對(duì)稱(chēng)點(diǎn)坐標(biāo).15.1【解析】
根據(jù)平面向量模的定義先由坐標(biāo)求得,再根據(jù)平面向量數(shù)量積定義求得;將化簡(jiǎn)并代入即可求得.【詳解】,則,平面向量,的夾角為,則由平面向量數(shù)量積定義可得,根據(jù)平面向量模的求法可知,代入可得,解得,故答案為:1.【點(diǎn)睛】本題考查了平面向量模的求法及簡(jiǎn)單應(yīng)用,平面向量數(shù)量積的定義及運(yùn)算,屬于基礎(chǔ)題.16.192【解析】
根據(jù)題意,分步進(jìn)行分析:①,在三對(duì)父子中任選1對(duì),安排在相鄰的位置上,②,將剩下的4人安排在剩下的4個(gè)位置,要求父子不能坐在相鄰的位置,由分步計(jì)數(shù)原理計(jì)算可得答案.【詳解】根據(jù)題意,分步進(jìn)行分析:①,在三對(duì)父子中任選1對(duì),有3種選法,由圖可得相鄰的位置有4種情況,將選出的1對(duì)父子安排在相鄰的位置,有種安排方法;②,將剩下的4人安排在剩下的4個(gè)位置,要求父子不能坐在相鄰的位置,有種安排方法,則有且僅有一對(duì)父子是相鄰而坐的坐法種;故答案為:【點(diǎn)睛】本題考查排列、組合的應(yīng)用,涉及分步計(jì)數(shù)原理的應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)①生產(chǎn)線上挽回的損失較多.②見(jiàn)解析【解析】
(1)由題意得到關(guān)于的不等式,求解不等式得到的取值范圍即可確定其最小值;(2)①.由題意利用二項(xiàng)分布的期望公式和數(shù)學(xué)期望的性質(zhì)給出結(jié)論即可;②.由題意首先確定X可能的取值,然后求得相應(yīng)的概率值可得分布列,最后由分布列可得利潤(rùn)的期望值.【詳解】(1)設(shè)從,生產(chǎn)線上各抽檢一件產(chǎn)品,至少有一件合格為事件,設(shè)從,生產(chǎn)線上抽到合格品分別為事件,,則,互為獨(dú)立事件由已知有,則解得,則的最小值(2)由(1)知,生產(chǎn)線的合格率分別為和,即不合格率分別為和.①設(shè)從,生產(chǎn)線上各抽檢件產(chǎn)品,抽到不合格產(chǎn)品件數(shù)分別為,,則有,,所以,生產(chǎn)線上挽回?fù)p失的平均數(shù)分別為:,所以生產(chǎn)線上挽回的損失較多.②由已知得的可能取值為,,,用樣本估計(jì)總體,則有,,所以的分布列為所以(元)故估算估算該廠產(chǎn)量件時(shí)利潤(rùn)的期望值為(元)【點(diǎn)睛】本題主要考查概率公式的應(yīng)用,二項(xiàng)分布的性質(zhì)與方差的求解,離散型隨機(jī)變量及其分布列的求解等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.18.(1)證明見(jiàn)解析;(2).【解析】
(1)首先根據(jù)題中條件求出橢圓方程,設(shè)、、點(diǎn)坐標(biāo),根據(jù)利用坐標(biāo)表示出即可得證;(2)設(shè)直線方程,再與橢圓方程聯(lián)立利用韋達(dá)定理表示出,即可求出范圍.【詳解】(1)依題有,所以橢圓方程為.設(shè),,,由為的重心,;又因?yàn)椋?,,,?)當(dāng)?shù)男甭什淮嬖跁r(shí):,,,代入橢圓得,,,當(dāng)?shù)男甭蚀嬖跁r(shí):設(shè)直線為,這里,由,,根據(jù)韋達(dá)定理有,,,故,代入橢圓方程有,又因?yàn)?,綜上,的范圍是.【點(diǎn)睛】本題主要考查了橢圓方程的求解,三角形重心的坐標(biāo)關(guān)系,直線與橢圓所交弦長(zhǎng),屬于一般題.19.(1);(2)【解析】
(1)直接利用轉(zhuǎn)換公式,把參數(shù)方程,直角坐標(biāo)方程與極坐標(biāo)方程進(jìn)行轉(zhuǎn)化;(2)利用極坐標(biāo)方程將轉(zhuǎn)化為三角函數(shù)求解即可.【詳解】(1)因?yàn)?,所以的普通方程為,又,,,的極坐標(biāo)方程為,的方程即為,對(duì)應(yīng)極坐標(biāo)方程為.(2)由己知設(shè),,則,,所以,又,,當(dāng),即時(shí),取得最小值;當(dāng),即時(shí),取得最大值.所以,的取值范圍為.【點(diǎn)睛】本題主要考查了直角坐標(biāo)方程,參數(shù)方程與極坐標(biāo)方程的互化,三角函數(shù)的值域求解等知識(shí),考查了學(xué)生的運(yùn)算求解能力.20.;,.【解析】
由題意,可得,利用矩陣的知識(shí)求解即可.矩陣的特征多項(xiàng)式為,令,求出矩陣的特征值.【詳解】設(shè)矩陣,則,所以,解得,,,,所以矩陣;矩陣的特征多項(xiàng)式為,令,解得,,即矩陣的兩個(gè)特征值為,.【點(diǎn)睛】本題考查矩陣的知識(shí)點(diǎn),屬于常考題.21.(1)(2)為定值.【解析】
(1)根據(jù)題意,得出,從而得出橢圓的標(biāo)準(zhǔn)方程.(2)根據(jù)題意設(shè)直線方程
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 微生物檢驗(yàn)技術(shù)人員的職業(yè)素養(yǎng)與試題及答案
- 童車(chē)制造企業(yè)生產(chǎn)調(diào)度與優(yōu)化練習(xí)考核試卷
- 室外拱形廊道施工方案
- 垃圾運(yùn)輸防滲漏施工方案
- 2025年【光氣及光氣化工藝】模擬考試題及答案
- 移動(dòng)通信技術(shù)在智慧工廠行業(yè)的應(yīng)用考核試卷
- 項(xiàng)目材料采購(gòu)的試題及答案
- 2024年花藝師考試的學(xué)習(xí)方法與技巧試題及答案
- 畜牧業(yè)綠色發(fā)展政策建議考核試卷
- 紙張表面裝飾技術(shù)的創(chuàng)新與發(fā)展考核試卷
- FANUC發(fā)那科機(jī)器人常規(guī)點(diǎn)檢保養(yǎng)
- 醫(yī)藥有限公司公司獎(jiǎng)懲制度
- 微電子學(xué)概論全套課件
- 實(shí)驗(yàn)室氣瓶使用記錄
- DB37T 2974-2017 工貿(mào)企業(yè)安全生產(chǎn)風(fēng)險(xiǎn)分級(jí)管控體系細(xì)則
- DB13(J)∕T 8054-2019 市政基礎(chǔ)設(shè)施工程施工質(zhì)量驗(yàn)收通用標(biāo)準(zhǔn)
- 混雜纖維增強(qiáng)的復(fù)合材料介紹、特點(diǎn)和應(yīng)用
- 星巴克哈佛商學(xué)院案例
- 工程項(xiàng)目?jī)?nèi)部控制流程圖表
- 強(qiáng)夯試夯報(bào)告(共12頁(yè))
- 骨優(yōu)導(dǎo)介紹PPT
評(píng)論
0/150
提交評(píng)論